RULES FOR THE CLASSIFICATION AND CONSTRUCTION
PART 1. SEAGOING SHIPS

VOLUME II
RULES FOR HULL
2014 EDITION

BIRO KLASIFIKASI INDONESIA
RULES FOR THE CLASSIFICATION AND CONSTRUCTION

PART 1. SEAGOING SHIPS

VOLUME II
RULES FOR HULL
2014 EDITION

Biro Klasifikasi Indonesia
Jl. Yos Sudarso No. 38-40, Tanjung Priok
Jakarta 14320
www.klasifikasiindonesia.com
rules@klasifikasiindonesia.com

Copyright © 2014
Reproduction in whole or in part by any means, is subject to the permission in writing by Biro Klasifikasi Indonesia Head Office
The following Guidelines come into force on 1st January 2014

Reproduction in whole or in part by any means, is subject to the permission in writing by Biro Klasifikasi
Indonesia Head Office

Published by: Biro Klasifikasi Indonesia
Foreword

The general description about this rules in every section describe below:
Section 1 General Definition
Section 2 Material
Section 3 Design Principles
Section 4 Design Load
Section 5 Longitudinal Strength
Section 6-14 Scantling Calculation
Section 15 Strengthening for Navigation in Ice
Section 16 Superstructure and Deckhouse
Section 17 Hatchways
Section 18 Equipment
Section 19 Welded Joints
Section 20 Fatigue Strength
Section 21 Hull Outfit
Section 22 Structural Fire Protection on Board Seagoing Ships
Section 23-34 Special Requirement for Ship Type (Bulk Carriers, Ore Carriers, Heavy Cargo Ships, Oil Tankers, Ships Carrying Dangerous Chemical in Bulk, Ships Carrying Liquefied Gases in Bulk, Tugs, Fishing Vessels, Passenger Ships, Ships for Sheltered Shallow Water Services, Barges, Pontoons, Dredgers, Special Rules Floating Docks, and Supply Vessels)
Section 35 Strengthening Against Collision
Section 36 Subdivision and Stability of Cargo Ships and Passanger Ships
Section 37 Special Requirement for In-Water Surveys
Section 38 Corrosion Protection
This page intentionally left blank
Table of Contents

Foreword

Table of Contents

Rules Amendment Notice

Section 1 - General, Definitions

<table>
<thead>
<tr>
<th>A. Validity, Equivalence</th>
<th>1-1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Restricted Service Ranges</td>
<td>1-2/10</td>
</tr>
<tr>
<td>C. Ships for Special Services</td>
<td>1-2/10</td>
</tr>
<tr>
<td>D. Accessibility</td>
<td>1-2/10</td>
</tr>
<tr>
<td>E. Stability</td>
<td>1-2/10</td>
</tr>
<tr>
<td>1. General</td>
<td>1-2/10</td>
</tr>
<tr>
<td>2. Ships with proven damage stability</td>
<td>1-2/10</td>
</tr>
<tr>
<td>3. Anti-heeling devices</td>
<td>1-3/10</td>
</tr>
<tr>
<td>F. Vibrations and Noise</td>
<td>1-3/10</td>
</tr>
<tr>
<td>1. Mechanical vibrations</td>
<td>1-3/10</td>
</tr>
<tr>
<td>2. Noise</td>
<td>1-3/10</td>
</tr>
<tr>
<td>G. Documents for Approval</td>
<td>1-4/10</td>
</tr>
<tr>
<td>H. Definitions</td>
<td>1-6/10</td>
</tr>
<tr>
<td>1. General</td>
<td>1-6/10</td>
</tr>
<tr>
<td>2. Principal dimensions</td>
<td>1-6/10</td>
</tr>
<tr>
<td>J. International Conventions and Codes</td>
<td>1-7/10</td>
</tr>
<tr>
<td>K. Rounding-off Tolerances</td>
<td>1-8/10</td>
</tr>
<tr>
<td>L. Regulations of National Administrations</td>
<td>1-8/10</td>
</tr>
<tr>
<td>M. Computer Programs</td>
<td>1-8/10</td>
</tr>
<tr>
<td>1. General</td>
<td>1-8/10</td>
</tr>
<tr>
<td>2. General Programs</td>
<td>1-8/10</td>
</tr>
<tr>
<td>N. Workmanship</td>
<td>1-9/10</td>
</tr>
<tr>
<td>1. General</td>
<td>1-9/10</td>
</tr>
<tr>
<td>1.1 Requirements to be complied with by the manufacturer</td>
<td>1-9/10</td>
</tr>
<tr>
<td>1.2 Quality control</td>
<td>1-9/10</td>
</tr>
<tr>
<td>2. Structural details</td>
<td>1-9/10</td>
</tr>
<tr>
<td>2.1 Details in manufacturing documents</td>
<td>1-9/10</td>
</tr>
<tr>
<td>2.2 Cut-outs, plate edges</td>
<td>1-9/10</td>
</tr>
<tr>
<td>2.3 Cold forming</td>
<td>1-10/10</td>
</tr>
<tr>
<td>2.4 Assembly, alignment</td>
<td>1-10/10</td>
</tr>
<tr>
<td>3. Corrosion protection</td>
<td>1-10/10</td>
</tr>
</tbody>
</table>

Section 2 - Materials

<table>
<thead>
<tr>
<th>A. General</th>
<th>2-1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Hull Structural Steel for Plates and Sections</td>
<td>2-1/10</td>
</tr>
<tr>
<td>1. Normal strength hull structural steel</td>
<td>2-1/10</td>
</tr>
<tr>
<td>2. Higher strength hull structural steels</td>
<td>2-1/10</td>
</tr>
<tr>
<td>3. Material selection for the hull</td>
<td>2-2/10</td>
</tr>
<tr>
<td>4. Structural members which are stressed in direction of their thickness</td>
<td>2-7/10</td>
</tr>
<tr>
<td>C. Forged Steel and Cast Steel</td>
<td>2-7/10</td>
</tr>
<tr>
<td>D. Aluminium Alloys</td>
<td>2-7/10</td>
</tr>
<tr>
<td>E. Austenitic Steels</td>
<td>2-8/10</td>
</tr>
</tbody>
</table>

Section 3 - Design Principles

<table>
<thead>
<tr>
<th>A. General</th>
<th>3-1/24</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scope</td>
<td>3-1/24</td>
</tr>
<tr>
<td>2. Permissible stresses and required sectional properties</td>
<td>3-1/24</td>
</tr>
<tr>
<td>3. Plate panels subjected to lateral pressure</td>
<td>3-1/24</td>
</tr>
<tr>
<td>4. Fatigue strength</td>
<td>3-2/24</td>
</tr>
<tr>
<td>B. Upper and Lower Hull Flange</td>
<td>3-2/24</td>
</tr>
<tr>
<td>C. Unsupported Span</td>
<td>3-2/24</td>
</tr>
</tbody>
</table>
Table of Contents

Section 4 - Design Loads .. 4-1/10
A. General, Definitions .. 4-1/10
1. General ... 4-1/10
2. Definitions .. 4-1/10
 2.1 Load centre ... 4-1/10
 2.2 Definition of symbols .. 4-1/10
B. External Sea Loads .. 4-2/10
1. Load on weather decks .. 4-2/10
2. Load on ship's sides and of bow and stern structures 4-3/10
 2.1 Load on ship's sides ... 4-3/10
 2.2 Load on bow structures 4-3/10
 2.3 Load on stern structures 4-4/10
3. Load on the ship's bottom ... 4-4/10
4. Design bottom slamming pressure 4-4/10
5. Load on decks of superstructures and deckhouses 4-5/10
C. Cargo Loads, Load on Accommodation Decks 4-6/10
1. Load on cargo decks .. 4-6/10
2. Load on inner bottom ... 4-6/10
3. Loads on accommodation and machinery decks 4-7/10
D. Load on Tank Structures .. 4-7/10
1. Design pressure for filled tanks 4-7/10
2. Design pressure for partially filled tanks 4-8/10
E. Design Values of Acceleration Components 4-8/10
1. Acceleration components .. 4-8/10
2. Combined acceleration ... 4-9/10

Section 5 - Longitudinal Strength ... 5-1/27
A. General ... 5-1/27
1. Scope ... 5-1/27
2. Calculation Particulars .. 5-1/27
3. Assumptions for calculation, loading conditions 5-1/27
4. Loading guidance information 5-1/27
 4.1 General, definitions .. 5-1/27
 4.2 Conditions of approval of loading manuals 5-2/27
Section 6 - Shell Plating

A. General, Definitions

1. General

B. Bottom Plating

1. Plate thickness based on load stress criteria
 1.1 Ships with lengths L < 90 m
 1.2 Ships with length L > 90 m
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Critical plate thickness, buckling strength</td>
<td>6-2/20</td>
</tr>
<tr>
<td>2.1 Guidance values for critical plate thickness</td>
<td>6-2/20</td>
</tr>
<tr>
<td>2.2 Buckling strength</td>
<td>6-2/20</td>
</tr>
<tr>
<td>3. Minimum thickness</td>
<td>6-2/20</td>
</tr>
<tr>
<td>4. Bilge strake</td>
<td>6-2/20</td>
</tr>
<tr>
<td>5. Flat plate keel and garboard strake</td>
<td>6-3/20</td>
</tr>
<tr>
<td>C. Side Shell Plating</td>
<td>6-4/20</td>
</tr>
<tr>
<td>1. Plate thickness based on load stress criteria</td>
<td>6-4/20</td>
</tr>
<tr>
<td>1.1 Ships with lengths $L < 90$ m</td>
<td>6-4/20</td>
</tr>
<tr>
<td>1.2 Ships with lengths $L \geq 90$ m</td>
<td>6-4/20</td>
</tr>
<tr>
<td>2. Minimum thickness</td>
<td>6-4/20</td>
</tr>
<tr>
<td>3. Sheerstrake</td>
<td>6-5/20</td>
</tr>
<tr>
<td>4. Buckling strength</td>
<td>6-5/20</td>
</tr>
<tr>
<td>5. Strengthenings for harbour and tug manoeuvres</td>
<td>6-5/20</td>
</tr>
<tr>
<td>D. Side Plating of Superstructures</td>
<td>6-6/20</td>
</tr>
<tr>
<td>1. Arrangement of floors and girders</td>
<td>6-6/20</td>
</tr>
<tr>
<td>2. Bottom plating forward of $= 0.5$</td>
<td>6-6/20</td>
</tr>
<tr>
<td>3. Stiffeners forward of</td>
<td>6-6/20</td>
</tr>
<tr>
<td>E. Strengthening of Bottom Forward</td>
<td>6-6/20</td>
</tr>
<tr>
<td>1. Arrangement of floors and girders</td>
<td>6-6/20</td>
</tr>
<tr>
<td>2. Bottom plating forward of $= 0.5$</td>
<td>6-6/20</td>
</tr>
<tr>
<td>3. Stiffeners forward of</td>
<td>6-6/20</td>
</tr>
<tr>
<td>F. Strengthenings in Way of Propellers and Propeller Shaft Brackets,</td>
<td>6-7/20</td>
</tr>
<tr>
<td>Bilge Keels</td>
<td>6-7/20</td>
</tr>
<tr>
<td>1. Strengthenings in way of propellers and propeller brackets</td>
<td>6-7/20</td>
</tr>
<tr>
<td>2. Bilge keels</td>
<td>6-7/20</td>
</tr>
<tr>
<td>G. Openings in the Shell Plating</td>
<td>6-7/20</td>
</tr>
<tr>
<td>1. General</td>
<td>6-7/20</td>
</tr>
<tr>
<td>2. Pipe connections at the shell plating</td>
<td>6-8/20</td>
</tr>
<tr>
<td>H. Bow Doors and Inner Doors</td>
<td>6-8/20</td>
</tr>
<tr>
<td>1. General, definitions</td>
<td>6-8/20</td>
</tr>
<tr>
<td>1.1 Applicability</td>
<td>6-8/20</td>
</tr>
<tr>
<td>1.2 Arrangement</td>
<td>6-9/20</td>
</tr>
<tr>
<td>1.3 Definitions</td>
<td>6-9/20</td>
</tr>
<tr>
<td>2. Strength criteria</td>
<td>6-9/20</td>
</tr>
<tr>
<td>3. Design loads</td>
<td>6-10/20</td>
</tr>
<tr>
<td>3.1 Bow doors</td>
<td>6-10/20</td>
</tr>
<tr>
<td>3.2 Inner doors</td>
<td>6-12/20</td>
</tr>
<tr>
<td>4. Scantlings of bow doors</td>
<td>6-12/20</td>
</tr>
<tr>
<td>4.1 General</td>
<td>6-12/20</td>
</tr>
<tr>
<td>4.2 Plating and secondary stiffeners</td>
<td>6-12/20</td>
</tr>
<tr>
<td>4.3 Primary structure</td>
<td>6-12/20</td>
</tr>
<tr>
<td>5. Scantlings of inner doors</td>
<td>6-12/20</td>
</tr>
<tr>
<td>6. Securing and supporting of bow doors</td>
<td>6-13/20</td>
</tr>
<tr>
<td>6.1 General</td>
<td>6-13/20</td>
</tr>
<tr>
<td>6.2 Scantlings</td>
<td>6-13/20</td>
</tr>
<tr>
<td>7. Arrangement of securing and locking devices</td>
<td>6-14/20</td>
</tr>
<tr>
<td>7.1 Systems for operation</td>
<td>6-14/20</td>
</tr>
<tr>
<td>7.2 Systems for indication/monitoring</td>
<td>6-15/20</td>
</tr>
<tr>
<td>8. Operating and maintenance manual</td>
<td>6-16/20</td>
</tr>
<tr>
<td>J. Side Shell Doors and Stern Doors</td>
<td>6-16/20</td>
</tr>
<tr>
<td>1. General</td>
<td>6-16/20</td>
</tr>
<tr>
<td>2. Arrangement</td>
<td>6-16/20</td>
</tr>
<tr>
<td>3. Strength criteria</td>
<td>6-17/20</td>
</tr>
<tr>
<td>4. Design loads</td>
<td>6-17/20</td>
</tr>
<tr>
<td>5. Scantlings</td>
<td>6-17/20</td>
</tr>
<tr>
<td>5.1 General</td>
<td>6-17/20</td>
</tr>
<tr>
<td>5.2 Plating and secondary stiffeners</td>
<td>6-18/20</td>
</tr>
<tr>
<td>5.3 Primary structure</td>
<td>6-18/20</td>
</tr>
<tr>
<td>6. Securing and supporting of side shell and stern doors</td>
<td>6-18/20</td>
</tr>
<tr>
<td>6.1 General</td>
<td>6-18/20</td>
</tr>
<tr>
<td>6.2 Scantlings</td>
<td>6-18/20</td>
</tr>
<tr>
<td>7. Arrangement of securing and locking devices</td>
<td>6-18/20</td>
</tr>
<tr>
<td>7.1 Systems for operation</td>
<td>6-18/20</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Section 7 - Decks</td>
<td>7-1/9</td>
</tr>
<tr>
<td>A. Strength Deck</td>
<td>7-1/9</td>
</tr>
<tr>
<td>1. General, Definition</td>
<td>7-1/9</td>
</tr>
<tr>
<td>2. Connection between strength deck and sheerstrake</td>
<td>7-1/9</td>
</tr>
<tr>
<td>3. Openings in the strength deck</td>
<td>7-1/9</td>
</tr>
<tr>
<td>4. scantlings of strength deck of ships up to 65 m in length</td>
<td>7-5/9</td>
</tr>
<tr>
<td>5. scantlings of strength deck of ships of more than 65 m in length</td>
<td>7-5/9</td>
</tr>
<tr>
<td>6. Minimum thickness</td>
<td>7-5/9</td>
</tr>
<tr>
<td>7. End thickness, thickness inside line of hatchways</td>
<td>7-5/9</td>
</tr>
<tr>
<td>B. Lower Decks</td>
<td>7-6/9</td>
</tr>
<tr>
<td>1. Thickness of decks for cargo loads</td>
<td>7-6/9</td>
</tr>
<tr>
<td>2. Thickness of decks for wheel loading</td>
<td>7-6/9</td>
</tr>
<tr>
<td>3. Machinery decks and accommodation decks</td>
<td>7-7/9</td>
</tr>
<tr>
<td>C. Helicopter Decks</td>
<td>7-7/9</td>
</tr>
<tr>
<td>1. General</td>
<td>7-7/9</td>
</tr>
<tr>
<td>2. Design Load</td>
<td>7-8/9</td>
</tr>
<tr>
<td>2.1 LC 1</td>
<td>7-8/9</td>
</tr>
<tr>
<td>2.2 LC 2</td>
<td>7-8/9</td>
</tr>
<tr>
<td>2.3 LC 3</td>
<td>7-8/9</td>
</tr>
<tr>
<td>3. scantlings of structural members</td>
<td>7-9/9</td>
</tr>
</tbody>
</table>

Section 8 - Bottom Structures | 8-1/13 |
A. Single Bottom	8-1/13
1. Floor plates	8-1/13
1.1 General	8-1/13
1.2 scantlings	8-1/13
2. Longitudinal girders	8-2/13
2.1 General	8-2/13
2.2 scantlings	8-2/13
B. Double Bottom	8-2/13
1. General	8-2/13
2. Centre girder	8-3/13
2.1 Lightening holes	8-3/13
2.2 scantlings	8-3/13
3. Side girders	8-4/13
3.1 Arrangement	8-4/13
3.2 scantlings	8-4/13
4. Inner bottom	8-4/13
5. Double bottom tanks	8-5/13
5.1 scantlings	8-5/13
5.2 Fuel and lubricating oil tanks	8-5/13
5.3 Bilge wells	8-5/13
5.4 Sea chests	8-5/13
6. Double bottom, transverse framing system	8-6/13
6.1 Plate floors	8-6/13
6.2 scantlings	8-6/13
6.3 Watertight floors	8-6/13
6.4 Bracket floors	8-7/13
6.5 Brackets	8-7/13
6.6 Struts	8-7/13
7. Double bottom, longitudinal framing system	8-7/13
7.1 General	8-7/13
7.2 Bottom and inner bottom longitudinals	8-7/13
7.3 Plate floors	8-8/13
7.4 Brackets	8-8/13
7.5 Longitudinal girder system	8-8/13
8. Direct calculation of bottom structures	8-8/13
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>General, Definitions</td>
<td>8-8/13</td>
</tr>
<tr>
<td>8.2</td>
<td>Design loads, permissible stresses</td>
<td>8-9/13</td>
</tr>
<tr>
<td>8.3</td>
<td>Buckling strength</td>
<td>8-9/13</td>
</tr>
<tr>
<td>C.</td>
<td>Bottom Structure in Machinery Spaces in Way of the Main Propulsion Plant</td>
<td>8-10/13</td>
</tr>
<tr>
<td>1.</td>
<td>Single bottom</td>
<td>8-10/13</td>
</tr>
<tr>
<td>2.</td>
<td>Double bottom</td>
<td>8-10/13</td>
</tr>
<tr>
<td>2.1</td>
<td>General</td>
<td>8-10/13</td>
</tr>
<tr>
<td>2.2</td>
<td>Plate floors</td>
<td>8-10/13</td>
</tr>
<tr>
<td>2.3</td>
<td>Side girders</td>
<td>8-10/13</td>
</tr>
<tr>
<td>2.4</td>
<td>Inner bottom</td>
<td>8-11/13</td>
</tr>
<tr>
<td>3.</td>
<td>Engine seating</td>
<td>8-11/13</td>
</tr>
<tr>
<td>3.1</td>
<td>General</td>
<td>8-11/13</td>
</tr>
<tr>
<td>3.2</td>
<td>Longitudinal girders</td>
<td>8-11/13</td>
</tr>
<tr>
<td>D.</td>
<td>Docking Calculation</td>
<td>8-12/13</td>
</tr>
<tr>
<td>1.</td>
<td>Simplified docking calculation</td>
<td>8-12/13</td>
</tr>
<tr>
<td>2.</td>
<td>Direct docking calculation</td>
<td>8-13/13</td>
</tr>
<tr>
<td>3.</td>
<td>Permissible stresses</td>
<td>8-13/13</td>
</tr>
<tr>
<td>4.</td>
<td>Buckling strength</td>
<td>8-13/13</td>
</tr>
</tbody>
</table>

Section 9 - Framing System

A. Transverse Framing

1. General | 9-1/12

B. Bottom, Side- and Deck Longitudinals, Side Transverses

1. General | 9-7/12

Section 10 - Deck Beams and Supporting Deck Structures

A. General

1. Definitions | 10-1/5

B. Deck Beams and Girders

1. Transverse deck beams and deck longitudinals | 10-2/5

BKI - Rules for Hull - 2014
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Girders and transverses</td>
<td>10-2/5</td>
</tr>
<tr>
<td>5.</td>
<td>Supporting structure of windlasses and chain stoppers</td>
<td>10-3/5</td>
</tr>
<tr>
<td>C.</td>
<td>Pillars</td>
<td>10-3/5</td>
</tr>
<tr>
<td>1.</td>
<td>General</td>
<td>10-3/5</td>
</tr>
<tr>
<td>2.</td>
<td>Scantlings</td>
<td>10-3/5</td>
</tr>
<tr>
<td>D.</td>
<td>Cantilevers</td>
<td>10-4/5</td>
</tr>
<tr>
<td>1.</td>
<td>General</td>
<td>10-4/5</td>
</tr>
<tr>
<td>2.</td>
<td>Permissible stresses</td>
<td>10-4/5</td>
</tr>
<tr>
<td>E.</td>
<td>Hatchway Girders and Girders Forming Part of the Longitudinal Hull Structure</td>
<td>10-5/5</td>
</tr>
<tr>
<td></td>
<td>Section 11 - Watertight Bulkheads</td>
<td>11-1/8</td>
</tr>
<tr>
<td>A.</td>
<td>General</td>
<td>11-1/8</td>
</tr>
<tr>
<td>1.</td>
<td>Watertight subdivision</td>
<td>11-1/8</td>
</tr>
<tr>
<td>2.</td>
<td>Arrangement of watertight bulkheads</td>
<td>11-1/8</td>
</tr>
<tr>
<td>2.1</td>
<td>Collision bulkhead</td>
<td>11-1/8</td>
</tr>
<tr>
<td>2.2</td>
<td>Stern tube and remaining watertight bulkheads</td>
<td>11-3/8</td>
</tr>
<tr>
<td>3.</td>
<td>Openings in watertight bulkheads</td>
<td>11-3/8</td>
</tr>
<tr>
<td>3.1</td>
<td>General</td>
<td>11-3/8</td>
</tr>
<tr>
<td>3.2</td>
<td>Hinged doors</td>
<td>11-3/8</td>
</tr>
<tr>
<td>3.3</td>
<td>Sliding doors</td>
<td>11-3/8</td>
</tr>
<tr>
<td>3.4</td>
<td>Penetrations through watertight bulkheads</td>
<td>11-4/8</td>
</tr>
<tr>
<td>B.</td>
<td>Scantlings</td>
<td>11-4/8</td>
</tr>
<tr>
<td>1.</td>
<td>General</td>
<td>11-4/8</td>
</tr>
<tr>
<td>2.</td>
<td>Bulkhead plating</td>
<td>11-4/8</td>
</tr>
<tr>
<td>3.</td>
<td>Stiffeners</td>
<td>11-5/8</td>
</tr>
<tr>
<td>4.</td>
<td>Corrugated bulkheads</td>
<td>11-5/8</td>
</tr>
<tr>
<td>5.</td>
<td>Primary Supporting Members</td>
<td>11-6/8</td>
</tr>
<tr>
<td>5.1</td>
<td>General</td>
<td>11-6/8</td>
</tr>
<tr>
<td>5.2</td>
<td>Load assumptions</td>
<td>11-6/8</td>
</tr>
<tr>
<td>5.3</td>
<td>Strength criteria</td>
<td>11-6/8</td>
</tr>
<tr>
<td>6.</td>
<td>Watertight longitudinal structures</td>
<td>11-8/8</td>
</tr>
<tr>
<td>C.</td>
<td>Shaft Tunnels</td>
<td>11-8/8</td>
</tr>
<tr>
<td>1.</td>
<td>General</td>
<td>11-8/8</td>
</tr>
<tr>
<td>2.</td>
<td>Scantlings</td>
<td>11-8/8</td>
</tr>
<tr>
<td></td>
<td>Section 12 - Tank Structures</td>
<td>12-1/10</td>
</tr>
<tr>
<td>A.</td>
<td>General</td>
<td>12-1/10</td>
</tr>
<tr>
<td>1.</td>
<td>Subdivision of tanks</td>
<td>12-1/10</td>
</tr>
<tr>
<td>2.</td>
<td>Air, overflow and sounding pipes</td>
<td>12-1/10</td>
</tr>
<tr>
<td>3.</td>
<td>Forepeak tank</td>
<td>12-1/10</td>
</tr>
<tr>
<td>4.</td>
<td>Cross references</td>
<td>12-1/10</td>
</tr>
<tr>
<td>5.</td>
<td>Separation of fuel oil tanks from tanks for other liquids</td>
<td>12-1/10</td>
</tr>
<tr>
<td>6.</td>
<td>Tanks for heated liquids</td>
<td>12-2/10</td>
</tr>
<tr>
<td>7.</td>
<td>Minimum thickness</td>
<td>12-2/10</td>
</tr>
<tr>
<td>8.</td>
<td>Plating and stiffeners in the propeller area and in the engine room</td>
<td>12-3/10</td>
</tr>
<tr>
<td>8.1</td>
<td>General</td>
<td>12-3/10</td>
</tr>
<tr>
<td>8.2</td>
<td>Definitions</td>
<td>12-3/10</td>
</tr>
<tr>
<td>8.3</td>
<td>Shell structures in propeller area</td>
<td>12-3/10</td>
</tr>
<tr>
<td>8.4</td>
<td>Tank structures in propeller area</td>
<td>12-3/10</td>
</tr>
<tr>
<td>8.5</td>
<td>Tank structures in main engine area</td>
<td>12-4/10</td>
</tr>
<tr>
<td>B.</td>
<td>Scantlings</td>
<td>12-4/10</td>
</tr>
<tr>
<td>1.</td>
<td>Definitions</td>
<td>12-4/10</td>
</tr>
<tr>
<td>2.</td>
<td>Plating</td>
<td>12-5/10</td>
</tr>
<tr>
<td>3.</td>
<td>Stiffeners and girders</td>
<td>12-5/10</td>
</tr>
<tr>
<td>4.</td>
<td>Corrugated bulkheads</td>
<td>12-7/10</td>
</tr>
<tr>
<td>5.</td>
<td>Thickness of clad plating</td>
<td>12-7/10</td>
</tr>
<tr>
<td>C.</td>
<td>Tanks with Large Lengths or Breadths</td>
<td>12-7/10</td>
</tr>
<tr>
<td>1.</td>
<td>General</td>
<td>12-7/10</td>
</tr>
<tr>
<td>2.</td>
<td>Hold spaces for ballast water</td>
<td>12-8/10</td>
</tr>
<tr>
<td>D.</td>
<td>Vegetable Oil Tanks</td>
<td>12-8/10</td>
</tr>
<tr>
<td>E.</td>
<td>Detached Tanks</td>
<td>12-9/10</td>
</tr>
</tbody>
</table>
Section 13 - Stem and Sternframe Structures

<table>
<thead>
<tr>
<th>A. Definitions</th>
<th>13-1/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Stem</td>
<td>13-1/8</td>
</tr>
<tr>
<td>1. Bar stem</td>
<td>13-1/8</td>
</tr>
<tr>
<td>2. Plate stem and bulbous bows</td>
<td>13-1/8</td>
</tr>
<tr>
<td>C. Sternframe</td>
<td>13-1/8</td>
</tr>
<tr>
<td>1. General</td>
<td>13-1/8</td>
</tr>
<tr>
<td>2. Propeller post</td>
<td>13-2/8</td>
</tr>
<tr>
<td>3. Rudder post and rudder axle</td>
<td>13-3/8</td>
</tr>
<tr>
<td>4. Sole piece</td>
<td>13-4/8</td>
</tr>
<tr>
<td>5. Rudder horn of semi spade rudders</td>
<td>13-5/8</td>
</tr>
<tr>
<td>D. Propeller Brackets</td>
<td>13-7/8</td>
</tr>
<tr>
<td>E. Elastic Stern Tube</td>
<td>13-7/8</td>
</tr>
<tr>
<td>1. Strength analysis</td>
<td>13-7/8</td>
</tr>
<tr>
<td>1.1 Static load</td>
<td>13-8/8</td>
</tr>
<tr>
<td>1.2 Dynamic load</td>
<td>13-8/8</td>
</tr>
</tbody>
</table>

Section 14 Rudder and Manoeuvring Arrangement

<table>
<thead>
<tr>
<th>A. General</th>
<th>14-1/21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Manoeuvring arrangement</td>
<td>14-1/21</td>
</tr>
<tr>
<td>2. Structural details</td>
<td>14-1/21</td>
</tr>
<tr>
<td>3. Size of rudder area</td>
<td>14-2/21</td>
</tr>
<tr>
<td>4. Materials</td>
<td>14-2/21</td>
</tr>
<tr>
<td>5. Definitions</td>
<td>14-3/21</td>
</tr>
<tr>
<td>B. Rudder Force and Torque</td>
<td>14-4/21</td>
</tr>
<tr>
<td>1. Rudder force and torque for normal rudders</td>
<td>14-4/21</td>
</tr>
<tr>
<td>2. Rudder force and torque for rudder blades with cut-outs (semi-spade rudders)</td>
<td>14-5/21</td>
</tr>
<tr>
<td>C. Scantlings of the Rudder Stock</td>
<td>14-6/21</td>
</tr>
<tr>
<td>1. Rudder stock diameter</td>
<td>14-6/21</td>
</tr>
<tr>
<td>2. Strengthening of rudder stock</td>
<td>14-7/21</td>
</tr>
<tr>
<td>3. Analysis</td>
<td>14-7/21</td>
</tr>
<tr>
<td>3.1 General</td>
<td>14-7/21</td>
</tr>
<tr>
<td>3.2 Data for the analysis</td>
<td>14-7/21</td>
</tr>
<tr>
<td>3.3 Moments and forces to be evaluated</td>
<td>14-10/21</td>
</tr>
<tr>
<td>4. Rudder trunk</td>
<td>14-11/21</td>
</tr>
<tr>
<td>D. Rudder Couplings</td>
<td>14-12/21</td>
</tr>
<tr>
<td>1. General</td>
<td>14-12/21</td>
</tr>
<tr>
<td>2. Horizontal couplings</td>
<td>14-12/21</td>
</tr>
<tr>
<td>3. Vertical couplings</td>
<td>14-12/21</td>
</tr>
<tr>
<td>4. Cone couplings</td>
<td>14-13/21</td>
</tr>
<tr>
<td>4.1 Cone couplings with key</td>
<td>14-13/21</td>
</tr>
<tr>
<td>4.2 Cone couplings with special arrangements for mounting and dismounting the couplings</td>
<td>14-14/21</td>
</tr>
<tr>
<td>E. Rudder Body, Rudder Bearings</td>
<td>14-16/21</td>
</tr>
<tr>
<td>1. Strength of rudder body</td>
<td>14-16/21</td>
</tr>
<tr>
<td>2. Rudder plating</td>
<td>14-17/21</td>
</tr>
<tr>
<td>2.1 Double plate rudders</td>
<td>14-17/21</td>
</tr>
<tr>
<td>2.2 Single plate rudders</td>
<td>14-18/21</td>
</tr>
<tr>
<td>2.2.1 Main piece diameter</td>
<td>14-18/21</td>
</tr>
<tr>
<td>2.2.2 Blade thickness</td>
<td>14-18/21</td>
</tr>
<tr>
<td>2.2.3 Arms</td>
<td>14-18/21</td>
</tr>
<tr>
<td>3. Transmitting of the rudder torque</td>
<td>14-18/21</td>
</tr>
<tr>
<td>4. Rudder bearings</td>
<td>14-18/21</td>
</tr>
<tr>
<td>5. Pintles</td>
<td>14-19/21</td>
</tr>
<tr>
<td>6. Guidance values for bearing clearances</td>
<td>14-19/21</td>
</tr>
<tr>
<td>F. Design Yield Moment of Rudder Stock</td>
<td>14-20/21</td>
</tr>
<tr>
<td>Section 15 - Strengthening for Navigation in Ice</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>A. General</td>
<td></td>
</tr>
<tr>
<td>1. Ice class notations</td>
<td></td>
</tr>
<tr>
<td>2. Ice class draught for Ships with Notations ES1-ES4</td>
<td></td>
</tr>
<tr>
<td>3. Propulsion machinery output for ships with Notations ES1-ES4</td>
<td></td>
</tr>
<tr>
<td>4. Definitions for ships notations ES1-ES4</td>
<td></td>
</tr>
<tr>
<td>B. Requirements for the Notations ES1 – ES4</td>
<td></td>
</tr>
<tr>
<td>1. General</td>
<td></td>
</tr>
<tr>
<td>2. Ice loads</td>
<td></td>
</tr>
<tr>
<td>3. Thickness of shell plating in the ice belt</td>
<td></td>
</tr>
<tr>
<td>4. Frames, ice stringers, web frames</td>
<td></td>
</tr>
<tr>
<td>4.1 General</td>
<td></td>
</tr>
<tr>
<td>4.2 Transverse frames</td>
<td></td>
</tr>
<tr>
<td>4.3 Longitudinal frames</td>
<td></td>
</tr>
<tr>
<td>4.4 Ice stringers</td>
<td></td>
</tr>
<tr>
<td>4.5 Web frames</td>
<td></td>
</tr>
<tr>
<td>5. Stern</td>
<td></td>
</tr>
<tr>
<td>6. Arrangements for towing</td>
<td></td>
</tr>
<tr>
<td>7. Stern</td>
<td></td>
</tr>
<tr>
<td>8. Bilge keels</td>
<td></td>
</tr>
<tr>
<td>9. Rudder and steering gear</td>
<td></td>
</tr>
<tr>
<td>C. Requirements for the Ice Class Notation ES</td>
<td></td>
</tr>
<tr>
<td>1. Shell plating within the ice belt</td>
<td></td>
</tr>
<tr>
<td>2. Frames</td>
<td></td>
</tr>
<tr>
<td>3. Stem</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 16 - Superstructures and Deckhouses</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. General</td>
</tr>
<tr>
<td>1. Definitions</td>
</tr>
<tr>
<td>2. Arrangement of superstructure</td>
</tr>
<tr>
<td>3. Strengthenings at the ends of superstructures</td>
</tr>
<tr>
<td>4. Transverse structure of superstructures and deckhouses</td>
</tr>
<tr>
<td>5. Openings in closed superstructures</td>
</tr>
<tr>
<td>6. Recommendations regarding deckhouse vibration</td>
</tr>
<tr>
<td>B. Side Plating and Decks of Non-Effective Superstructures</td>
</tr>
<tr>
<td>1. Side plating</td>
</tr>
<tr>
<td>2. Deck plating</td>
</tr>
<tr>
<td>3. Deck beams, supporting deck structure, frames</td>
</tr>
<tr>
<td>C. Superstructure End Bulkheads and Deckhouse Walls</td>
</tr>
<tr>
<td>1. General</td>
</tr>
<tr>
<td>2. Definitions</td>
</tr>
<tr>
<td>3. Scantlings</td>
</tr>
<tr>
<td>3.1 Stiffeners</td>
</tr>
<tr>
<td>3.2 Plate thickness</td>
</tr>
<tr>
<td>D. Decks of Short Deckhouses</td>
</tr>
<tr>
<td>1. Plating</td>
</tr>
<tr>
<td>2. Deck beams</td>
</tr>
<tr>
<td>E. Elastic Mounting of Deckhouses</td>
</tr>
<tr>
<td>1. General</td>
</tr>
<tr>
<td>2. Design loads</td>
</tr>
<tr>
<td>2.1 Weight</td>
</tr>
<tr>
<td>2.2 Water pressure and wind pressure</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Section 17 - Hatchways</td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Hatchways on freeboard and superstructure decks</td>
<td>17-1/20</td>
</tr>
<tr>
<td>2.</td>
<td>Hatchways on lower decks and within superstructures</td>
<td>17-1/20</td>
</tr>
<tr>
<td>3.</td>
<td>Definitions</td>
<td>17-1/20</td>
</tr>
<tr>
<td>B.</td>
<td>Hatch Covers</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Design loads</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Load case A</td>
<td>17-2/20</td>
</tr>
<tr>
<td>1.2</td>
<td>Load case B</td>
<td>17-2/20</td>
</tr>
<tr>
<td>1.3</td>
<td>Load case C</td>
<td>17-3/20</td>
</tr>
<tr>
<td>1.4</td>
<td>Load case D</td>
<td>17-4/20</td>
</tr>
<tr>
<td>1.5</td>
<td>Load case E</td>
<td>17-5/20</td>
</tr>
<tr>
<td>1.6</td>
<td>Load case F</td>
<td>17-5/20</td>
</tr>
<tr>
<td>1.7</td>
<td>Horizontal mass forces</td>
<td>17-5/20</td>
</tr>
<tr>
<td>2.</td>
<td>Permissible stresses and deflections</td>
<td>17-5/20</td>
</tr>
<tr>
<td>3.1</td>
<td>General</td>
<td>17-5/20</td>
</tr>
<tr>
<td>3.2</td>
<td>Hatch cover supports</td>
<td>17-6/20</td>
</tr>
<tr>
<td>3.3</td>
<td>Strength calculations for beam and girder grillages</td>
<td>17-6/20</td>
</tr>
<tr>
<td>3.4</td>
<td>FEM calculations</td>
<td>17-6/20</td>
</tr>
<tr>
<td>4.</td>
<td>Scantlings</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Hatch cover plating</td>
<td>17-6/20</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Top plating</td>
<td>17-6/20</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Lower plating of pontoon hatch covers and box girders</td>
<td>17-7/20</td>
</tr>
<tr>
<td>4.2</td>
<td>Main girders</td>
<td>17-7/20</td>
</tr>
<tr>
<td>4.3</td>
<td>Edge girders</td>
<td>17-7/20</td>
</tr>
<tr>
<td>4.4</td>
<td>Hatch cover stiffeners</td>
<td>17-7/20</td>
</tr>
<tr>
<td>4.5</td>
<td>Hatch cover supports</td>
<td>17-8/20</td>
</tr>
<tr>
<td>4.6</td>
<td>Locking and securing of hatch covers</td>
<td>17-9/20</td>
</tr>
<tr>
<td>4.7</td>
<td>Hatch cover stoppers</td>
<td>17-9/20</td>
</tr>
<tr>
<td>4.8</td>
<td>Cantilevers, load transmitting elements</td>
<td>17-10/20</td>
</tr>
<tr>
<td>4.9</td>
<td>Container seatings on hatch covers</td>
<td>17-10/20</td>
</tr>
<tr>
<td>5.</td>
<td>Weathertightness of hatch covers</td>
<td>17-10/20</td>
</tr>
<tr>
<td>5.1</td>
<td>Packing material</td>
<td>17-10/20</td>
</tr>
<tr>
<td>5.2</td>
<td>Non-weathertightness hatch covers</td>
<td>17-10/20</td>
</tr>
<tr>
<td>5.3</td>
<td>Drainage arrangements</td>
<td>17-11/20</td>
</tr>
<tr>
<td>5.4</td>
<td>Tightness test, trials</td>
<td>17-11/20</td>
</tr>
<tr>
<td>6.</td>
<td>Wooden hatchway covers & hatchway beams</td>
<td>17-12/20</td>
</tr>
<tr>
<td>6.1</td>
<td>Hatchway covers</td>
<td>17-12/20</td>
</tr>
<tr>
<td>6.2</td>
<td>Hatchway beams</td>
<td></td>
</tr>
<tr>
<td>6.2.1</td>
<td>General</td>
<td>17-12/20</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Scantlings</td>
<td>17-12/20</td>
</tr>
<tr>
<td>6.3</td>
<td>Moments of inertia, section moduli, shear areas</td>
<td>17-13/20</td>
</tr>
<tr>
<td>6.4</td>
<td>Arrangement and securing of hatchway beams</td>
<td>17-13/20</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>7. Sealing and Securing Arrangements of Wooden and Non Self Tightening Pontoon Hatchway Covering</td>
<td>17-14/20</td>
<td></td>
</tr>
<tr>
<td>C. Hatch Cover Coamings and Girders</td>
<td>17-14/20</td>
<td></td>
</tr>
<tr>
<td>1. General</td>
<td>17-14/20</td>
<td></td>
</tr>
<tr>
<td>2. Scantlings</td>
<td>17-15/20</td>
<td></td>
</tr>
<tr>
<td>2.1 Plating</td>
<td>17-15/20</td>
<td></td>
</tr>
<tr>
<td>2.2 Coaming stays</td>
<td>17-15/20</td>
<td></td>
</tr>
<tr>
<td>2.3 Horizontal stiffeners</td>
<td>17-15/20</td>
<td></td>
</tr>
<tr>
<td>D. Smaller Opening and Hatches</td>
<td>17-16/20</td>
<td></td>
</tr>
<tr>
<td>1. Miscellaneous openings in freeboard and superstructure decks</td>
<td>17-16/20</td>
<td></td>
</tr>
<tr>
<td>2. Strength and securing of small hatches on the exposed fore deck</td>
<td>17-16/20</td>
<td></td>
</tr>
<tr>
<td>2.1 General</td>
<td>17-16/20</td>
<td></td>
</tr>
<tr>
<td>2.2 Application</td>
<td>17-16/20</td>
<td></td>
</tr>
<tr>
<td>2.3 Strength</td>
<td>17-17/20</td>
<td></td>
</tr>
<tr>
<td>2.4 Primary securing devices</td>
<td>17-17/20</td>
<td></td>
</tr>
<tr>
<td>2.5 Requirements for primary securing</td>
<td>17-17/20</td>
<td></td>
</tr>
<tr>
<td>2.6 Secondary securing device</td>
<td>17-18/20</td>
<td></td>
</tr>
<tr>
<td>E. Engine and Boiler Room Hatchways</td>
<td>17-18/20</td>
<td></td>
</tr>
<tr>
<td>1. Deck openings</td>
<td>17-18/20</td>
<td></td>
</tr>
<tr>
<td>2. Engine and boiler room casings</td>
<td>17-18/20</td>
<td></td>
</tr>
<tr>
<td>3. Doors in engine and boiler room casings</td>
<td>17-19/20</td>
<td></td>
</tr>
<tr>
<td>Section 18 - Equipment</td>
<td>18-1/10</td>
<td></td>
</tr>
<tr>
<td>A. General</td>
<td>18-1/10</td>
<td></td>
</tr>
<tr>
<td>B. Equipment Numerals</td>
<td>18-1/10</td>
<td></td>
</tr>
<tr>
<td>C. Anchors</td>
<td>18-2/10</td>
<td></td>
</tr>
<tr>
<td>D. Chain Cables</td>
<td>18-3/10</td>
<td></td>
</tr>
<tr>
<td>E. Chain Locker</td>
<td>18-4/10</td>
<td></td>
</tr>
<tr>
<td>F. Mooring Equipment</td>
<td>18-5/10</td>
<td></td>
</tr>
<tr>
<td>1. Ropes</td>
<td>18-5/10</td>
<td></td>
</tr>
<tr>
<td>2. Shipboard fittings (mooring bollards and bitts, fairleads, stand rollers, chocks)</td>
<td>18-6/10</td>
<td></td>
</tr>
<tr>
<td>3. Supporting hull structure for mooring equipment</td>
<td>18-6/10</td>
<td></td>
</tr>
<tr>
<td>4. Corrosion addition</td>
<td>18-7/10</td>
<td></td>
</tr>
<tr>
<td>5. Equipment for mooring at single point moorings</td>
<td>18-7/10</td>
<td></td>
</tr>
<tr>
<td>G. Towing Equipment</td>
<td>18-8/10</td>
<td></td>
</tr>
<tr>
<td>H. Towing and Mooring Arrangements Plan</td>
<td>18-9/10</td>
<td></td>
</tr>
<tr>
<td>Section 19 - Welded Joints</td>
<td>19-1/20</td>
<td></td>
</tr>
<tr>
<td>A. General</td>
<td>19-1/20</td>
<td></td>
</tr>
<tr>
<td>1. Information contained in manufacturing documents</td>
<td>19-1/20</td>
<td></td>
</tr>
<tr>
<td>2. Materials, weldability</td>
<td>19-1/20</td>
<td></td>
</tr>
<tr>
<td>3. Manufacture and testing</td>
<td>19-1/20</td>
<td></td>
</tr>
<tr>
<td>B. Design</td>
<td>19-2/20</td>
<td></td>
</tr>
<tr>
<td>1. General design principles</td>
<td>19-2/20</td>
<td></td>
</tr>
<tr>
<td>2. Design details</td>
<td>19-2/20</td>
<td></td>
</tr>
<tr>
<td>2.1 Stress flow, transitions</td>
<td>19-2/20</td>
<td></td>
</tr>
<tr>
<td>2.2 Local clustering of welds, minimum spacing</td>
<td>19-3/20</td>
<td></td>
</tr>
<tr>
<td>2.3 Welding cut-outs</td>
<td>19-3/20</td>
<td></td>
</tr>
<tr>
<td>2.4 Local reinforcements, doubling plates</td>
<td>19-3/20</td>
<td></td>
</tr>
<tr>
<td>2.5 Intersecting members, stress in the thickness direction</td>
<td>19-4/20</td>
<td></td>
</tr>
<tr>
<td>2.6 Welding of cold formed sections, bending radii</td>
<td>19-4/20</td>
<td></td>
</tr>
<tr>
<td>2.7 Build - up welds on rudderstocks and pintles</td>
<td>19-5/20</td>
<td></td>
</tr>
<tr>
<td>3. Weld shapes and dimensions</td>
<td>19-5/20</td>
<td></td>
</tr>
<tr>
<td>3.1 Butt joints</td>
<td>19-5/20</td>
<td></td>
</tr>
<tr>
<td>3.2 Corner, T and double-T (cruciform) joints</td>
<td>19-6/20</td>
<td></td>
</tr>
<tr>
<td>3.3 Fillet weld connections</td>
<td>19-8/20</td>
<td></td>
</tr>
<tr>
<td>4. Welded joints of particular components</td>
<td>19-10/20</td>
<td></td>
</tr>
<tr>
<td>4.1 Welds at the ends of girders and stiffeners</td>
<td>19-10/20</td>
<td></td>
</tr>
<tr>
<td>4.2 Joints between section ends and plates</td>
<td>19-11/20</td>
<td></td>
</tr>
<tr>
<td>4.3 Welded shaft bracket joints</td>
<td>19-11/20</td>
<td></td>
</tr>
<tr>
<td>4.4 Rudder coupling flanges</td>
<td>19-12/20</td>
<td></td>
</tr>
</tbody>
</table>

BKI - Rules for Hull - 2014
Section 20 - Fatigue Strength

A. General
- 1. Definitions
- 2. Scope
- 3. Quality requirements (fabrication tolerances)

B. Fatigue Strength Analysis for Free Plate Edges and for Welded Joints Using Detail Classification
- 1. Definition of nominal stress and detail classification for welded joints
- 2. Permissible stress range for standard stress range spectra or calculation of the cumulative damage ratio
- 3. Design S-N Curves
 - 3.1 Description of the design S-N curves
 - 3.2 Correction of the reference value of the design S-N curve

C. Fatigue Strength Analysis for Welded Joints Based on Local Stresses

Section 21 - Hull Outfit

A. Partition Bulkheads
- 1. General
- 2. Partition bulkheads between engine and boiler rooms
 - 2.1 General
 - 2.2 Scantlings

B. Ceiling
- 1. Bottom ceiling
- 2. Side ceiling, ceiling at tank bulkheads

C. Side Scuttles, Windows and Skylights
- 1. General
- 2. Design Load
- 3. Frames
- 4. Glass panes
- 5. Tests

D. Scuppers, Sanitary Discharges and Freeing Ports
- 1. Scuppers and sanitary discharges
- 2. Freeing ports

E. Air Pipes, Overflow Pipes, Sounding Pipes

F. Ventilators
- 1. General
- 2. Closing appliances

G. Stowage of Containers
- 1. General
- 2. Load assumptions
- 3. Permissible stresses

H. Lashing Arrangements

J. Car Decks
- 1. General
- 2. Design loads
- 3. Plating
- 4. Permissible stresses
- 5. Permissible deflection
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Life Saving Appliances</td>
<td>21-12/21</td>
</tr>
<tr>
<td>K.</td>
<td>Signal and Radar Masts</td>
<td>21-12/21</td>
</tr>
<tr>
<td>1.</td>
<td>General</td>
<td>21-12/21</td>
</tr>
<tr>
<td>2.</td>
<td>Single tubular masts</td>
<td>21-12/21</td>
</tr>
<tr>
<td>2.1</td>
<td>Stayed masts</td>
<td>21-12/21</td>
</tr>
<tr>
<td>2.2</td>
<td>Unstayed masts</td>
<td>21-13/21</td>
</tr>
<tr>
<td>3.</td>
<td>Box girder and frame work masts</td>
<td>21-13/21</td>
</tr>
<tr>
<td>4.</td>
<td>Structural details</td>
<td>21-13/21</td>
</tr>
<tr>
<td>M.</td>
<td>Loading and Lifting Gear</td>
<td>21-14/21</td>
</tr>
<tr>
<td>N.</td>
<td>Access to Cargo Area of Oil Tankers and Bulk Carriers</td>
<td>21-14/21</td>
</tr>
<tr>
<td>1.</td>
<td>Safe access to cargo holds, cargo tanks, ballast tanks and other spaces</td>
<td>21-14/21</td>
</tr>
<tr>
<td>2.</td>
<td>Definitions</td>
<td>21-14/21</td>
</tr>
<tr>
<td>3.</td>
<td>Technical provisions</td>
<td>21-15/21</td>
</tr>
<tr>
<td>4.</td>
<td>Ship structure access manual</td>
<td>21-21/21</td>
</tr>
<tr>
<td>O.</td>
<td>Guard - Rails</td>
<td>21-21/21</td>
</tr>
<tr>
<td>P.</td>
<td>Access to Ships</td>
<td>21-21/21</td>
</tr>
</tbody>
</table>

Section 22 - Structural Fire Protection on Board Seagoing Ships

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>General</td>
<td>22-1/49</td>
</tr>
<tr>
<td>B.</td>
<td>Regulations on Fire Protection for Passenger Ships carrying more than 36 Passengers</td>
<td>22-2/49</td>
</tr>
<tr>
<td>1.</td>
<td>Materials</td>
<td>22-2/49</td>
</tr>
<tr>
<td>2.</td>
<td>Main vertical zones and horizontal zones</td>
<td>22-2/49</td>
</tr>
<tr>
<td>3.</td>
<td>Bulkheads within main vertical zones</td>
<td>22-2/49</td>
</tr>
<tr>
<td>4.</td>
<td>Fire integrity of bulkheads and decks</td>
<td>22-3/49</td>
</tr>
<tr>
<td>5.</td>
<td>Protection of stairways and lifts in accommodation and service spaces</td>
<td>22-7/49</td>
</tr>
<tr>
<td>6.</td>
<td>Openings in "A" class divisions</td>
<td>22-8/49</td>
</tr>
<tr>
<td>7.</td>
<td>Openings in "B" class divisions</td>
<td>22-9/49</td>
</tr>
<tr>
<td>8.</td>
<td>Windows and sidescuttles</td>
<td>22-10/49</td>
</tr>
<tr>
<td>9.</td>
<td>Ventilation systems</td>
<td>22-10/49</td>
</tr>
<tr>
<td>10.</td>
<td>Restriction of combustible materials</td>
<td>22-13/49</td>
</tr>
<tr>
<td>11.</td>
<td>Details of construction</td>
<td>22-14/49</td>
</tr>
<tr>
<td>12.</td>
<td>Means of escape</td>
<td>22-15/49</td>
</tr>
<tr>
<td>13.</td>
<td>Fixed fire detection and fire alarm systems and automatic sprinkler, fire detection and fire alarm systems</td>
<td>22-18/49</td>
</tr>
<tr>
<td>14.</td>
<td>Protection of vehicle, special category and ro-ro spaces</td>
<td>22-18/49</td>
</tr>
<tr>
<td>15.</td>
<td>Special arrangements in machinery spaces of category A</td>
<td>22-19/49</td>
</tr>
<tr>
<td>16.</td>
<td>Special requirements for ships carrying dangerous goods</td>
<td>22-20/49</td>
</tr>
<tr>
<td>C.</td>
<td>Regulations on Fire Protection for Passenger Ships carrying not more than 36 Passengers</td>
<td>22-20/49</td>
</tr>
<tr>
<td>1.</td>
<td>Materials</td>
<td>22-20/49</td>
</tr>
<tr>
<td>2.</td>
<td>Main vertical zones and horizontal zones</td>
<td>22-20/49</td>
</tr>
<tr>
<td>3.</td>
<td>Bulkheads within main vertical zones</td>
<td>22-21/49</td>
</tr>
<tr>
<td>4.</td>
<td>Fire integrity of bulkheads and decks</td>
<td>22-21/49</td>
</tr>
<tr>
<td>5.</td>
<td>Protection of stairways and lifts in accommodation and service spaces</td>
<td>22-24/49</td>
</tr>
<tr>
<td>6.</td>
<td>Openings in "A" class divisions</td>
<td>22-24/49</td>
</tr>
<tr>
<td>7.</td>
<td>Openings in "B" class divisions</td>
<td>22-26/49</td>
</tr>
<tr>
<td>8.</td>
<td>Windows and side scuttles</td>
<td>22-27/49</td>
</tr>
<tr>
<td>9.</td>
<td>Ventilation systems</td>
<td>22-27/49</td>
</tr>
<tr>
<td>10.</td>
<td>Restriction of combustible materials</td>
<td>22-29/49</td>
</tr>
<tr>
<td>11.</td>
<td>Details of construction</td>
<td>22-30/49</td>
</tr>
<tr>
<td>12.</td>
<td>Means of escape</td>
<td>22-30/49</td>
</tr>
<tr>
<td>13.</td>
<td>Fixed fire detection and fire alarm systems and automatic sprinkler, fire detection and fire alarm systems</td>
<td>22-32/49</td>
</tr>
<tr>
<td>14.</td>
<td>Protection of vehicle, special category and ro-ro spaces</td>
<td>22-32/49</td>
</tr>
<tr>
<td>15.</td>
<td>Special arrangements in machinery spaces of category A</td>
<td>22-33/49</td>
</tr>
<tr>
<td>16.</td>
<td>Special requirements for ships carrying dangerous goods</td>
<td>22-34/49</td>
</tr>
<tr>
<td>D.</td>
<td>Regulations on Fire Protection for Cargo Ships of 500 GT and over</td>
<td>22-34/49</td>
</tr>
<tr>
<td>1.</td>
<td>Materials</td>
<td>22-34/49</td>
</tr>
<tr>
<td>2.</td>
<td>Accommodation and service spaces</td>
<td>22-35/49</td>
</tr>
<tr>
<td>3.</td>
<td>Bulkheads within the accommodation and service spaces</td>
<td>22-35/49</td>
</tr>
</tbody>
</table>

BKI - Rules for Hull - 2014
Section 23 - Bulk Carriers, Ore Carriers and Ships with Strengthenings for Bulk Cargo and Heavy Cargo

<table>
<thead>
<tr>
<th>A. Strengthenings for Bulk Cargo and Heavy Cargo</th>
<th>23-1/27</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General</td>
<td>23-1/27</td>
</tr>
<tr>
<td>2. Double bottom</td>
<td>23-1/27</td>
</tr>
<tr>
<td>3. Longitudinal strength</td>
<td>23-1/27</td>
</tr>
<tr>
<td>B. Bulk Carriers</td>
<td>23-1/27</td>
</tr>
<tr>
<td>1. General</td>
<td>23-1/27</td>
</tr>
<tr>
<td>2. Longitudinal strength</td>
<td>23-2/27</td>
</tr>
<tr>
<td>3. Definitions</td>
<td>23-2/27</td>
</tr>
<tr>
<td>4. Scantlings of bottom structure</td>
<td>23-2/27</td>
</tr>
<tr>
<td>5. Side Structures</td>
<td>23-3/27</td>
</tr>
<tr>
<td>5.1 Side longitudinal, longitudinal stiffeners, main frames</td>
<td>23-3/27</td>
</tr>
<tr>
<td>5.2 Main frames and end connection</td>
<td>23-3/27</td>
</tr>
<tr>
<td>5.3 Minimum thickness of side shell plating</td>
<td>23-4/27</td>
</tr>
<tr>
<td>5.4 Weld connections of frames and end brackets</td>
<td>23-4/27</td>
</tr>
<tr>
<td>6. Topside tanks</td>
<td>23-4/27</td>
</tr>
<tr>
<td>7. Transverses in the wing tanks</td>
<td>23-4/27</td>
</tr>
<tr>
<td>8. Cargo hold bulkheads</td>
<td>23-4/27</td>
</tr>
<tr>
<td>9. Hatchway coamings, longitudinal bulkheads</td>
<td>23-6/27</td>
</tr>
<tr>
<td>10. Loading information for Bulk Carriers, Ore Carriers and Combination Carriers</td>
<td>23-6/27</td>
</tr>
<tr>
<td>C. Ore Carriers</td>
<td>23-7/27</td>
</tr>
<tr>
<td>1. General</td>
<td>23-7/27</td>
</tr>
<tr>
<td>2. Double bottom</td>
<td>23-8/27</td>
</tr>
<tr>
<td>3. Transverse and longitudinal bulkheads</td>
<td>23-8/27</td>
</tr>
<tr>
<td>D. Allowable hold loading, considering flooding</td>
<td>23-8/27</td>
</tr>
<tr>
<td>1. General</td>
<td>23-8/27</td>
</tr>
<tr>
<td>2. Load model</td>
<td>23-8/27</td>
</tr>
<tr>
<td>3. Shear capacity of the double bottom</td>
<td>23-9/27</td>
</tr>
<tr>
<td>4. Allowable hold loading</td>
<td>23-11/27</td>
</tr>
<tr>
<td>E. Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Bulk Carriers</td>
<td>23-12/27</td>
</tr>
<tr>
<td>Considering Hold Flooding</td>
<td></td>
</tr>
<tr>
<td>1. Application and definitions</td>
<td>23-12/27</td>
</tr>
<tr>
<td>2. Load model</td>
<td>23-12/27</td>
</tr>
<tr>
<td>2.1 General</td>
<td>23-12/27</td>
</tr>
<tr>
<td>2.2 Bulkhead corrugation flooding head</td>
<td>23-13/27</td>
</tr>
<tr>
<td>2.3 Pressure in the non-flooded bulk cargo loaded holds</td>
<td>23-14/27</td>
</tr>
<tr>
<td>2.4 Pressure in the flooded holds</td>
<td>23-14/27</td>
</tr>
<tr>
<td>2.5 Resultant pressure and force</td>
<td>23-15/27</td>
</tr>
</tbody>
</table>
Section 24 - Oil Tankers

A. General

1. Scope
2. Character of Classification
3. Cargo Tank Arrangement
4. Ship Arrangement
5. Bow or stern loading and unloading arrangements

BKI - Rules for Hull - 2014
Table of Contents

6. Superstructures .. 24-10/32
7. Gangways, bulwarks ... 24-10/32
8. Ventilators ... 24-10/32
9. Anchor equipment ... 24-11/32
10. Cathodic protection .. 24-11/32
11. Aluminium paints .. 24-11/32
12. Access to spaces in the cargo area 24-11/32
13. Minimum thickness ... 24-12/32
14. Corrosion protection .. 24-13/32
15. Testing of cargo and ballast tanks 24-13/32
B. Strength of Girders and Transverses in the Cargo Tank Area
 1. General ... 24-14/32
 2. Stress analysis .. 24-14/32
 2.1 Structural modelling .. 24-14/32
 2.2 Loads ... 24-14/32
 2.3 Permissible stresses .. 24-16/32
 2.3.1 Transverse members 24-16/32
 2.3.2 Longitudinal members 24-16/32
 2.4 Fatigue strength .. 24-17/32
 2.5 Cross ties .. 24-17/32
C. Oiltight Longitudinal and Transverse Bulkheads
 1. Scantlings ... 24-17/32
 2. Cofferdam bulkheads .. 24-17/32
D. Wash Bulkheads .. 24-18/32
 1. General ... 24-18/32
 2. Scantlings ... 24-18/32
E. Hatches ... 24-18/32
 1. Tank hatches .. 24-18/32
 2. Other access arrangements 24-18/32
F. Structural Details at the Ship's End
 1. General ... 24-18/32
 2. Fore body ... 24-18/32
 3. Aft body ... 24-19/32
 4. Emergency towing arrangements 24-19/32
 4.1 Purpose .. 24-19/32
 4.2 Requirements for the arrangements and components
 4.2.1 General .. 24-19/32
 4.2.2 Documents to be submitted 24-19/32
 4.2.3 Strength of the towing components 24-19/32
 4.2.4 Length of towing pennant 24-20/32
 4.2.5 Location of strongpoint and fairlead 24-20/32
 4.2.6 Strongpoint .. 24-20/32
 4.2.7 Fairleads ... 24-20/32
 4.2.8 Chafing gear .. 24-20/32
 4.2.9 Towing connection .. 24-20/32
 4.2.10 Testing ... 24-20/32
 4.3 Ready availability of towing arrangements 24-20/32
G. Ships for the Carriage of Dry Cargo or Oil in Bulk
 1. General ... 24-21/32
 2. Reinforcements .. 24-21/32
 3. Slop tanks ... 24-21/32
H. Small Tankers .. 24-22/32
 1. General ... 24-22/32
 2. Girders and transverses .. 24-22/32
 3. Transverse framing ... 24-22/32
 4. Deck .. 24-23/32
 5. Shell plating .. 24-23/32
J. Product List 1 .. 24-24/32
K. Product List 2 .. 24-25/32
L. Additional Requirements for Tankers in Shuttle Service 24-26/32
Section 25 - Ships Carrying Dangerous Chemicals in Bulk

Section 26 - Ships Carrying Liquefied Gases in Bulk
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Fishing Vessels</td>
<td>28-1/1</td>
</tr>
<tr>
<td>29</td>
<td>Passenger Ships</td>
<td>29-1/4</td>
</tr>
<tr>
<td>I.</td>
<td>General</td>
<td>29-1/4</td>
</tr>
<tr>
<td>I.</td>
<td>Application</td>
<td>29-3/4</td>
</tr>
<tr>
<td>I.</td>
<td>Structural Fire Protection</td>
<td>29-3/4</td>
</tr>
<tr>
<td>I.</td>
<td>Character of Classification</td>
<td>29-3/4</td>
</tr>
<tr>
<td>I.</td>
<td>Documents for Approval</td>
<td>29-3/4</td>
</tr>
<tr>
<td>I.</td>
<td>Watertight Subdivision</td>
<td>29-3/4</td>
</tr>
<tr>
<td>II.</td>
<td>Special Purpose Ships</td>
<td>29-3/4</td>
</tr>
<tr>
<td>II.</td>
<td>General</td>
<td>29-3/4</td>
</tr>
<tr>
<td>II.</td>
<td>Application</td>
<td>29-3/4</td>
</tr>
<tr>
<td>II.</td>
<td>Structural Fire Protection</td>
<td>29-3/4</td>
</tr>
<tr>
<td>II.</td>
<td>Character of Classification</td>
<td>29-3/4</td>
</tr>
<tr>
<td>II.</td>
<td>Documents for Approval</td>
<td>29-3/4</td>
</tr>
<tr>
<td>II.</td>
<td>Watertight Subdivision</td>
<td>29-3/4</td>
</tr>
<tr>
<td>30</td>
<td>Ships for Sheltered Shallow Water Service</td>
<td>30-1/3</td>
</tr>
<tr>
<td>A.</td>
<td>General</td>
<td>30-1/3</td>
</tr>
<tr>
<td>B.</td>
<td>Shell Plating</td>
<td>30-1/3</td>
</tr>
<tr>
<td>C.</td>
<td>Watertight Bulkheads and Tank Bulkheads</td>
<td>30-1/3</td>
</tr>
<tr>
<td>D.</td>
<td>Deck Openings</td>
<td>30-2/3</td>
</tr>
<tr>
<td>D.</td>
<td>Hatchways</td>
<td>30-2/3</td>
</tr>
<tr>
<td>D.</td>
<td>Casings, companionways</td>
<td>30-2/3</td>
</tr>
<tr>
<td>E.</td>
<td>Equipment</td>
<td>30-3/3</td>
</tr>
<tr>
<td>31</td>
<td>Barges and Pontoons</td>
<td>31-1/4</td>
</tr>
<tr>
<td>A.</td>
<td>General</td>
<td>31-1/4</td>
</tr>
<tr>
<td>A.</td>
<td>Definitions</td>
<td>31-1/4</td>
</tr>
<tr>
<td>A.</td>
<td>Validity</td>
<td>31-1/4</td>
</tr>
<tr>
<td>A.</td>
<td>Character of Classification</td>
<td>31-1/4</td>
</tr>
<tr>
<td>A.</td>
<td>General indication</td>
<td>31-1/4</td>
</tr>
<tr>
<td>A.</td>
<td>Deck cargo load</td>
<td>31-1/4</td>
</tr>
<tr>
<td>B.</td>
<td>Longitudinal Strength</td>
<td>31-1/4</td>
</tr>
<tr>
<td>C.</td>
<td>Watertight Bulkheads and Tank Bulkheads</td>
<td>31-2/4</td>
</tr>
<tr>
<td>D.</td>
<td>Structural Details at the Ends</td>
<td>31-2/4</td>
</tr>
<tr>
<td>E.</td>
<td>Rudder</td>
<td>31-2/4</td>
</tr>
<tr>
<td>F.</td>
<td>Pushing and Towing Devices, Connecting Elements</td>
<td>31-2/4</td>
</tr>
<tr>
<td>G.</td>
<td>Equipment</td>
<td>31-3/4</td>
</tr>
<tr>
<td>H.</td>
<td>Cargo Retaining Arrangements of Deck Cargo Barge</td>
<td>31-4/4</td>
</tr>
<tr>
<td>32</td>
<td>Dredgers</td>
<td>32-1/8</td>
</tr>
<tr>
<td>A.</td>
<td>General</td>
<td>32-1/8</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>B.</td>
<td>Documents for Approval</td>
<td>32-1/8</td>
</tr>
<tr>
<td>C.</td>
<td>Principal Dimensions</td>
<td>32-2/8</td>
</tr>
<tr>
<td>D.</td>
<td>Longitudinal Strength</td>
<td>32-2/8</td>
</tr>
<tr>
<td>E.</td>
<td>Shell Plating</td>
<td>32-2/8</td>
</tr>
<tr>
<td>F.</td>
<td>Deck</td>
<td>32-2/8</td>
</tr>
<tr>
<td>G.</td>
<td>Bottom Structure</td>
<td>32-3/8</td>
</tr>
<tr>
<td>H.</td>
<td>Hopper and Well Construction</td>
<td>32-4/8</td>
</tr>
<tr>
<td>J.</td>
<td>Box Keel</td>
<td>32-5/8</td>
</tr>
<tr>
<td>K.</td>
<td>Stern Frame and Rudder</td>
<td>32-6/8</td>
</tr>
<tr>
<td>L.</td>
<td>Bulwark, Overflow Arrangements</td>
<td>32-6/8</td>
</tr>
<tr>
<td>M.</td>
<td>Self-Unloading Barges</td>
<td>32-6/8</td>
</tr>
<tr>
<td>N.</td>
<td>Equipment</td>
<td>32-7/8</td>
</tr>
</tbody>
</table>

Section 33 - Special Rules of Floating Docks | 33-1/1 |

Section 34 - Supply Vessels | 34-1/3 |
A.	General	34-1/3
1.	Application, character of classification	34-1/3
2.	Stability, floatability in damaged condition	34-1/3
B.	Shell Plating, Frames	34-1/3
1.	Shell plating	34-1/3
2.	Frames	34-2/3
C.	Weather Deck	34-2/3
D.	Superstructures and Deckhouses	34-2/3
E.	Access to Spaces	34-2/3
1.	Access to the machinery space	34-2/3
2.	Access to spaces below the exposed cargo deck	34-3/3
F.	Equipment	34-3/3

Section 35 - Strengthening Against Collisions | 35-1/5 |
A.	General	35-1/5
B.	Calculation of the Deformation Energy	35-1/5
C.	Computation of the Critical Speed	35-4/5

Section 36 - Subdivision and Stability of Cargo Ships and Passenger Ships | 36-1/4 |
A.	General	36-1/4
1.	Application	36-1/4
2.	Character of Classification	36-1/4
3.	Documents for approval	36-1/4
B.	Onboard Stability Information	36-1/4
C.	Double Bottom	36-2/4
D.	Watertight Bulkheads and Decks	36-2/4
E.	External Openings	36-3/4
F.	Cross-Flooding Arrangements	36-3/4

Section 37 - Special Requirements for In-Water Surveys | 37-1/2 |
A.	General	37-1/2
B.	Special Arrangements for In-Water Surveys	37-1/2
C.	Documents for Approval, Trials	37-1/2

Section 38 - Corrosion Protection | 38-1/7 |
<p>| A. | General Instructions | 38-1/7 |
| 1. | Field of Application | 38-1/7 |
| B. | Shop Primers | 38-1/7 |
| 1. | General | 38-1/7 |
| 2. | Approvals | 38-1/7 |
| C. | Hollow Spaces | 38-2/7 |
| 1. | General | 38-2/7 |
| D. | Combination of Materials | 38-2/7 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Fitting-Out and Berthing Periods</td>
<td>38-2/7</td>
</tr>
<tr>
<td>F. Corrosion Protection of Ballast Water Tanks</td>
<td>38-2/7</td>
</tr>
<tr>
<td>1. General</td>
<td>38-2/7</td>
</tr>
<tr>
<td>2. Coatings</td>
<td>38-2/7</td>
</tr>
<tr>
<td>3. Coatings combined with cathodic protection</td>
<td>38-4/7</td>
</tr>
<tr>
<td>G. Corrosion Protection of Cargo Holds</td>
<td>38-6/7</td>
</tr>
<tr>
<td>1. General</td>
<td>38-6/7</td>
</tr>
<tr>
<td>2. Documentation</td>
<td>38-6/7</td>
</tr>
<tr>
<td>H. Corrosion Protection of the Underwater Hull</td>
<td>38-7/7</td>
</tr>
<tr>
<td>1. General</td>
<td>38-7/7</td>
</tr>
<tr>
<td>2. Documentation</td>
<td>38-7/7</td>
</tr>
<tr>
<td>Annex A</td>
<td>A-1/3</td>
</tr>
<tr>
<td>I. Biro Klasifikasi Indonesia Freeboard Markings</td>
<td>A-1/3</td>
</tr>
<tr>
<td>II. Ice Class Draught Marking</td>
<td>A-3/3</td>
</tr>
</tbody>
</table>
These pages contain amendment within the following Sections of the Rules for Classification and Surveys, 2014 Edition:

These amendment are effective from 1st January and 1st July 2014

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Title/ Subject</th>
<th>Status/ Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1. General, Definitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Stability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. General</td>
<td>To clarify the referral criteria of intact stability</td>
<td></td>
</tr>
</tbody>
</table>

Section 2. Material

B. Hull Structural Steel for Plates and Sections		
Table 2.2 Material classes and grades for ships in general	To clarify new requirements of material classes and grades for ships	
Table 2.3 Minimum material grades for ships excluding liquefied gas carriers covered in Table 2.4, with length exceeding 150m and single strength deck	To assert the definition of strength deck plate	
Table 2.4 Minimum Material Grades for membrane type liquefied gas carriers with length exceeding 150m	Newly added	
Fig. 2.1 Typical deck arrangement for membrane type Liquefied Natural Gas Carriers	Newly added	
3.2 Material selection for longitudinal structural members	To clarify minimum grade for sternframes supporting the rudder and propeller boss, rudders, rudder horns and shaft brackets	
3.3 Material selection for local structural members	To clarify the definition of requirements	

Section 21. Hull Outfit

| E. AirPipes, Overflow Pipes, Sounding Pipes | | |
| 5.3.1 Applied loading for air pipes, ventilator pipes and their closing devices | To add new formula for velocity of water over the forecast deck | |

Section 24. Oil Tanker

| A. General | | |
| 11 Aluminium paints | To add permission for applied of aluminium painting | |
Section 1 - General, Definitions

General, Definitions

Note

Passages printed in italics generally contain recommendations and notes which are not part of the Classification Rules. Requirements quoted in extracts of statutory regulations, which are mandatory besides Classification, may also be printed in italics.

A. Validity, Equivalence

1. The Rules apply to seagoing steel ships classed A 100 whose breadth to depth ratio is within the range common for seagoing ships and the depth H of which is not less than:

- $L/16$ for Unlimited Range of Service and P (Restricted Ocean Service)
- $L/18$ for L (Coasting Service)
- $L/19$ for T (Sheltered Shallow Water Service).

Smaller depths may be accepted if proof is submitted of equal strength, rigidity and safety of the ship.

Hull structural design of bulk carriers with $L \geq 90$ m contracted for construction on or after 1st April 2006, is to be carried out on the basis of the IACS Common Structural Rules for Bulk Carriers.

For bulk carriers not subject to the IACS Common Structural Rules the requirements in Section 23, are applicable.

Accordingly for double hull oil tankers with $L \geq 150$ m the IACS Common Structural Rules for Double Hull Oil Tankers are applicable from this date on. For these ships Section 24, A. is to be observed in addition.

Further rules relevant for hull structural design not covered by the IACS Common Structural Rules are issued by BKI in special companion volumes as complementary Rules to both IACS Common Structural Rules.

For bulk carriers and oil tankers below each individual length limit these BKI Rules continue to apply under particular consideration of Section 23 and Section 24.

2. Ships deviating from the Construction Rules in their types, equipment or in some of their parts may be classed, provided that their structures or equipment is found to be equivalent to BKI’s requirements for the respective class.

3. For Characters of Classification and Class Notations see Rules for Classification and Survey, Volume I, Section 2.

4. For ships suitable for in-water surveys which will be assigned the Class Notation "IW", the requirements of Section 37, are to be observed.

5. Class Notations for ships subject to extended strength analysis

- RSD Cargo hold analysis carried out by the designer and examined by BKI
- RSD (F25) Fatigue assessment based on $6.25 \cdot 10^7$ load cycles of North Atlantic Spectrum carried out by BKI
- RSD (F30) Fatigue assessment based on $7.5 \cdot 10^7$ load cycles of North Atlantic Spectrum carried out by BKI

Fatigue assessment will be carried out for all hatch opening corners on all deck levels, longitudinal frames and butt welds of deck plating and side shell plating (where applicable).

- RSD (ACM) Additional corrosion margin according to detailed listings in the technical file. Analysis carried out by BKI.
- RSD (gFE) Global finite element analysis carried out in accordance with the Guidelines for Global Strength Analysis of Container Ships.
B. Restricted Service Ranges

1. For determining the scantlings of the longitudinal and transverse structures of ships intended to operate within one of the restricted service ranges P, L and T, the dynamic loads may be reduced as specified in Sections 4 and 5.

2. For the definition of the restricted service ranges P, L and T see Rules for Classification and Surveys, Volume I, Section 2.C.3.1, Table 2.5

C. Ships for Special Services

When a ship is intended to carry special cargoes (e.g. logs) the loading, stowage and discharging of which may cause considerable stressing of structures in way of the cargo holds, such structures are to be investigated for their ability to withstand these loads.

D. Accessibility

1. All parts of the hull are to be accessible for survey and maintenance.

2. For safe access to the cargo area of oil tanker and bulk carriers see Section 21, N.

E. Stability

1. General

Ships with a length of 24 m and above will be assigned class only after it has been demonstrated that their intact stability is adequate for the service intended.

Adequate intact stability means compliance with standards laid down by the relevant Administration. BKI reserves the right to deviate there from, if required for special reasons, taking into account the ships' size and type. The level of intact stability for ships of all sizes in any case should not be less than that provided by IMO-Resolution 267(85) (Adoption of the international code on intact stability, 2008 (2008 IS Code)), unless special operational restrictions reflected in the Class Notation render this possible.

Part.B Chapter 2.3 of the above Resolution has only to be taken into account on special advice of the competent Administration.

However, a preliminary stability information booklet approved by the Society in lieu of a final stability information booklet may be provided on-board for a specific period.

Special attention is to be paid to the effect of free surfaces of liquids in partly filled tanks. Special precautions shall be taken for tanks which, due to the geometry, may have excessive free surface moments, thus jeopardizing the initial stability of the vessel, e.g. tanks in the double bottom reaching from side to side. In general such tanks shall be avoided.

Evidence of approval by the competent Administration concerned may be accepted for the purpose of classification.

The above provisions do not affect any intact stability requirements resulting from damage stability calculations, e.g. for ships to which the symbol □ is assigned.

2. Ships with proven damage stability

Ships with proven damage stability will be assigned the symbol □. In the Register and in an appendix to the Certificate the proof of damage stability will be specified by a code as detailed in Rules for Classification and Surveys, Volume I, Section 2, C.2.1, Table 2.2

2.1 Damage stability requirements applicable to bulk carriers

2.1.1 Bulk carriers of 150 m in length and upwards of single side skin construction, designed to carry solid bulk cargoes having a density of 1000 kg/m³ and above shall, when loaded to the summer load line, be able to withstand flooding of any one cargo hold in all loading conditions and remain afloat in a satisfactory condition of equilibrium, as specified in the next 2.1.2.
Subject to the provisions of that paragraph, the condition of equilibrium after flooding shall satisfy the condition of equilibrium laid down in the annex to resolution A.320(IX), Regulation equivalent to regulation 27 of the International Convention on Load Lines, 1966, as amended by resolution A.514(13). The assumed flooding need only take into account flooding of the cargo hold space. The permeability of a loaded hold shall be assumed as 0.9 and the permeability of an empty hold shall be assumed as 0.95, unless a permeability relevant to a particular cargo is assumed for the volume of a flooded hold occupied by cargo and a permeability of 0.95 is assumed for the remaining empty volume of the hold.

Bulk carriers which have been assigned a reduced freeboard in compliance with the provisions of paragraph (8) of the regulation equivalent to regulation 27 of the International Convention on Load Lines, 1966, as amended by resolution A.514(13), may be considered as complying with paragraphs 2.1.1.

2.1.2 On bulk carriers which have been assigned reduced freeboard in compliance with the provisions of regulation 27(8) set out in Annex B of the Protocol of 1988 relating to the International Convention on Load Lines, 1966, the condition of equilibrium after flooding shall satisfy the relevant provisions of that Protocol.

2.1.3 Ships with assigned reduced freeboards intended to carry deck cargo shall be provided with a limiting GM or KG curve required by SOLAS Chapter II-1, Regulation 25-8, based on compliance with the probabilistic damage stability analysis of Part B-1 (see IACS Unified Interpretation LL 65).

3. Anti-heeling devices

3.1 If tanks are used as anti-heeling devices, effects of maximum possible tank moments on intact stability are to be checked. A respective proof has to be carried out for several draughts and taking maximum allowable centres of gravity resulting from the stability limit curve as a basis. In general the heeling angle shall not be more than 10°.

3.2 If the ship heels more than 10°, Rules for Machinery Installations, Volume III, Section 11, P.1.4 has to be observed.

3.3 All devices have to comply with Rules for Electrical Installations, Volume IV, Section 7, G.

F. Vibrations and Noise

Notes

1. Mechanical vibrations

Operating conditions which are encountered most frequently should be kept free as far as possible from resonance vibrations of the ship hull and individual structural components. Therefore, the exciting forces coming from the propulsion plant and pressure fluctuations should be limited as far as possible. Beside the selection of the propulsion units particular attention is to be given to the ship's lines including the stern post, as well as to the minimization of possible cavitation. In the shaping of the bow of large ships, consideration is to be given to limit excitation from the seaway. As far as critical excitation loads cannot be eliminated, appropriate measures are to be taken on the basis of theoretical investigations at an early design stage. Fatigue considerations must be included. For machinery, equipment and other installations the vibration level is to be kept below that specified in Rules for Machinery Installations, Volume III, Section 1, as far as possible.

The evaluation of vibrations in living and working areas should follow ISO 6954 except where other national or international rules or standards are mandatory. It is recommended to use the lower transition curve of ISO 6954 as a criteria for design, whereas the upper curve may serve for the evaluation of vibration measurements.

2. Noise

Suitable precautions are to be taken to keep noises as low as possible particularly in the crew's quarters, working spaces, passengers' accommodations etc.

Attention is drawn to regulations concerning noise level limitations, if any, of the flag administration.
G. Documents for Approval

1. To ensure conformity with the Rules the following drawings and documents are to be submitted in triplicate\(^1\)\(^2\) showing the arrangement and the scantlings of structural members:

1.1 Midship section

The cross sectional plans (midship section, other typical sections) shall contain all necessary data on the scantlings of the longitudinal and transverse hull structure as well as details of anchor and mooring equipment.

1.2 Longitudinal section

The plan of longitudinal sections shall contain all necessary details on the scantlings of the longitudinal and transverse hull structure and on the location of the watertight bulkheads and the deck supporting structures arrangement of superstructures and deck houses, as well as supporting structures of cargo masts, cranes etc.

1.3 Decks

Plans of the decks showing the scantlings of the deck structures, length and breadth of cargo hatches, openings above the engine and boiler room, and other deck openings. On each deck, it has to be stated which deck load caused by cargo is to be assumed in determining the scantlings of the decks and their supports. Furthermore, details on possible loads caused by fork lift trucks and containers are to be stated.

1.4 Shell

Drawings of shell expansion, containing full details on the location and size of the openings and drawings of the sea chests.

1.5 Ice strengthening

The drawings listed in 1.1 - 1.4, 1.6, 1.7 and 1.9 shall contain all necessary details on ice strengthening.

1.6 Bulkheads

Drawings of the transverse, longitudinal and wash bulkheads and of all tank boundaries, with details on densities of liquids, heights of overflow pipes and set pressures of the pressure-vacuum relief valves (if any).

1.7 Bottom structure

1.7.1 Drawings of single and double bottom showing the arrangement of the transverse and longitudinal girders as well as the water and oiltight subdivision of the double bottom. For bulk and ore carriers, data are to be stated on the maximum load on the inner bottom.

1.7.2 Docking plan and docking calculation according to Section 8, D. are to be submitted for information.

1.8 Engine and boiler seatings

Drawings of the engine and boiler seatings, the bottom structure under the seatings and of the transverse structures in the engine room, with details on fastening of the engine foundation plate to the seating, as well as type and output of engine.

1.9 Stem and stern post, and rudder

Drawings of stem and stern post, of rudder, including rudder support. The rudder drawings shall contain details on the ship's speed, the bearing materials to be employed, and the ice strengthening.

Drawings of propeller brackets and shaft exits.

1.10 Hatchways

Drawings of hatchway construction and hatch covers.

The drawings of the hatch coamings shall contain all details, e.g., bearing pads with all relevant details regarding loads and substructures, including cut-outs for the fitting of equipment such as stoppers, securing devices etc. necessary for the

\(^1\) A detailed list of documents to be submitted for approval will be provided upon request.

\(^2\) For Indonesian flagships in quadruplicate (one for Indonesian Government).
operation of hatches.

The structural arrangement of stays and stiffeners and of their substructures shall be shown.

1.11 Longitudinal strength

All necessary documents for the calculation of bending moments, shear forces and, if necessary, torsional moments. This includes the mass distribution for the envisaged loading conditions and the distribution of section moduli and moduli of inertia over the ship's length.

Loading Guidance Information according to Section 5, A.4.

1.12 Materials

The drawings mentioned in 1.1 – 1.10 and 1.15 shall contain details on the hull materials (e.g. hull structural steel grades, standards, material numbers). Where higher tensile steels or materials other than ordinary hull structural steels are used, drawings for possible repairs have to be placed on board.

1.13 Weld joints

The drawings listed in items 1.1 – 1.10 and 1.15 shall contain details on the welded joints e.g. weld shapes and dimensions and weld quality. For the relevant data for manufacturing and testing of welded joints see Rules for Welding, Volume VI.

1.14 Lashing and stowage devices

Drawings containing details on stowage and lashing of cargo (e.g. containers, car decks).

In the drawings the location of the connections and the appropriate substructures at the ship shall be shown in detail.

1.15 Substructures

Drawings of substructures below steering gears, windlasses and chain stoppers as well as masts and boat davits together with details on loads to be transmitted into structural elements.

1.16 Closing condition

For assessing the closing condition, details on closing appliances of all openings on the open deck in position 1 and 2 according to ICLL and in the shell, i.e. hatchways, cargo ports, doors, windows and side scuttles, ventilators, erection openings, manholes, sanitary discharges and scuppers.

1.17 Watertight Integrity

Drawings containing the main- and local internal subdivision of the hull. Information about arrangements of watertight longitudinal- and transverse bulkheads, cargo hold entrances, air ventilation ducts, down- and crossflooding arrangements.

1.18 Intact stability

Analysis of an inclining experiment to be performed upon completion of newbuildings and/or conversions, for determining the light ship data.

Intact stability particulars containing all information required for calculation of stability in different loading conditions. For initial assignment of class to new buildings preliminary particulars will be acceptable.

1.19 Damage stability

Damage stability particulars containing all information required for establishing unequivocal condition for intact stability. A damage control plan with details on watertight subdivision, closable openings in watertight bulkheads as well as cross flooding arrangements and discharge openings.

1.20 Structural fire protection

In addition to the fire control and safety plan also drawings of the arrangement of divisions (insulation, A-, B- and C-divisions) including information regarding BKI-approval number.

Drawings of air conditioning and ventilation plants.

1.21 Special particulars for examination

1.21.1 For ships constructed for special purposes, drawings and particulars of those parts, examination of which is
necessary for judging the vessel's strength and safety.

1.21.2 Additional documents and drawings may be required, if deemed necessary.

1.21.3 Any deviations from approved drawings are subject to approval before work is commenced.

H. Definitions

1. General

Unless otherwise mentioned, the dimensions according to 2. and 3. are to be inserted [m] into the formulae stated in the following Sections.

2. Principal dimensions

2.1 Length L

The length \(L \) is the distance in metres, on the summer load waterline from the foreside of stem to the after side of the rudder post, or the centre of the rudder stock if there is no rudder post. \(L \) is not to be less than 96\% and need not be greater than 97\% of the extreme length of the summer load waterline. In ships with unusual stern and bow arrangement, the length \(L \) will be specially considered.

2.2 Length \(L_c \) (according to ICLL, MARPOL 73/78, IBC - Code and IGC - Code)

The length \(L_c \) is to be taken as 96\% of the total length on a waterline at 85\% of the least moulded depth \(H_c \) measured from the top of the keel, or as the length from the fore side of the stem to the axis of the rudder stock on that waterline, if that be greater. In ships designed with a rake of keel the waterline on which this length is measured shall be parallel to the designed waterline.

For the definition of the least moulded depth \(H_c \) see ICLL, Annex I, Chapter I, Regulation 3 (5).

2.3 Length \(L^* \) (according to SOLAS 74 Chapter II-1, Reg 2)

The length \(L^* \) of the ship is the length measured between perpendiculars taken at the extremities of the deepest subdivision load line.

2.4 Subdivision length \(L_s \)

Reference is made to the definition in SOLAS 74, Chapter II–1, Reg. 25 – 2.2.1 and in Section 36, B.4.

2.5 Forward perpendicular FP.

The forward perpendicular coincides with the foreside of the stem on the waterline on which the respective length \(L, L_c, \text{ or } L^* \) is measured.

2.6 Breadth B

The breadth \(B \) is the greatest moulded breadth of the ship.

2.7 Depth H

The depth \(H \) is the vertical distance, at the middle of the length \(L \), from the base line\(^3\) to top of the deck beam at side on the uppermost continuous deck.

In way of effective superstructures the depth \(H \) is to be measured up to the superstructure deck for determining the ship's scantlings.

2.8 Draught T

The draught \(T \) is the vertical distance at the middle of the length \(L \) from base line to freeboard marking for summer load waterline. For ships with timber load line the draught \(T \) is to be measured up to the freeboard mark for timber load waterline.

\(^3\) Base line is a line passing trough top of the keel plate at the middle of the length \(L \).
3. Frame spacing \(a \)

The frame spacing \(a \) will be measured from moulding edge to moulding edge of frame.

4. Block coefficient \(C_B \)

Moulded block coefficient at load draught \(T \), based on length \(L \).

\[
C_B = \frac{\text{moulded displacement [m}^3\text{] at draught } T}{L \cdot B \cdot T}\]

5. Ship's speed \(v_0 \)

Maximum service speed [kn], which the ship is designed to maintain at the summer load line draught and at the propeller RPM corresponding to MCR (maximum continuous rating).

In case of controllable pitch propellers the speed \(v_0 \) is to be determined on the basis of maximum pitch.

6. Definition of decks

6.1 Bulkhead deck

Bulkhead deck is the deck up to which the watertight bulkheads are carried.

6.2 Freeboard deck

Freeboard deck is the deck upon which the freeboard calculation is based.

6.3 Strength deck

Strength deck is the deck or the parts of a deck which form the upper flange of the effective longitudinal structure.

6.4 Weather deck

All free decks and parts of decks exposed to the sea are defined as weather deck.

6.5 Lower decks

Starting from the first deck below the uppermost continuous deck, the lower decks are defined as 2\text{nd}, 3\text{rd} deck, etc.

6.6 Superstructure decks

The superstructure decks situated immediately above the uppermost continuous deck are termed forecastle deck, bridge deck, and poop deck. Superstructure decks above the bridge deck are termed 2\text{nd}, 3\text{rd} superstructure deck, etc.

6.7 Positions of Hatchways, doorways and ventilators

For the arrangement of hatches, doors and ventilators the following areas are defined:

- Pos. 1
 - on exposed freeboard decks,
 - on raised quarter decks,
 - on the first exposed superstructure deck above the freeboard deck within the forward quarter of \(L_c \).

- Pos. 2
 - on exposed superstructure decks aft of the forward quarter of \(L_c \) located at least one standard height of superstructure above the freeboard deck
 - on exposed superstructure decks within the forward quarter of \(L_c \) located at least two standard heights of superstructure above the freeboard deck

J. International Conventions and Codes

Where reference is made of International Conventions and Codes these are defined as follows:

1. ICLL

2. **MARPOL 73/78**

3. **SOLAS 74**

4. **IBC-Code**

5. **IGC-Code**

K. **Rounding-off Tolerances**
Where in determining plate thicknesses in accordance with the provisions of the following Sections the figures differ from full or half mm, they may be rounded off to full or half millimeters up to 0,2 or 0,7; above 0,2 or 0,7 mm they are to be rounded up.

If plate thicknesses are not rounded the calculated required thicknesses shall be shown in the drawings.

The section moduli of profiles usual in the trade and including the effective width according to Section 3, E. and F. may be 3 % less than the required values according to the following Rules for dimensioning.

L. **Regulations of National Administrations**
For the convenience of the user of these Rules several Sections contain for guidance references to such regulations of National Administrations, which deviate from the respective rule requirements of this Society but which may have effect on scantlings and construction. These references have been specially marked.

Compliance with these Regulations of National Administrations is not conditional for class assignment.

M. **Computer Programs**

1. **General**

1.1 In order to increase the flexibility in the structural design of ships BKI also accepts direct calculations with computer programs. The aim of such analyses should be the proof of equivalence of a design with the rule requirements.

1.2 Direct calculations may also be used in order to optimize a design; in this case only the final results are to be submitted for examination.

2. **General Programs**

2.1 The choice of computer programs according to "State of the Art" is free. The programs may be checked by BKI through comparative calculations with predefined test examples. A generally valid approval for a computer program is, however, not given by BKI.

2.2 Direct calculations may be used in the following fields:

- longitudinal strength,
- beams and grillages,
- detailed strength,
- global strength.

2.3 For such calculation the computer model, the boundary condition and load cases are to be agreed upon with BKI.
The calculation documents are to be submitted including input and output. During the examination it may prove necessary that BKI perform independent comparative calculations.

2.4 Collision resistance
Calculation of the structure's resistance against collision for granting the additional Class Notation “COLL” according to Section 35.

N. Workmanship
1. General
1.1 Requirements to be complied with by the manufacturer

1.1.1 The manufacturing plant shall be provided with suitable equipment and facilities to enable proper handling of the materials, manufacturing processes, structural components, etc. BKI reserve the right to inspect the plant accordingly or to restrict the scope of manufacture to the potential available at the plant.

1.1.2 The manufacturing plant shall have at its disposal sufficiently qualified personnel. BKI is to be advised of the names and areas of responsibility of all supervisory and control personnel. BKI reserves the right to require proof of qualification.

1.2 Quality control

1.2.1 As far as required and expedient, the manufacturer's personnel has to examine all structural components both during manufacture and on completion, to ensure that they are complete, that the dimensions are correct and that workmanship is satisfactory and meets the standard of good shipbuilding practice.

1.2.2 Upon inspection and corrections by the manufacturing plant, the structural components are to be shown to the BKI Surveyor for inspection, in suitable Sections, normally in unpainted condition and enabling proper access for inspection.

1.2.3 The Surveyor may reject components that have not been adequately checked by the plant and may demand their re-submission upon successful completion of such checks and corrections by the plant.

2. Structural details

2.1 Details in manufacturing documents

2.1.1 All significant details concerning quality and functional ability of the component concerned shall be entered in the manufacturing documents (workshop drawings etc.). This includes not only scantlings but - where relevant - such items as surface conditions (e.g. finishing of flame cut edges and weld seams), and special methods of manufacture involved as well as inspection and acceptance requirements and where relevant permissible tolerances. So far as for this aim a standard shall be used (works or national standard etc.) it shall be harmonized with BKI. This standard shall be based on the IACS Recommendation 47 Shipbuilding and Repair Quality Standard for New Construction. For weld joint details, see Section 19, A.1.

2.1.2 If, due to missing or insufficient details in the manufacturing documents, the quality or functional ability of the component cannot be guaranteed or is doubtful, BKI may require appropriate improvements. This includes the provision of supplementary or additional parts (for example reinforcements) even if these were not required at the time of plan approval or if - as a result of insufficient detailing- such requirement was not obvious.

2.2 Cut-outs, plate edges

2.2.1 The free edges (cut surfaces) of cut-outs, hatch corners, etc. are to be properly prepared and are to be free from notches. As a general rule, cutting drag lines etc. shall not be welded out, but are to be smoothly ground. All edges should be broken or in cases of highly stressed parts, should be rounded off.

2.2.2 Free edges on flame or machine cut plates or flanges are not to be sharp cornered and are to be finished off as laid down in 2.2.1 This also applies to cutting drag lines etc., in particular to the upper edge of shear strake and analogously to weld joints, changes in sectional areas or similar discontinuities.
2.3 Cold forming

2.3.1 For cold forming (bending, flanging, beading) of plates the minimum average bending radius shall not fall short of $3 \times t$ ($t =$ plate thickness) and shall be at least $2 \times t$. Regarding the welding of cold formed areas, see Section 19, B.2.6.

2.3.2 In order to prevent cracking, flame cutting flash or shearing burrs shall be removed before cold forming. After cold forming all structural components and, in particular, the ends of bends (plate edges) are to be examined for cracks. Except in cases where edge cracks are negligible, all cracked components are to be rejected. Repair welding is not permissible.

2.4 Assembly, alignment

2.4.1 The use of excessive force is to be avoided during the assembly of individual structural components or during the erection of sections. As far as possible major distortions of individual structural components should be corrected before further assembly.

2.4.2 Girders, beams, stiffeners, frames etc. that are interrupted by bulkheads, decks etc. shall be accurately aligned. In the case of critical components, control drillings are to be made where necessary, which are then to be welded up again on completion.

2.4.3 After completion of welding, straightening and aligning shall be carried out in such a manner that the material properties will not be influenced significantly. In case of doubt, BKI may require a procedure test or a working test to be carried out.

3. Corrosion protection

For corrosion protection, see Section 38.
Section 2
Materials

A. General
All materials to be used for the structural members indicated in the Construction Rules are to be in accordance with the Rules for Materials, Volume V. Materials the properties of which deviate from these Rule requirements may only be used upon special approval.

B. Hull Structural Steel for Plates and Sections
1. Normal strength hull structural steel
 1.1 Normal strength hull structural steel is a hull structural steel with a minimum nominal upper yield point \(R_{eH} \) of 235 N/mm\(^2\) and a tensile strength \(R_{m} \) of 400 - 520 N/mm\(^2\), see also Section 17.A.3.
 1.2 The material factor \(k \) in the formulae of the following Sections is to be taken 1.0 for normal strength hull structural steel.
 1.3 Normal strength hull structural steel is grouped into the grades KI-A, KI-B, KI-D, KI-E, which differ from each other in their toughness properties. For the application of the individual grades for the hull structural members, see 3.
 1.4 If for special structures the use of steels with yield properties less than 235 N/mm\(^2\) has been accepted, the material factor \(k \) is to be determined by:

\[
k = \frac{235}{R_{eH}}
\]

2. Higher strength hull structural steels
2.1 Higher strength hull structural steel is a hull structural steel, the yield and tensile properties of which exceed those of normal strength hull structural steel. According to the Rules for Materials, Volume V, for three groups of higher strength hull structural steels the nominal upper yield stress \(R_{eH} \) has been fixed at 315, 355 and 390 N/mm\(^2\) respectively. Where higher strength hull structural steel is used, for scantling purposes the values in Table 2.1 are to be used for the material factor \(k \) mentioned in the various Sections.

For higher strength hull structural steel with other nominal yield stresses up to 390 N/mm\(^2\), the material factor \(k \) may be determined by the following formula:

\[
k = \frac{295}{R_{eH} + 60}
\]

Note
Especially when higher strength hull structural steels are used, limitation of permissible stresses due to buckling and fatigue strength criteria may be required.

<table>
<thead>
<tr>
<th>(R_{eH}) [N/mm(^2)]</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
<td>0.78</td>
</tr>
<tr>
<td>355</td>
<td>0.72</td>
</tr>
<tr>
<td>390</td>
<td>0.66</td>
</tr>
</tbody>
</table>

2.2 Higher strength hull structural steel is grouped into the following grades, which differ from each other in their toughness properties:

KI-A 32/36/40
In Table 2.8 the grades of the higher strength hull structural steels are marked by the letter "H".

2.3 Where structural members are completely or partly made from higher strength hull structural steel, a suitable Notation will be entered into the Ship's Certificate.

2.4 In the drawings submitted for approval it is to be shown which structural members are made of higher strength hull structural steel. These drawings are to be placed on board in case any repairs are to be carried out.

2.5 Regarding welding of higher strength hull structural steel, see Rules for Welding, Volume VI, Section 12.

3. Material selection for the hull

3.1 Material classes

For the material selection for hull structural members material classes as given in Table 2.2 are defined.
Table 2.2 - Material classes and grades for ships in general

<table>
<thead>
<tr>
<th>Structural member category</th>
<th>Material class or grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary:</td>
<td></td>
</tr>
<tr>
<td>A1. Longitudinal bulkhead strakes, other than that belonging to the Primary category</td>
<td>Class I within 0,4 (L) amidships</td>
</tr>
<tr>
<td>A2. Deck plating exposed to weather, other than that belonging to the Primary or Special category</td>
<td>Grade A/AH outside 0,4 (L) amidships</td>
</tr>
<tr>
<td>A3. Side plating</td>
<td></td>
</tr>
<tr>
<td>Primary:</td>
<td></td>
</tr>
<tr>
<td>B1. Bottom plating, including keel plate</td>
<td></td>
</tr>
<tr>
<td>B2. Strength deck plating, excluding that belonging to the Special category</td>
<td>Class II within 0,4 (L) amidships</td>
</tr>
<tr>
<td>B3. Continuous longitudinal plating of strength members above strength deck, excluding hatch coamings</td>
<td>Grade A/AH outside 0,4 (L) amidships</td>
</tr>
<tr>
<td>B4. Uppermost strake in longitudinal bulkhead</td>
<td></td>
</tr>
<tr>
<td>B5. Vertical strake (hatch side girder) and uppermost sloped strake in top wing tank</td>
<td></td>
</tr>
<tr>
<td>Special:</td>
<td></td>
</tr>
<tr>
<td>C1. Sheer strake at strength deck (^1)</td>
<td>Class III within 0,4 (L) amidships</td>
</tr>
<tr>
<td>C2. Stringer plate in strength deck (^1)</td>
<td>Class II outside 0,4 (L) amidships</td>
</tr>
<tr>
<td>C3. Deck strake at longitudinal bulkhead excluding deck plating in way of inner-skin bulkhead of double-hull ships (^1)(^3)</td>
<td>Class I outside 0,6 (L) amidships</td>
</tr>
<tr>
<td>C4. Strength deck plating at outboard corners of cargo hatch openings in container ships and other ships with similar hatch openings configurations</td>
<td>Class III within 0,4 (L) amidships</td>
</tr>
<tr>
<td>C5. Strength deck plating at corners of cargo hatch openings in bulk carriers, ore carriers, combination carriers and other ships with similar hatch openings configurations</td>
<td>Class III within 0,6 (L) amidships</td>
</tr>
<tr>
<td>C5.1 Trunk deck and inner deck plating at corners of openings for liquid and gas domes in membrane type liquefied gas carriers</td>
<td>Class II within rest of cargo region</td>
</tr>
<tr>
<td>C6. Bilge strake in ships with double bottom over the full breadth and length less than 150 m (^1)</td>
<td>Class II within 0,6 (L) amidships</td>
</tr>
<tr>
<td>C7. Bilge strake in other ships (^1)</td>
<td>Class III within 0,4 (L) amidships</td>
</tr>
<tr>
<td>C8. Longitudinal hatch coamings of length greater than 0,15 (L), including coaming top plate and flange</td>
<td>Class III within 0,4 (L) amidships</td>
</tr>
<tr>
<td>C9. End brackets and deck house transition of longitudinal cargo hatch coamings</td>
<td>Class III within 0,4 (L) amidships</td>
</tr>
</tbody>
</table>

\(^1\) Single strakes required to be of class III within 0,4 \(L \) amidships are to have breadths not less than 800 + 5 \(L \) [mm] need not be greater than 1800 mm, unless limited by the geometry of the ship's design.
Table 2.3 - Minimum material grades for ships, excluding liquefied gas carriers covered in Table 2.4, with length exceeding 150 m and single strength deck

<table>
<thead>
<tr>
<th>Structural member category</th>
<th>Material grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Longitudinal plating of strength deck where contributing to the longitudinal strength</td>
<td>Grade B/AH within 0.4 L amidships</td>
</tr>
<tr>
<td>• Continuous longitudinal plating of strength members above strength deck</td>
<td>Grade B/AH within cargo region</td>
</tr>
<tr>
<td>Single side strakes for ships without inner continuous longitudinal bulkhead(s) between bottom and the strength deck</td>
<td>Grade B/AH within cargo region</td>
</tr>
</tbody>
</table>

Table 2.4 - Minimum Material Grades for membrane type liquefied gas carriers with length exceeding 150 m *

<table>
<thead>
<tr>
<th>Structural member category</th>
<th>Material grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal plating of strength deck where contributing to the longitudinal strength</td>
<td>Grade B/AH within 0.4L amidships</td>
</tr>
<tr>
<td>Continuous longitudinal plating of strength members above the strength deck</td>
<td>Class II within 0.4L amidships</td>
</tr>
<tr>
<td>• Inner deck plating</td>
<td>Grade B/AH within 0.4L amidships</td>
</tr>
<tr>
<td>• Longitudinal strength member plating between the trunk deck and inner deck</td>
<td>Grade B/AH within 0.4L amidships</td>
</tr>
</tbody>
</table>

(*) Table 2.4 is applicable to membrane type liquefied gas carriers with deck arrangements as shown in Fig.2.1. Table 2.4 may apply to similar ship types with a “double deck” arrangement above the strength deck.

![Fig. 2.1 Typical deck arrangement for membrane type Liquefied Natural Gas Carriers](image)
Table 2.5 - Minimum material grades for ships with length exceeding 250 m

<table>
<thead>
<tr>
<th>Structural member category</th>
<th>Material grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear strake at strength deck (^1)</td>
<td>Grade E/EH within 0,4 (L) amidships</td>
</tr>
<tr>
<td>Stringer plate in strength deck (^1)</td>
<td>Grade E/EH within 0,4 (L) amidships</td>
</tr>
<tr>
<td>Bilge strake (^1)</td>
<td>Grade D/DH within 0,4 (L) amidships</td>
</tr>
</tbody>
</table>

\(^1\) Single strakes required to be of Grade E/EH and within 0,4 \(L\) amidships are to have breadths not less than 800 + 5 \(L\) [mm], need not be greater than 1800 mm, unless limited by the geometry of the ship's design.

Table 2.6 - Minimum material grades for single-side skin bulk carriers subjected to SOLAS regulation XII/6.5.3

<table>
<thead>
<tr>
<th>Structural member category</th>
<th>Material grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower bracket of ordinary side frame (^1), (^2)</td>
<td>Grade D/DH</td>
</tr>
<tr>
<td>Side shell strakes included totally or partially between the two points located to 0,125 (t) above and below the intersection of side shell and bilge hopper sloping plate or inner bottom plate (^1)</td>
<td>Grade D/DH</td>
</tr>
</tbody>
</table>

\(^1\) The term "lower bracket" means webs of lower brackets and webs of the lower part of side frames up to the point of 0,125 \(t\) above the intersection of side shell and bilge hopper sloping plate or inner bottom plate.

\(^2\) The span of the side frame \(t\) is defined as the distance between the supporting structures.

Table 2.7 - Minimum material grades for ships with ice strengthening

<table>
<thead>
<tr>
<th>Structural member category</th>
<th>Material grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell strakes in way of ice strengthening area for plates</td>
<td>Grade B/AH</td>
</tr>
</tbody>
</table>

Table 2.8 - Steel grades to be used, depending on plate thickness and material class

<table>
<thead>
<tr>
<th>Thickness (t) [mm] (^1)</th>
<th>> 15</th>
<th>> 20</th>
<th>> 25</th>
<th>> 30</th>
<th>> 35</th>
<th>> 40</th>
<th>> 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>A/AH</td>
<td>A/AH</td>
<td>A/AH</td>
<td>A/AH</td>
<td>B/AH</td>
<td>B/AH</td>
<td>D/DH</td>
</tr>
<tr>
<td>II</td>
<td>A/AH</td>
<td>A/AH</td>
<td>B/AH</td>
<td>D/DH</td>
<td>D/DH(^4)</td>
<td>D/DH(^4)</td>
<td>E/EH</td>
</tr>
<tr>
<td>III</td>
<td>A/AH</td>
<td>B/AH</td>
<td>D/DH</td>
<td>D/DH(^4)</td>
<td>E/EH</td>
<td>E/EH</td>
<td>E/EH</td>
</tr>
</tbody>
</table>

\(^1\) Actual thickness of the structural member.

\(^2\) For thicknesses \(t > 60\) mm E/EH.

\(^3\) For thicknesses \(t > 100\) mm the steel grade is to be agreed with BKI.

\(^4\) For nominal yield stresses \(R_{eH} \geq 390\) N/mm\(^2\) EH.

3.2 Material selection for longitudinal structural members

Materials in the various strength members are not to be of lower grades than those corresponding to the material classes and grades specified in Table 2.2 to Table 2.8. General requirements are given in Table 2.2, while additional minimum requirements are given in the following:

Table 2.3: for ships, excluding liquefied gas carriers covered in Table 3, with length exceeding 150 m and single strength deck.

Table 2.4: for membrane type liquefied gas carriers with length exceeding 150 m.

Table 2.5: for ships with length exceeding 250 m.

Table 2.6: for single side bulk carriers subjected to SOLAS regulation XII/6.5.3.

Table 2.7: for ships with ice strengthening.

The material grade requirements for hull members of each class depending on the thickness are defined in Table 2.8.

For strength members not mentioned in Tables 2.2 to 2.7, Grade A/AH may generally be used. The steel grade is to correspond to the as-built plate thickness and material class.

Plating materials for sternframes supporting the rudder and propeller boss, rudders, rudder horns and shaft brackets are...
3.3 Material selection for local structural members

3.3.1 The material selection for local structural members, which are not part of the longitudinal hull structure, may in general be effected according to Table 2.9. For parts made of forged steel or cast steel C is to be applied.

Table 2.9 - Material selection for local structural members

<table>
<thead>
<tr>
<th>Structural member</th>
<th>Material class</th>
</tr>
</thead>
<tbody>
<tr>
<td>hawse pipe, stern tube, pipe stanchion (^3)</td>
<td>I</td>
</tr>
<tr>
<td>face plates and webs of girder systems, hatch cover</td>
<td>II (^1)</td>
</tr>
<tr>
<td>rudder body (^2), rudder horn, sole piece, stern frame, propeller brackets, trunk pipe</td>
<td>II</td>
</tr>
</tbody>
</table>

\(^1\) Class I material sufficient, where rolled sections are used or the parts are machine cut from plates with condition on delivery of either “normalized”, “rolled normalized” or “rolled thermo-mechanical”.

\(^2\) See 3.3.2

\(^3\) For pipe stanchions for cargo reefer holds Table 2.10 is applicable.

3.3.2 For rudder and rudder body plates subjected to stress concentrations (e.g. in way of lower support of semi-spade rudders or at upper part of spade rudders) Class III is to be applied.

3.3.3 For top plates of machinery foundations located outside \(0.6L\) amidships, grade A ordinary hull structural steel may also be used for thicknesses above 40 mm.

For members not specifically mentioned normally grade A/AH may be used. However, BKI may require also higher grades depending on the stress level.

3.4 Material selection for structural members which are exposed to low temperatures

3.4.1 The material selection for structural members, which are continuously exposed to temperatures below 0 °C, e.g. in or adjacent to refrigerated cargo holds, is governed by the design temperature of the structural members. The design temperature is the temperature determined by means of a temperature distribution calculation taking into account the design environmental temperatures. The design environmental temperatures for unrestricted service are:

- air : + 5 °C
- sea water : 0 °C.

3.4.2 For ships intended to operate permanently in areas with low air temperatures (below and including -20 °C), e.g. regular service during winter seasons to Arctic or Antarctic waters, the materials in exposed structures are to be selected based on the design temperature \(t_D\), to be taken as defined in 3.4.5.

Materials in the various strength members above the lowest ballast waterline (BWL) exposed to air are not to be of lower grades than those corresponding to classes I, II and III, as given in Table 2.10, depending on the categories of structural members (Secondary, Primary and Special). For non-exposed structures and structures below the lowest ballast waterline, see 3.2 and 3.3.

3.4.3 The material grade requirements of each material class depending on thickness and design temperature are defined in Table 2.11. For design temperatures \(t_D < -55 \) °C, materials are to be specially considered.

3.4.4 Single strakes required to be of class III or of grade E/EH or FH are to have breadths not less \(800 + 5 \times L\) [mm], maximum 1800 mm.

Plating materials for stern frames, rudder horns, rudders and shaft brackets are not to be of lower grades than those corresponding to the material classes given in 3.3.

3.4.5 The design temperature \(t_D\) is to be taken as the lowest mean daily average air temperature in the area of operation, see Fig. 2.2. The following definitions apply:
Mean : Statistical mean over an observation period of at least 20 years
Average : Average during one day and night.
Lowest : Lowest during the year.

For seasonally restricted service the lowest expected value within the period of operation applies.

4. Structural members which are stressed in direction of their thickness

In case of high local stresses in the thickness direction, e.g. due to shrinkage stresses in single bevel or double bevel T-joints with a large volume of weld metal, steels with guaranteed material properties in the thickness direction according to the Rules for Materials, Volume V, Section 4, I. are to be used.

C. Forged Steel and Cast Steel

Forged steel and cast steel for stem, stern frame, rudder post as well as other structural components, which are subject of this Rule, are to comply with the Rules for Materials, Volume V. The tensile strength of forged steel and of cast steel is not to be less than 400 N/mm². Forged steel and cast steel are to be selected under consideration of B.3. In this respect beside strength properties also toughness requirements and weldability shall be observed.

D. Aluminium Alloys

1. Where aluminium alloys, suitable for seawater, as specified in the Rules for Materials, Volume V, are used for the construction of superstructures, deckhouses, hatchway covers and similar parts, the conversion from steel to aluminium scantlings is to be carried out by using the material factor:

\[
k_{Al} = \frac{635}{R_{p0.2} + R_{m}}
\]

\[
R_{p0.2} = 0.2\% \text{ proof stress of the aluminium alloy [N/mm}^2\text{]}
\]

\[
R_{m} = \text{tensile strength of the aluminium alloy [N/mm}^2\text{]}
\]

For welded connections the respective values in welded condition are to be taken. Where these figures are not available,
the respective values for the soft-annealed condition are to be used.

Method of conversion:

- section modulus: \(W_{Af} = W_{St} \cdot k_{Af} \)
- plate thickness: \(t_{Af} = t_{St} \cdot \sqrt{k_{Af}} \)

2. The smaller modulus of elasticity is to be taken into account when determining the buckling strength of structural elements subjected to compression. This is to be applied accordingly to structural elements for which maximum allowable deflections have to be adhered to.

3. The conversion of the scantlings of the main hull structural elements from steel into aluminium alloy is to be specially considered taking into account the smaller modulus of elasticity, as compared with steel, and the fatigue strength aspects, specifically those of the welded connections.

E. Austenitic Steels

Where austenitic steels are applied having a ratio \(\frac{R_{p0,2}}{R_m} \leq 0.5 \), after special approval the 1% proof stress \(R_{p1,0} \) may be used for scantling purposes instead of the 0.2% proof stress \(R_{p0,2} \).

BKI - Rules for Hull - 2014
Table 2.10 - Material classes and grades for structures exposed to low temperatures

<table>
<thead>
<tr>
<th>Structural member category</th>
<th>Material class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Within 0,4 L amidships</td>
</tr>
<tr>
<td>Secondary:</td>
<td>1</td>
</tr>
<tr>
<td>Deck plating exposed to weather, in general</td>
<td></td>
</tr>
<tr>
<td>Side plating above BWL 5)</td>
<td></td>
</tr>
<tr>
<td>Transverse bulkheads above BWL 5)</td>
<td></td>
</tr>
<tr>
<td>Primary:</td>
<td>II</td>
</tr>
<tr>
<td>Strength deck plating 1)</td>
<td></td>
</tr>
<tr>
<td>Continuous longitudinal members above strength deck, excluding longitudinal hatch coamings</td>
<td></td>
</tr>
<tr>
<td>Longitudinal bulkhead above BWL 5)</td>
<td></td>
</tr>
<tr>
<td>Top wing tank plating above BWL 5)</td>
<td></td>
</tr>
<tr>
<td>Special:</td>
<td>III</td>
</tr>
<tr>
<td>Sheer strake at strength deck 2)</td>
<td></td>
</tr>
<tr>
<td>Stringer plate in strength deck 2)</td>
<td></td>
</tr>
<tr>
<td>Deck strake at longitudinal bulkhead 3)</td>
<td></td>
</tr>
<tr>
<td>Continuous longitudinal hatch coamings 4)</td>
<td></td>
</tr>
</tbody>
</table>

1) Plating at corners of large hatch openings to be specially considered. Class III or grade E/EH to be applied in positions where high local stresses may occur.
2) Not to be less than grade E/EH within 0,4 L amidships in ships with length exceeding 250 metres.
3) In ships with breadth exceeding 70 metres at least three deck strakes to be of class III.
4) Not to be less than grade D/DH
5) BWL = ballast waterline.
Table 2.11 - Material grade requirements for classes I, II and III at low temperatures

<table>
<thead>
<tr>
<th>Plate thickness [mm]</th>
<th>Class I</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_D</td>
<td>$-20,^\circ\text{C to } -25,^\circ\text{C}$</td>
<td>$-26,^\circ\text{C to } -35,^\circ\text{C}$</td>
<td>$-36,^\circ\text{C to } -45,^\circ\text{C}$</td>
<td>$-46,^\circ\text{C to } -55,^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>higher</td>
<td>normal</td>
<td>higher</td>
<td>normal</td>
<td>higher</td>
</tr>
<tr>
<td>$t \leq 10$</td>
<td>A</td>
<td>AH</td>
<td>B</td>
<td>AH</td>
<td>D</td>
<td>DH</td>
</tr>
<tr>
<td>$10 < t \leq 15$</td>
<td>B</td>
<td>AH</td>
<td>D</td>
<td>DH</td>
<td>D</td>
<td>DH</td>
</tr>
<tr>
<td>$15 < t \leq 20$</td>
<td>B</td>
<td>AH</td>
<td>D</td>
<td>DH</td>
<td>D</td>
<td>DH</td>
</tr>
<tr>
<td>$20 < t \leq 25$</td>
<td>D</td>
<td>DH</td>
<td>D</td>
<td>DH</td>
<td>D</td>
<td>DH</td>
</tr>
<tr>
<td>$25 < t \leq 30$</td>
<td>D</td>
<td>DH</td>
<td>D</td>
<td>DH</td>
<td>E</td>
<td>EH</td>
</tr>
<tr>
<td>$30 < t \leq 35$</td>
<td>D</td>
<td>DH</td>
<td>D</td>
<td>DH</td>
<td>E</td>
<td>EH</td>
</tr>
<tr>
<td>$35 < t \leq 45$</td>
<td>D</td>
<td>DH</td>
<td>E</td>
<td>EH</td>
<td>E</td>
<td>EH</td>
</tr>
<tr>
<td>$45 < t \leq 50$</td>
<td>E</td>
<td>EH</td>
<td>E</td>
<td>EH</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plate thickness [mm]</th>
<th>Class II</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_D</td>
<td>$-20,^\circ\text{C to } -25,^\circ\text{C}$</td>
<td>$-26,^\circ\text{C to } -35,^\circ\text{C}$</td>
<td>$-36,^\circ\text{C to } -45,^\circ\text{C}$</td>
<td>$-46,^\circ\text{C to } -55,^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>higher</td>
<td>normal</td>
<td>higher</td>
<td>normal</td>
<td>higher</td>
</tr>
<tr>
<td>$t \leq 10$</td>
<td>B</td>
<td>AH</td>
<td>D</td>
<td>DH</td>
<td>D</td>
<td>DH</td>
</tr>
<tr>
<td>$10 < t \leq 20$</td>
<td>D</td>
<td>DH</td>
<td>D</td>
<td>DH</td>
<td>E</td>
<td>EH</td>
</tr>
<tr>
<td>$20 < t \leq 30$</td>
<td>D</td>
<td>DH</td>
<td>E</td>
<td>EH</td>
<td>E</td>
<td>EH</td>
</tr>
<tr>
<td>$30 < t \leq 40$</td>
<td>E</td>
<td>EH</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>$40 < t \leq 45$</td>
<td>E</td>
<td>EH</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>$45 < t \leq 50$</td>
<td>E</td>
<td>EH</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plate thickness [mm]</th>
<th>Class III</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_D</td>
<td>$-20,^\circ\text{C to } -25,^\circ\text{C}$</td>
<td>$-26,^\circ\text{C to } -35,^\circ\text{C}$</td>
<td>$-36,^\circ\text{C to } -45,^\circ\text{C}$</td>
<td>$-46,^\circ\text{C to } -55,^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>higher</td>
<td>normal</td>
<td>higher</td>
<td>normal</td>
<td>higher</td>
</tr>
<tr>
<td>$t \leq 10$</td>
<td>D</td>
<td>DH</td>
<td>D</td>
<td>DH</td>
<td>E</td>
<td>EH</td>
</tr>
<tr>
<td>$10 < t \leq 20$</td>
<td>D</td>
<td>DH</td>
<td>E</td>
<td>EH</td>
<td>E</td>
<td>EH</td>
</tr>
<tr>
<td>$20 < t \leq 25$</td>
<td>E</td>
<td>EH</td>
<td>E</td>
<td>EH</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>$25 < t \leq 30$</td>
<td>E</td>
<td>EH</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>$30 < t \leq 35$</td>
<td>E</td>
<td>EH</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>$35 < t \leq 40$</td>
<td>E</td>
<td>EH</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>$40 < t \leq 50$</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Section 3

Design Principles

A. General

1. Scope

This Section contains definitions and general design criteria for hull structural elements as well as indications concerning structural details.

2. Permissible stresses and required sectional properties

In the following Sections permissible stresses have been stated in addition to the formulae for calculating the section moduli and cross sectional areas of webs of frames, beams, girders, stiffeners etc. and may be used when determining the scantlings of those elements by means of direct strength calculations.

The required section moduli and web areas are related on principle to an axis which is parallel to the connected plating.

For profiles usual in the trade and connected vertically to the plating in general the appertaining sectional properties are given in tables.

Where webs of stiffeners and girders are not fitted vertically to the plating (e.g. frames on the shell in the flaring fore body) the sectional properties (moment of inertia, section modulus and shear area) have to be determined for an axis which is parallel to the plating.

For bulb profiles and flat bars the section modulus of the inclined profile including plating can be calculated simplified by multiplying the corresponding value for the vertically arranged profile by \(\sin \alpha \) where \(\alpha \) is the smaller angle between web and attached plating.

\textbf{Note}

For bulb profiles and flat bars \(\alpha \) in general needs only be taken into account where \(\alpha \) is less than 75°.

Furthermore, with asymmetric profiles where additional stresses occur according to \(L \), the required section modulus is to be increased by the factor \(k_{sp} \) depending on the type of profile, see \(L \).

3. Plate panels subjected to lateral pressure

The formulae for plate panels subjected to lateral pressure as given in the following Sections are based on the assumption of an uncurved plate panel having an aspect ratio \(b/a \geq 2.24 \).

For curved plate panels and/or plate panels having aspect ratios smaller than \(b/a = 2.24 \), the thickness may be reduced as follows:

\[
C \cdot a \sqrt{p \cdot k} \cdot f_1 \cdot f_2 + t_k
\]

\(C = \) constant, e.g. \(C = 1.1 \) for tank plating

\(f_1 = 1 - \frac{a}{r} \geq 0.75 \)

\(f_2 = \sqrt{1,1 - 0.5 \left(\frac{a}{b} \right)^2} \leq 1.0 \)

\(r = \) radius of curvature

\(a = \) smaller breadth of plate panel

\(b = \) larger breadth of plate panel

\(p = \) applicable design load.

\(t_k = \) corrosion addition according to \(K \).

The above does not apply to plate panels subjected to ice pressure according to Section 15 and to longitudinally framed side shell plating according to Section 6.
4. Fatigue strength

Where a fatigue strength analysis is required or will be carried out for structures or structural details this shall be in accordance with the requirements of Section 20.

B. Upper and Lower Hull Flange

1. All continuous longitudinal structural members up to \(z_o \) below the strength deck at side and up to \(z_u \) above base line are considered to be the upper and lower hull flange respectively.

2. Where the upper and/or the lower hull flange are made from normal strength hull structural steel their vertical extent \(z_o = z_u \) equals \(0.1 \mathbf{H} \).

On ships with continuous longitudinal structural members above the strength deck a fictitious depth \(\mathbf{H}' = e_B + e'_D \) is to be applied.

\[e_B = \text{distance between neutral axis of the midship section and base line} \quad [\text{m}] \]

\[e'_D \text{ see Section 5, C.4.1} \]

3. The vertical extent \(z \) of the upper and lower hull flange respectively made from higher tensile steel of one quality is not to be less than:

\[z = e (1 - n \cdot k) \]

\[e = \text{distance of deck at side or of the base line from the neutral axis of the midship section. For ships with continuous longitudinal structural members above the strength deck, see Section 5, C.4.1} \]

\[n = \frac{W_{(a)}}{W} \]

\[W_{(a)} = \text{actual deck or bottom section modulus} \]

\[W = \text{rule deck or bottom section modulus} \]

Where two different steel grades are used it has to be observed that at no point the stresses are higher than the permissible stresses according to Section 5, C.1.

C. Unsupported Span

1. Stiffeners, frames

The unsupported span \(\ell \) is the true length of the stiffeners between two supporting girders or else their length including end attachments (brackets).

The frame spacings and spans are normally assumed to be measured in a vertical plane parallel to the centreline of the ship. However, if the ship's side deviates more than 10° from this plane, the frame distances and spans shall be measured along the side of the ship.

Instead of the true length of curved frames the length of the chord between the supporting points can be selected.

2. Corrugated bulkhead elements

The unsupported span \(\ell \) of corrugated bulkhead elements is their length between bottom or deck and their length between vertical or horizontal girders. Where corrugated bulkhead elements are connected to box type elements of comparatively low rigidity, their depth is to be included into the span \(\ell \) unless otherwise proved by calculations.

3. Transverses and girders

The unsupported span \(\ell \) of transverses and girders is to be determined according to Fig. 3.1, depending on the type of end attachment.

In special cases, the rigidity of the adjoining girders is to be taken into account when determining the span of girder.
D. End Attachments

1. Definitions

For determining scantlings of beams, stiffeners and girders the terms "constraint" and "simple support" will be used. "Constraint" will be assumed where for instance the stiffeners are rigidly connected to other members by means of brackets or are running throughout over supporting girders. "Simple support" will be assumed where for instance the stiffener ends are sniped or the stiffeners are connected to plating only, see also 3.

2. Brackets

2.1 For the scantlings of brackets the required section modulus of the section is decisive. Where sections of different section moduli are connected to each other, the scantlings of the brackets are generally governed by the smaller section.

2.2 The thickness of brackets is not to be less than:

\[t = c \cdot \frac{W}{k_1} + t_k \ [\text{mm}] \]

- \(c = 1.2 \) for non-flanged brackets
- \(c = 0.95 \) for flanged brackets
- \(k_1 = \) material factor \(k \) for the section according to Section 2, B.2.
- \(f_k = \) corrosion addition according to \(K \)
- \(W = \) section modulus of smaller section \([\text{cm}^3]\)
- \(t_{\text{min}} = 5 + t_k \ [\text{mm}] \)
- \(t_{\text{max}} = \) web thickness of smaller section.

For minimum thicknesses in tanks and in cargo holds of bulk carriers see Section 12, A.7., Section 23, B.5.3 and Section 24, A.13.

2.3 The arm length of brackets is not to be less than:

\[\ell = 46.2 \left(\frac{W}{k_1} \cdot \sqrt{k_2} \cdot t_a \right) \ [\text{mm}] \]

- \(\ell_{\text{min}} = 100 \ [\text{mm}] \)
- \(c_1 = \sqrt{\frac{t}{t_a}} \)
- \(t_a = \) "as built" thickness of bracket \([\text{mm}]\)
- \(W = \) see 2.2
- \(k_2 = \) material factor \(k \) for the bracket according to Section 2, B.2.
The arm length \(\ell \) is the length of the welded connection.

Note

For deviating arm length the thickness of brackets is to be estimated by direct calculations considering sufficient safety against buckling.

2.4 The throat thickness \(a \) of the welded connection is to be determined according to Section 19, C.2.7.

2.5 Where flanged brackets are used the width of flange is to be determined according to the following formulae:

\[
b = 40 + \frac{W}{30} \quad [\text{mm}]
\]

\(b \) is not to be taken less than 50 mm and need not be taken greater than 90 mm.

3. **Snipped ends of stiffeners**

Stiffeners may be snipped at the ends, if the thickness of the plating supported by stiffeners is not less than:

\[
t = c \left(\frac{p \cdot a \left(\ell - 0,5 \cdot a \right)}{R_{\text{eff}}} \right) \quad [\text{mm}]
\]

\(p \) = design load [kN/m²]

\(\ell \) = unsupported length of stiffener [m]

\(a \) = spacing of stiffeners [m]

\(R_{\text{eff}} \) = minimum nominal upper yield point of the plating material [N/mm²] according to Section 2, B.2

\(c \) = 15.8 for watertight bulkheads and for tank bulkheads when loaded by \(p_2 \) according to Section 4, D.1.2

= 19.6 otherwise,

4. **Corrugated bulkhead elements**

Care is to be taken that the forces acting at the supports of corrugated bulkheads are properly transmitted into the adjacent structure by fitting structural elements such as carlings, girders or floors in line with the corrugations.

Note

Where carlings or similar elements cannot be fitted in line with the web strips of corrugated bulkhead elements, these web strips cannot be included into the section modulus at the support point for transmitting the moment of constraint. Deviating from the formula stipulated in Section 11, B.4.3 the section modulus of a corrugated element is then to be determined by the following formulae:

\[
W = t \cdot b \left(d + t \right) \quad [\text{cm}^3]
\]

5. **Effective Breadth of Plating**

1. **Frames and stiffeners**

Generally, the spacing of frames and stiffeners may be taken as effective breadth of plating.

2. **Girders**

2.1 The effective breadth of plating “\(e_m \)” of frames and girders may be determined according to Table 3.1 considering the type of loading.

Special calculations may be required for determining the effective breadth of one-sided or non-symmetrical flanges.

2.2 The effective cross sectional area of plates is not to be less than the cross sectional area of the face plate.
Table 3.1 Effective breadth e_n of frames and girders

<table>
<thead>
<tr>
<th>ℓ/e</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>≥ 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_{n1}/e</td>
<td>0</td>
<td>0,36</td>
<td>0,64</td>
<td>0,82</td>
<td>0,91</td>
<td>0,96</td>
<td>0,98</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>e_{n2}/e</td>
<td>0</td>
<td>0,20</td>
<td>0,37</td>
<td>0,52</td>
<td>0,65</td>
<td>0,75</td>
<td>0,84</td>
<td>0,89</td>
<td>0,90</td>
</tr>
</tbody>
</table>

e_{n1} is to be applied where girders are loaded by uniformly distributed loads or else by not less than 6 equally spaced single loads.

e_{n2} is to be applied where girders are loaded by 3 or less single loads.

Intermediate values may be obtained by direct interpolation.

ℓ = length between zero-points of bending moment curve, i.e. unsupported span in case of simply supported girders and 0,6 x unsupported span in case of constraint of both ends of girder

c = width of plating supported, measured from centre to centre of the adjacent unsupported fields.

2.3 Where the angle α between web of stiffeners or else of girders and the attached plating is less than 75° the required section modulus is to be multiplied by the factor $1/\sin \alpha$.

2.4 The effective width of stiffeners and girders subjected to compressive stresses may be determined according to F.2.2, but is in no case to be taken greater than the effective breadth determined by 2.1.

3. Cantilevers

Where cantilevers are fitted at every frame, the effective width of plating may be taken as the frame spacing.

Where cantilevers are fitted at a greater spacing the effective breadth of plating at the respective cross section may approximately be taken as the distance of the cross section from the point on which the load is acting, however, not greater than the spacing of the cantilevers.

F. Proof of Buckling Strength

The calculation method is based on DIN-standard 18800

1. Definitions

a = length of single or partial plate field [mm]

b = breadth of single plate field [mm]

α = aspect ratio of single plate field

$= \frac{a}{b}$

n = number of single plate field breadths within the partial or total plate field

Fig. 3.2 Definition of plate fields subject to buckling
t = nominal plate thickness [mm]
= \(t_a - t_K \) [mm]
\(t_a \) = plate thickness as built [mm]
\(t_K \) = corrosion addition according to K. [mm]
\(\sigma_x \) = membrane stress in x-direction [N/mm²]
\(\sigma_y \) = membrane stress in y-direction [N/mm²]
\(\tau \) = shear stress in the x-y plane [N/mm²]

Compressive and shear stresses are to be taken positive, tension stresses are to be taken negative.

Note

If the stresses in the x- and y- direction contain already the Poisson - effect, the following modified stress values may be used:

Both stresses \(\sigma_x^* \) and \(\sigma_y^* \) are to be compressive stresses,

in order to apply the stress reduction according to the following formulae:

\[
\sigma_i = \frac{\sigma_i^* - 0,3 \cdot \sigma_{ij}^*}{0,91}
\]

\(\sigma_{ij}^* \) = stresses containing the Poisson-effect

Where compressive stress fulfils the condition \(\sigma_x^* < 0,3 \cdot \sigma_{ij}^* \), then \(\sigma_x = 0 \) and \(\sigma_x = \sigma_{ij}^* \).

Where compressive stress fulfils the condition \(\sigma_y^* < 0,3 \cdot \sigma_{ij}^* \), then \(\sigma_y = 0 \) and \(\sigma_y = \sigma_{ij}^* \).

When at least \(\sigma_x^* \) or \(\sigma_y^* \) is tension stress, then \(\sigma_x = \sigma_x^* \) and \(\sigma_y = \sigma_y^* \).

\(\psi \) = edge stress ratio according to Table 3.3
\(F_1 \) = correction factor for boundary condition at the long. stiffeners according to Table 3.2
\(\sigma_e \) = reference stress
= \(0,9 \cdot E \left(\frac{1}{b} \right) ^{2} \) [N/mm²]

\(E \) = Young's modulus
= \(2,06 \cdot 10^5 \) [N/mm²] for steel
= \(0,69 \cdot 10^5 \) [N/mm²] for aluminium alloys

Table 3.2 - Correction Factor \(F_1 \)

<table>
<thead>
<tr>
<th>(F_1)</th>
<th>for stiffeners sniped at both ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>Guidance values where both ends are effectively connected to adjacent structures * :</td>
</tr>
<tr>
<td>1,05</td>
<td>for flat bars</td>
</tr>
<tr>
<td>1,10</td>
<td>for bulb sections</td>
</tr>
<tr>
<td>1,20</td>
<td>for angle and tee-sections</td>
</tr>
<tr>
<td>1,30</td>
<td>for girders of high rigidity</td>
</tr>
<tr>
<td></td>
<td>(e.g. bottom transverses)</td>
</tr>
</tbody>
</table>

* Exact values may be determined by direct calculations.

\(R_{el} \) = nominal yield point [N/mm²] for hull structural steels according to Section 2, B.2.
= 0,2 % proof stress [N/mm²] for aluminium alloys
S = safety factor
= 1,1 in general
= 1,2 for structures which are exclusively exposed to local loads
= 1,05 for combinations of statistically independent loads

For constructions of aluminium alloys the safety factors are to be increased in each case by 0,1.

\[\lambda = \text{reference degree of slenderness} \]
\[\lambda = \sqrt{\frac{R_{\text{eff}}}{K \cdot \sigma_e}} \]

K = buckling factor according to Tables 3.3 and 3.4.

In general, the ratio plate field breadth to plate thickness shall not exceed \(b/t = 100 \).

2. Proof of single plate fields

2.1 Proof is to be provided that the following condition is complied with for the single plate field \(a \cdot b \):

\[
\left(\frac{\sigma_x \cdot S}{\kappa_x \cdot R_{\text{eff}}} \right)^{e_1} + \left(\frac{\sigma_y \cdot S}{\kappa_y \cdot R_{\text{eff}}} \right)^{e_2} - B \left(\frac{\sigma_x \cdot \sigma_y \cdot S^2}{R_{\text{eff}}^2} \right) + \left(\frac{\sigma_t \cdot S \cdot \sqrt{3}}{\kappa_t \cdot R_{\text{eff}}} \right)^{e_3} \leq 1,0
\]

Each term of the above condition shall not exceed 1,0.

The reduction factors \(\kappa_x, \kappa_y \) and \(\kappa_t \) are given in Table 3.3 and/or 3.4.

Where \(\sigma_x \leq 0 \) (tension stress), \(\kappa_x = 1,0 \).

Where \(\sigma_y \leq 0 \) (tension stress), \(\kappa_y = 1,0 \).

The exponents \(e_1, e_2 \) and \(e_3 \) as well as the factor \(B \) are calculated or set respectively:

<table>
<thead>
<tr>
<th>Exponents (e_1 - e_3) and factor (B)</th>
<th>plate field</th>
</tr>
</thead>
<tbody>
<tr>
<td>plane</td>
<td>curved</td>
</tr>
<tr>
<td>(e_1)</td>
<td>(1 + \kappa_x^4)</td>
</tr>
<tr>
<td>(e_2)</td>
<td>(1 + \kappa_y^4)</td>
</tr>
<tr>
<td>(e_3)</td>
<td>(1 + \kappa_x \cdot \kappa_y \cdot \kappa_t^2)</td>
</tr>
<tr>
<td>(B) (\sigma_x) and (\sigma_y), positive (compression stress)</td>
<td>((\kappa_x \cdot \kappa_y)^5)</td>
</tr>
<tr>
<td>(B) (\sigma_x) or (\sigma_y), negative (tension stress)</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2 Effective width of plating

The effective width of plating may be determined by the following formulae:

\[b_m = \kappa_x \cdot b \] for longitudinal stiffeners
\[a_m = \kappa_y \cdot a \] for transverse stiffeners

see also Fig. 3.2.

The effective width of plating is not to be taken greater than the value obtained from E.2.1.
<table>
<thead>
<tr>
<th>Load case</th>
<th>Edge stress ratio ψ</th>
<th>Aspect ratio α</th>
<th>Buckling factor K</th>
<th>Reductions factor κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1 \geq \psi \geq 0$</td>
<td>$\alpha > 0$</td>
<td>$K = \frac{8.4}{\psi + 1.1}$</td>
<td>$\kappa_c = 1$ for $\lambda \leq \lambda_c$</td>
</tr>
<tr>
<td></td>
<td>$0 > \psi > -1$</td>
<td>$\alpha > 1$</td>
<td>$K = 7.63 - \psi(6.26 - 10 \psi)$</td>
<td>$\kappa_c = c \left(\frac{1}{\lambda} - \frac{0.22}{\alpha^2} \right)$ for $\lambda > \lambda_c$</td>
</tr>
<tr>
<td></td>
<td>$\psi \leq -1$</td>
<td></td>
<td>$K = (1 - \psi)^2 \cdot 5.975$</td>
<td>$c = (1.25 - 0.12\psi) \leq 1.25$</td>
</tr>
<tr>
<td>2</td>
<td>$1 \geq \psi \geq 0$</td>
<td>$\alpha \geq 1$</td>
<td>$K = F_1 \left(\frac{1 + \frac{1}{\alpha^2}}{1.1} \right)^2 \frac{2.1}{(\psi + 1.1)} \left(1 + \psi \right)$</td>
<td>$\kappa_c = c \left(\frac{1}{\lambda} - \frac{0.22}{\alpha^2} \right)$ for $\lambda > \lambda_c$</td>
</tr>
<tr>
<td></td>
<td>$0 > \psi > -1$</td>
<td>$1 \leq \alpha \leq 1.5$</td>
<td>$K = F_1 \left(\frac{1 + \frac{1}{\alpha^2}}{1.1} \right)^2 \frac{2.1}{1.1} \left(1 + \psi \right)$</td>
<td>$c = (1.25 - 0.12\psi) \leq 1.25$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\psi \leq -1$</td>
<td>$R = \lambda \left(\frac{1}{c} \right)$ for $\lambda \leq \lambda_c$</td>
</tr>
<tr>
<td>3</td>
<td>$1 \geq \psi \geq 0$</td>
<td>$\alpha \geq 1$</td>
<td>$K = F_1 \left(\frac{1 + \frac{1}{\alpha^2}}{1.1} \right)^2 \frac{2.1}{1.1} \left(1 + \psi \right)$</td>
<td>$c = 0.22$ for $\lambda > \lambda_c$</td>
</tr>
<tr>
<td></td>
<td>$0 > \psi > -1$</td>
<td>$1 \leq \alpha \leq 1.5$</td>
<td>$K = F_1 \left(\frac{1 + \frac{1}{\alpha^2}}{1.1} \right)^2 \frac{2.1}{1.1} \left(1 + \psi \right)$</td>
<td>$c = \frac{1}{2} \left(1 + \frac{1}{\alpha^2} \right)$ for $\lambda > \lambda_c$</td>
</tr>
<tr>
<td></td>
<td>$\psi \leq -1$</td>
<td>$1 \leq \alpha \leq 1.5$</td>
<td>$K = F_1 \left(\frac{1 + \frac{1}{\alpha^2}}{1.1} \right)^2 \frac{2.1}{1.1} \left(1 + \psi \right)$</td>
<td>$c = \frac{1}{2} \left(1 + \frac{1}{\alpha^2} \right)$ for $\lambda > \lambda_c$</td>
</tr>
<tr>
<td>4</td>
<td>$1 \geq \psi \geq 0$</td>
<td>$\alpha > 0$</td>
<td>$K = \frac{4}{3} \left(\frac{0.425 + \frac{1}{\alpha^2}}{\psi + 1} \right)$</td>
<td>$\kappa_c = 1$ for $\lambda \leq 0.7$</td>
</tr>
<tr>
<td></td>
<td>$0 > \psi > -1$</td>
<td>$\alpha > 0$</td>
<td>$K = \frac{4}{3} \left(\frac{0.425 + \frac{1}{\alpha^2}}{\psi + 1} \right) (1 + \psi)$</td>
<td>$\kappa_c = \frac{1}{\lambda^2} \geq 0.51$ for $\lambda > 0.7$</td>
</tr>
<tr>
<td>5</td>
<td>$1 \geq \psi \geq 0$</td>
<td>$\alpha > 0$</td>
<td>$K = \frac{4}{3} \left(\frac{0.425 + \frac{1}{\alpha^2}}{\psi + 1} \right) \left(1 + \psi \right)$</td>
<td>$\kappa_c = 1$ for $\lambda \leq 0.7$</td>
</tr>
<tr>
<td></td>
<td>$0 > \psi > -1$</td>
<td>$\alpha > 0$</td>
<td>$K = \frac{4}{3} \left(\frac{0.425 + \frac{1}{\alpha^2}}{\psi + 1} \right) \left(1 + \psi \right)$</td>
<td>$\kappa_c = \frac{1}{\lambda^2} \geq 0.51$ for $\lambda > 0.7$</td>
</tr>
<tr>
<td>6</td>
<td>$1 \geq \psi \geq 0$</td>
<td>$\alpha > 0$</td>
<td>$K = \frac{4}{3} \left(\frac{0.425 + \frac{1}{\alpha^2}}{\psi + 1} \right) \left(1 + \psi \right)$</td>
<td>$\kappa_c = 1$ for $\lambda \leq 0.7$</td>
</tr>
<tr>
<td></td>
<td>$0 > \psi > -1$</td>
<td>$\alpha > 0$</td>
<td>$K = \frac{4}{3} \left(\frac{0.425 + \frac{1}{\alpha^2}}{\psi + 1} \right) \left(1 + \psi \right)$</td>
<td>$\kappa_c = \frac{1}{\lambda^2} \geq 0.51$ for $\lambda > 0.7$</td>
</tr>
<tr>
<td>7</td>
<td>$1 \geq \psi \geq 0$</td>
<td>$\alpha > 0$</td>
<td>$K = \frac{4}{3} \left(\frac{0.425 + \frac{1}{\alpha^2}}{\psi + 1} \right) \left(1 + \psi \right)$</td>
<td>$\kappa_c = 1$ for $\lambda \leq 0.7$</td>
</tr>
<tr>
<td></td>
<td>$0 > \psi > -1$</td>
<td>$\alpha > 0$</td>
<td>$K = \frac{4}{3} \left(\frac{0.425 + \frac{1}{\alpha^2}}{\psi + 1} \right) \left(1 + \psi \right)$</td>
<td>$\kappa_c = \frac{1}{\lambda^2} \geq 0.51$ for $\lambda > 0.7$</td>
</tr>
</tbody>
</table>

BKI - Rules for Hull - 2014
Table 3.3 - Plane Plate Fields (Cont.)

<table>
<thead>
<tr>
<th>Load case</th>
<th>Edge stress ratio Ψ</th>
<th>Aspect ratio α</th>
<th>Buckling factor K</th>
<th>Reductions factor κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>$\alpha \geq 1$</td>
<td>$K = K_c \cdot \sqrt{\Psi}$</td>
<td>$\kappa_c = 1$ for $\lambda \leq 0,84$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0 < \alpha < 1$</td>
<td>$K_c = \left[5,34 + \frac{4}{\alpha^2} \right]$</td>
<td>$\kappa_c = \frac{0,84}{\lambda}$ for $\lambda > 0,84$</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>$K = K' \cdot r$</td>
<td>$K' = K$ according to line 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$r = \text{Reductions factor}$</td>
<td>$r = \left(1 \cdot \frac{d}{a} \right) \left(1 \cdot \frac{d}{b} \right)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>with $\frac{d}{a} \leq 0,7$ and $\frac{d}{b} \leq 0,7$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>σ_x, σ_y</td>
<td>$\alpha \geq 1,64$</td>
<td>$K = 1,28$</td>
<td>$\kappa_c = 1$ for $\lambda \leq 0,7$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha < 1,64$</td>
<td>$K = \frac{1}{\alpha^2} + 0,56 + 0,13 \alpha^2$</td>
<td>$\kappa_c = \frac{1}{\lambda^2 + 0,51}$ for $\lambda > 0,7$</td>
</tr>
<tr>
<td>8</td>
<td>σ_x, σ_y</td>
<td>$\alpha \geq \frac{2}{3}$</td>
<td>$K = 6,97$</td>
<td>$\kappa_c = 1$ for $\lambda \leq 0,83$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha < \frac{2}{3}$</td>
<td>$K = \frac{1}{\alpha^2} + 2,5 + 5 \alpha^2$</td>
<td>$\kappa_c = \frac{1,13}{\lambda} \left[\frac{1}{\lambda} - \frac{0,22}{\lambda^2} \right]$ for $\lambda > 0,83$</td>
</tr>
<tr>
<td>9</td>
<td>σ_x, σ_y</td>
<td>$\alpha \geq 4$</td>
<td>$K = 4$</td>
<td>$\kappa_c = 1$ for $\lambda \leq 0,83$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$4 > \alpha > 1$</td>
<td>$K = 4 \cdot \left[\frac{4 - \alpha}{3} \right]^4 \cdot 2,74$</td>
<td>$\kappa_c = \frac{\frac{22}{\lambda} - 0,22}{\lambda^2}$ for $\lambda > 0,83$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha \leq 1$</td>
<td>$K = \frac{4}{\alpha^2} + 2,07 + 0,67 \alpha^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ_x, σ_y</td>
<td>$\alpha \geq 4$</td>
<td>$K = 6,97$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$4 > \alpha > 1$</td>
<td>$K = 6,97 + \left[\frac{4 - \alpha}{3} \right]^4 \cdot 3,1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha \leq 1$</td>
<td>$K = \frac{4}{\alpha^2} + 2,07 + 4 \alpha^2$</td>
<td></td>
</tr>
</tbody>
</table>

Explanations for boundary conditions:
- --- plate edge free
- ----- plate edge simply supported
- -------- plate edge clamped
Table 3.4 - Curved plate field $R/t \leq 2500^{1)}$

<table>
<thead>
<tr>
<th>Load case</th>
<th>Aspect ratio b/R</th>
<th>Buckling factor K</th>
<th>Reduction factor κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>$b/R \leq 1.63 \sqrt{R/t}$</td>
<td>$K = \frac{b}{\sqrt{R \cdot t}} + 3 \left(\frac{R \cdot t}{b^3} \right)^{0.175}$</td>
<td>$\kappa_x = 1^{2)}$ for $\lambda \leq 0.4$</td>
</tr>
<tr>
<td></td>
<td>$b/R > 1.63 \sqrt{R/t}$</td>
<td>$K = 0.3 \frac{b^2}{R^2} + 2.25 \left(\frac{R^2}{b \cdot t} \right)^2$</td>
<td>$\kappa_x = 1^{2)}$ for $0.4 < \lambda \leq 1.2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\kappa_x = 0.65 \lambda^2$ for $\lambda > 1.2$</td>
</tr>
<tr>
<td>2</td>
<td>$b/R \leq 0.5 \sqrt{R/t}$</td>
<td>$K = 1 + \frac{2}{3} \frac{b^2}{R \cdot t}$</td>
<td>$\kappa_y = 1^{2)}$ for $\lambda \leq 0.25$</td>
</tr>
<tr>
<td></td>
<td>$b/R > 0.5 \sqrt{R/t}$</td>
<td>$K = 0.267 \frac{b^2}{R^2} \left[3 - \frac{b}{R} \sqrt{\frac{t}{R}} \right]$</td>
<td>$\kappa_y = 1.233 - 0.933 \lambda$ for $0.25 < \lambda \leq 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\geq 0.4 \frac{b^2}{R \cdot t}$</td>
<td>$\kappa_y = 0.3 / \lambda^3$ for $1 < \lambda \leq 1.5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\kappa_y = 0.2 / \lambda^2$ for $\lambda > 1.5$</td>
</tr>
<tr>
<td>3</td>
<td>$b/R \leq \sqrt{R/t}$</td>
<td>$K = \frac{0.6 \cdot b}{\sqrt{R \cdot t}} + \sqrt{R \cdot t} - 0.3 \frac{R \cdot t}{b^2}$</td>
<td>as in load case 1a</td>
</tr>
<tr>
<td></td>
<td>$b/R > \sqrt{R/t}$</td>
<td>$K = 0.3 \frac{b^2}{R^2} + 0.291 \left(\frac{R^2}{b \cdot t} \right)^2$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$b/R \leq 8.7 \sqrt{R/t}$</td>
<td>$K = K_r \cdot \sqrt{3}$</td>
<td>$\kappa_z = 1^{2)}$ for $\lambda \leq 0.4$</td>
</tr>
<tr>
<td></td>
<td>$b/R > 8.7 \sqrt{R/t}$</td>
<td>$K_r = \left[28.3 + \frac{0.67 \cdot b^3}{R^{1.3} \cdot t^{0.5}} \right]^{0.5}$</td>
<td>$\kappa_z = 1.274 - 0.686 \lambda$ for $0.4 < \lambda \leq 1.2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K_r = 0.28 \frac{b^2}{R \sqrt{R \cdot t}}$</td>
<td>$\kappa_z = 0.65 \lambda^2$ for $\lambda > 1.2$</td>
</tr>
</tbody>
</table>

Explanations for boundary conditions:
- Dashed line: plate edge free
- Long dashes: plate edge simply supported
- Short dashes: plate edge clamped

1) For curved plate fields with a very large radius the κ-value need not to be taken less than derived for the expanded plane field.

2) For curved single fields, e.g. the bilge strake, which are located within plane partial or total fields, the reduction factor κ may be taken as follows:

- Load case 1b: $\kappa_x = 0.8/\lambda^2 \leq 1.0$
- Load case 2: $\kappa_y = 0.65/\lambda^2 \leq 1.0$
Note
The effective width e'_m of stiffened flange plates of girders may be determined as follows:

Stiffening parallel to web of girder:

\[b < e_m \]
\[e'_m = n \cdot b_m \]
\[n = \text{integral number of the stiffener spacing } b \text{ inside the effective breadth } e_m \text{ according to Table 3.1 in E.2.1} \]
\[n = \text{int} \left(\frac{e_m}{b} \right) \]

Stiffening perpendicular to web of girder:

\[a \geq e_m \]
\[e'_m = n \cdot a_m < e_m \]
\[n = 2.7 \cdot \frac{e_m}{a} \leq 1 \]
\[e = \text{width of plating supported according to E.2.1} \]

For $b \geq e_m$ or $a < e_m$ respectively, b and a have to be exchanged.

a_m and b_m for flange plates are in general to be determined for $\psi = 1$.
Stress distribution between two girders:

\[
\sigma_x (y) = \sigma_{n1} \cdot \left\{ 1 - \frac{y}{e} \left[\frac{3}{c_1} - 4 \cdot c_2 - 2 \cdot \frac{y}{e} \left(\frac{1}{c_1} - 2 \cdot c_2 \right) \right] \right\}
\]

- \(c_1 = \frac{\sigma_{n2}}{\sigma_{n1}} \) \(0 \leq c_1 \leq 1 \)
- \(c_2 = \frac{1.5}{e} \left(\frac{e^{m1} + e^{m2}}{e} \right) - 0.5 \)

\(\sigma_{n1}, \sigma_{n2} \) = normal stresses in flange plates of adjacent girder 1 and 2 with spacing \(e \).

\(e^{m1} \) = proportionate effective width of \(e^{m1} \) and \(e^{m2} \) respectively of girder 1 within the distance \(e \)

\(e^{m2} \) = proportionate effective width of \(e^{m1} \) and \(e^{m2} \) respectively of girder 2 within the distance \(e \)

\(y \) = distance of considered location from girder 1

Scantlings of plates and stiffeners are in general to be determined according to the maximum stresses \(\sigma_x (y) \) at girder webs and stiffeners respectively. For stiffeners under compression arranged parallel to the girder web with spacing \(b \) no lesser value than \(0.25 \cdot R_{ef} \) shall be inserted for \(\sigma_x (y=b) \).

Shear stress distribution in the flange plates may be assumed linearly.

2.3 Webs and flanges

For non-stiffened webs and flanges of sections and girders proof of sufficient buckling strength as for single plate fields is to be provided according to 2.1.

Note

Within 0.6 \(L \) amidships the following guidance values are recommended for the ratio web depth to web thickness and/or flange breadth to flange thickness:

- flat bars: \(\frac{h_w}{t_w} \leq 19.5 \sqrt{k} \)
- angle-, tee and bulb sections:
 - web: \(\frac{h_w}{t_w} \leq 60.0 \sqrt{k} \)
 - flange: \(\frac{b \cdot b}{t_f} \leq 19.5 \sqrt{k} \)

\(b_i = b_1 \) or \(b_2 \) according to Fig. 3.3, the larger value is to be taken.

3. Proof of partial and total fields

3.1 Longitudinal and transverse stiffeners

Proof is to be provided that the continuous longitudinal and transverse stiffeners of partial and total plate fields comply with the conditions set out in 3.2 and 3.3.

3.2 Lateral buckling

\[
\frac{\sigma_a + \sigma_b}{R_{ef}} S \leq 1
\]

- \(\sigma_a \) = uniformly distributed compressive stress in the direction of the stiffener axis [N/mm²]
- \(\sigma_a \) = for longitudinal stiffeners
- \(\sigma_a \) = for transverse stiffeners
\(\sigma_b = \) bending stress in the stiffeners
\[\frac{M_0 + M_1}{W_n \cdot 10^3} \] [N/mm²]

\(M_0 = \) bending moment due to deformation \(w \) of stiffener
\[\frac{F_{Ki} p_z \cdot w}{c_f - p_x} \] [N · mm]
\(\{c_f - p_x\} > 0 \)

\(M_1 = \) bending moment due to the lateral load \(p \) for continuous longitudinal stiffeners:
\[\frac{p \cdot b \cdot a^2}{24 \cdot 10^3} \] [N · mm]
for transverse stiffeners:
\[\frac{p \cdot a (n \cdot b)^2}{c_a \cdot 8 \cdot 10^3} \] [N · mm]

\(p = \) lateral load [kN/m²] according to Section 4

\(F_{Ki} = \) ideal buckling force of the stiffener [N]

\[F_{Ki,x} = \frac{\pi^2}{a^2} E \cdot I_x \cdot 10^4 \] for long. stiffeners

\[F_{Ki,y} = \frac{\pi^2}{(n \cdot b)^2} E \cdot I_y \cdot 10^4 \] for transv. stiffeners

\(I_x, I_y = \) moments of inertia of the longitudinal or transverse stiffener including effective width of plating according to 2.2 [cm⁴]

\[I_x \geq \frac{b \cdot t^3}{12 \cdot 10^4} \]
\[I_y \geq \frac{a \cdot t^3}{12 \cdot 10^4} \]

\(p_z = \) nominal lateral load of the stiffener due to \(\sigma_x, \sigma_y \) and \(\tau \) [N/mm²]

for longitudinal stiffeners:
\[p_{zx} = \frac{t_x}{b} \left(\sigma_{x1} \left(\frac{\pi \cdot b}{a} \right)^2 + 2 \cdot c_y \cdot \sigma_y + \sqrt{2} \cdot \tau \right) \]

for transverse stiffeners:
\[p_{zy} = \frac{t_x}{a} \left(2 \cdot c_x \cdot \sigma_{x1} + \sigma_y \left(\frac{\pi \cdot a}{n \cdot b} \right)^2 \left(1 + \frac{A_y}{a \cdot t_y} \right) + \sqrt{2} \cdot \tau \right) \]

\(\sigma_{x1} = \sigma_x \left(1 + \frac{A_x}{b \cdot t_y} \right) \) [N/mm²]

\(c_x, c_y = \) factor taking into account the stresses vertical to the stiffener's axis and distributed variable along the stiffener's length
\[= 0.5 (1 + \psi) \] for \(0 \leq \psi \leq 1 \)
\[= \frac{0.5}{1 - \psi} \] for \(\psi < 0 \)

\(\psi = \) edge stress ratio according to Table 3.3

\(A_x, A_y = \) sectional area of the longitudinal or transverse stiffener respectively [mm²]
\[\tau_1 = \left[\tau - t \sqrt{R_{zh} \cdot E \left(\frac{m_1}{a^2} + \frac{m_2}{b^2}\right)} \right] \geq 0 \]

for longitudinal stiffeners:
\[
\frac{a}{b} \geq 2,0 : \quad m_1 = 1,47 \quad m_2 = 0,49
\]
\[
\frac{a}{b} < 2,0 : \quad m_1 = 1,96 \quad m_2 = 0,37
\]

for transverse stiffeners:
\[
\frac{a}{n \cdot b} \geq 0,5 : \quad m_1 = 0,37 \quad m_2 = \frac{1,96}{n^2}
\]
\[
\frac{a}{n \cdot b} < 0,5 : \quad m_1 = 0,49 \quad m_2 = \frac{1,47}{n^2}
\]

\[w = w_o + w_1 \]

\(w_o = \) assumed imperfection [mm],
\[
\frac{a}{250} \geq w_{ox} \leq \frac{b}{250} \quad \text{for long. stiffeners}
\]
\[
\frac{n \cdot b}{250} \geq w_{oy} \leq \frac{a}{250} \quad \text{for transv. stiffeners}
\]
however \(w_o \leq 10 \text{ mm} \)

Note

For stiffeners snipped at both ends \(w_o \) shall not be taken less than the distance from the midpoint of plating to the neutral axis of the profile including effective width of plating.

\(w_1 = \) deformation of stiffener due to lateral load \(p \) at midpoint of stiffener span [mm]

In case of uniformly distributed load the following values for \(w_1 \) may be used:

for longitudinal stiffeners:
\[
w_1 = \frac{p \cdot b \cdot a^4}{384 \cdot 10^7 \cdot E \cdot I_x}
\]

for transverse stiffeners:
\[
w_1 = \frac{5 \cdot a \cdot p \cdot (n \cdot b)^4}{384 \cdot 10^7 \cdot E \cdot I_y \cdot c_{px}^2}
\]

\(c_f = \) elastic support provided by the stiffener [N/mm²]
\[
c_{fx} = F_{Kix} \cdot \frac{\pi^2}{a^2} \cdot (1 + c_{px}) \quad \text{for long. stiffeners}
\]
\[
c_{px} = \frac{1}{1 + \frac{0.91}{c_{xx} \cdot \left(\frac{12 \cdot 10^4 \cdot I_x}{t^3 \cdot b} - 1\right)}}
\]
\[
c_{xx} = \begin{cases} \frac{a}{2 \cdot b} + \left(1 + \left(\frac{a}{2 \cdot b}\right)\right)^2 & \text{for } a \geq 2 \ b \\ \frac{a}{2 \cdot b} & \text{for } a < 2 \ b \end{cases}
\]
\[
c_{fy} = c_s \cdot F_{Kiy} \cdot \frac{\pi^2}{(n \cdot b)^2} \cdot (1 + c_{py}) \quad \text{for transv. stiffeners}
\]
Section 3 - Design Principles

\[c_{py} = \frac{1}{1 + 0.91 \cdot \left(\frac{12 \cdot 10^4 \cdot I_y}{t^3 \cdot a} - 1 \right)} \]

\[c_{yx} = \left[\frac{n \cdot b + 2a}{2a} \right]^2 \quad \text{for } n \cdot b \geq 2a \]
\[= \left[1 + \left(\frac{n \cdot b}{2a} \right)^2 \right]^2 \quad \text{for } n \cdot b < 2a \]

\[c_s = 1.0 \quad \text{for simply supported stiffeners} \]
\[= 2.0 \quad \text{for partially constraint stiffeners} \]

\[W_{st} = \text{section modulus of stiffener (long. or transverse) [cm}^3\text{]} \text{ including effective width of plating according to 2.2.} \]

If no lateral load \(p \) is acting the bending stress \(\sigma_b \) is to be calculated at the midpoint of the stiffener span for the fibre which results in the largest stress value. If a lateral load \(p \) is acting, the stress calculation is to be carried out for both fibres of the stiffener’s cross sectional area (if necessary for the biaxial stress field at the plating side).

Note

Longitudinal and transverse stiffeners not subjected to lateral load \(p \) have sufficient scantlings if their moments of inertia \(I_x \) and \(I_y \) are not less than obtained by the following formulae:

\[I_x = \frac{P_{zx} \cdot a^2}{\pi^2 \cdot 10^4} \left(\frac{w_{ox} \cdot h_w}{R_{EH}} + \frac{a^2}{\pi^2 \cdot E} \right) \quad [\text{cm}^4] \]
\[I_y = \frac{P_{zy} \cdot (n \cdot b)^2}{\pi^2 \cdot 10^4} \left(\frac{w_{oy} \cdot h_w}{R_{EH}} + \frac{(n \cdot b)^2}{\pi^2 \cdot E} \right) \quad [\text{cm}^4] \]

3.3 Torsional buckling

3.3.1 Longitudinal stiffeners:

\[\frac{\sigma_x \cdot S}{\kappa_T \cdot R_{EH}} \leq 1.0 \]

\[\kappa_T = 1.0 \quad \text{for } \lambda_T \leq 0.2 \]
\[= \frac{1}{\phi + \sqrt{\phi^2 - \lambda_T^2}} \quad \text{for } \lambda_T > 0.2 \]

\[\phi = 0.5 \left(1 + 0.21 (\lambda_T - 0.2) + \lambda_T^2 \right) \]

\[\lambda_T = \text{reference degree of slenderness} \]
\[\lambda_T = \sqrt{\frac{R_{EH}}{\sigma_{KT}}} \]

\[\sigma_{KT} = \frac{P}{I_p} \left(\frac{\pi^2 \cdot I_w \cdot 10^2}{a^2} \cdot e + 0.385 \cdot I_T \right) \quad [\text{N/mm}^2] \]

For \(I_p, I_T, I_w \) see Fig.3.3 and Table 3.5.
Section 3 - Design Principles

![Fig. 3.3 - Main dimensions of typical longitudinal stiffeners](image)

Fig. 3.3 - Main dimensions of typical longitudinal stiffeners

\[e_f = h_w + t_f / 2 \]

IP = polar moment of inertia of the stiffener related to the point C [cm^4]

IT = St. Vernant’s moment of inertia of the stiffener [cm^4]

I_\omega = sectorial moment of inertia of the stiffener related to the point C [cm^6]

\(\varepsilon \) = degree of fixation

\[\varepsilon = 1 + 10^{-6} \sqrt{\frac{a^4}{t_\omega \left(\frac{b}{t_f^3} + \frac{4 h_w}{3 t_w^3} \right)}} \]

h_w = web height [mm]

t_w = web thickness [mm]

b_f = flange breadth [mm]

t_f = flange thickness [mm]

A_w = web area \(h_w \times t_w \)

A_f = flange area \(b_f \times t_f \).

3.3.3 Transverse stiffeners

For transverse stiffeners loaded by compressive stresses and which are not supported by longitudinal stiffeners, proof is to be provided in accordance with 3.3.1 analogously.

<table>
<thead>
<tr>
<th>Profile</th>
<th>Ip</th>
<th>It</th>
<th>I_\omega</th>
</tr>
</thead>
<tbody>
<tr>
<td>flat bar</td>
<td>(\frac{h_w \cdot t_w}{3 \cdot 10^4})</td>
<td>(\frac{h_w \cdot t_w^3}{3 \cdot 10^4 \left(1 - 0.63 \frac{t_w}{h_w} \right)})</td>
<td>(\frac{h_w^3 \cdot t_w^3}{36 \cdot 10^6})</td>
</tr>
<tr>
<td>profile with bulb or flange</td>
<td>(\frac{A_w \cdot h_w^2}{3} + A_f \cdot e_f^2 \cdot 10^{-4})</td>
<td>(\frac{h_w \cdot t_w^3}{3 \cdot 10^4 \left(1 - 0.63 \frac{t_w}{h_w} \right)})</td>
<td>(\frac{A_f \cdot e_f^2 \cdot b_f^2}{12 \cdot 10^6} \left(\frac{A_f + 2.6 A_w}{A_f + A_w} \right))</td>
</tr>
</tbody>
</table>

for bulb and angle profiles:

\(A_f \cdot e_f^2 \cdot b_f^2 \)

for T - profiles:

\(\frac{b_f^3 \cdot t_f \cdot e_f^2}{12 \cdot 10^6} \)
G. **Rigidity of Transverses and Girders**

The moment of inertia of deck transverses and girders, is not to be less than:

\[I = c \cdot W \cdot \ell \ [\text{cm}^4] \]

- \(c = 4.0 \) if both ends are simply supported
- \(c = 2.0 \) if one end is constrained
- \(c = 1.5 \) if both ends are constrained

\(W \) = section modulus of the structural member considered [cm³]

\(\ell \) = unsupported span of the structural member considered [m]

H. **Structural Details**

1. **Longitudinal members**

1.1 All longitudinal members taken into account for calculating the midship section modulus are to extend over the required length amidships and are to be tapered gradually to the required end scantlings (see also Section 5, C.1).

1.2 Abrupt discontinuities of strength of longitudinal members are to be avoided as far as practicable. Where longitudinal members having different scantlings are connected with each other, smooth transitions are to be provided. Special attention in this respect is to be paid to the construction of continuous longitudinal hatch coamings forming part of the longitudinal hull structure.

1.3 At the ends of longitudinal bulkheads or continuous longitudinal walls suitable scarphing brackets are to be provided.

2. **Transverses and girders**

2.1 Where transverses and girders fitted in the same plane are connected to each other, major discontinuities of strength shall be avoided. The web depth of the smaller girder shall, in general, not be less than 60% of the web depth of the greater one.

2.2 The taper between face plates with different dimensions is to be gradual. In general the taper shall not exceed 1:3. At intersections the forces acting in the face plates are to be properly transmitted.

2.3 For transmitting the acting forces the face plates are to be supported at their knuckles. For supporting the face plates of cantilevers, see Fig. 3.4.

![Fig. 3.4 - Support of face plates of cantilevers](image_url)
\[\sigma_p = \text{permissible stress in the face plate [N/mm}^2\text{]} \]
\[b_f = \text{breadth of face plate [mm]} \]
\[b_e = \text{effective breadth of face plate} \]
\[b_e = t_w + n_1 \left[t_r + c \left(b - t_f \right) \right] \text{ [mm]} \]
\[t_w = \text{web thickness [mm]} \]
\[t_r = \text{face plate thickness [mm]} \]
\[b = \frac{1}{n_1} \cdot \left(b_f - t_w \right) \text{ [mm]} \]
\[c = \frac{1}{\left(\frac{b - t_f}{R \cdot t_f} \right)^2 + \frac{n_3 \cdot t_f}{\alpha^2 \cdot R}} \]
\[c_{\text{max}} = 1 \]
\[2\alpha = \text{knuckle angle [°], see Fig. 3.5} \]
\[\alpha_{\text{max}} = 45° \]
\[R = \text{radius of rounded face plates [mm]} \]
\[n_1 = 1 \text{ for un-symmetrical face plates (face plate at one side only)} \]
\[= 2 \text{ for symmetrical face plates} \]
\[n_2 = 0 \text{ for face plate not supported by brackets} \]
\[= \# 1,0 \text{ for face plates of multi-web girders} \]
\[n_3 = 3 \text{ if no radial stiffener is fitted} \]
\[= 3000 \text{ if two or more radial stiffeners are fitted or if one knuckle stiffener is fitted according to Fig. 3.5 (a).} \]
\[n_3 = \left(\frac{d}{t_f} - 8 \right)^4 \text{ if one stiffener is fitted according to Fig. 3.5 (b).} \]
\[3 \leq n_3 \leq 3000 \]
\[d = \text{distance of the stiffener from the knuckle [mm]} \]

For proof of fatigue strength of the weld seam in the knuckle, the stress concentration factor \(K_S \) (angle 2 \(\alpha \) according to Fig. 3.5 < 35°) related to the stress \(\sigma_a \) in the face plate of thickness \(t_f \) may be estimated as follows and may be evaluated with case 5 of Table 20.3:

\[K_S = \frac{t_r}{t_{\eta}} \left[1 + \frac{6 \cdot n_4 \cdot \tan \left(\frac{t_{\eta} \cdot 2\alpha}{R} \right)}{1 + \frac{t_f}{t_{\eta}}} \right] \]
\[n_4 = 7,143 \text{ for } \frac{d}{t_f} > 8 \]
\[= \frac{d}{t_f} - 0,51 \cdot \sqrt[4]{\frac{d}{t_f}} \text{ for } 8 \geq \frac{d}{t_f} > 1,35 \]
\[= 0,5 \cdot \frac{d}{t_f} + 0,125 \text{ for } 1,35 \geq \frac{d}{t_f} \geq 0,25 \]

The welding seam has to be shaped according to Fig. 3.6.
Scantlings of stiffeners (guidance):

- thickness: \(t_b = \frac{\sigma_a}{\sigma_p} t_r \cdot 2 \sin \alpha \)
- height: \(h = 1.5 \cdot b \).

2.5 For preventing the face plates from tripping adequately spaced stiffeners or tripping brackets are to be provided. The spacing of these tripping elements shall not exceed \(12 \cdot b_f \).

2.6 The webs are to be stiffened to prevent buckling (see also F.).

2.7 The location of lightening holes shall be such that the distance from hole edge to face plate is not less than \(0.3 \times \) web depth.

2.8 In way of high shear stresses lightening holes in the webs are to be avoided as far as possible.

![Fig. 3.5 - Typical stiffeners of rounded of knuckled face plates](image)

![Fig. 3.6 - Welding and supporting of knuckles](image)

3. Knuckles (general)

Flanged structural elements transmitting forces perpendicular to the knuckle, are to be adequately supported at their knuckle, i.e. the knuckles of the inner bottom are to be located above floors, longitudinal girders or bulkheads.

If longitudinal structures, such as longitudinal bulkheads or decks, include a knuckle which is formed by two butt-welded
plates, the knuckle is to be supported in the vicinity of the joint rather than at the exact location of the joint. The minimum distance \(d \) to the supporting structure is to be at least:

\[
d = 25 + \frac{L}{2}
\]

but not more than 50 mm, see Fig. 3.6.

On bulk carriers at knuckles between inner bottom and tank side slopes in way of floors the welding cutouts have to be closed by collar plates or insert plates, see Fig. 3.7. In both cases a full penetration weld is required to inner bottom and bottom girder.

![Fig. 3.7 Knuckles of the double bottom](image)

J. Evaluation of Notch Stresses

The notch stress \(\sigma_N \) evaluated for linear-elastic material behaviour at free plate edges, e.g. at hatch corners, openings in decks, walls, girders etc., should, in general, fulfill the following criterion:

\[
\sigma_N \leq f \cdot R_{eh}
\]

- \(f = 1,1 \) for normal strength hull structural steel
- \(f = 0,9 \) for higher strength hull structural steel with \(R_{eh} = 315 \text{ N/mm}^2 \)
- \(f = 0,8 \) for higher strength hull structural steel with \(R_{eh} = 355 \text{ N/mm}^2 \)
- \(f = 0,73 \) for higher strength hull structural steel with \(R_{eh} = 390 \text{ N/mm}^2 \)

If plate edges are free of notches and corners are rounded-off, a 20 % higher notch stress \(\sigma_N \) may be permitted.

A further increase of stresses may be permitted on the basis of a fatigue strength analysis as per Section 20.

For some types of openings the notch factors \(K_t \) for the calculation of the notch stress \(\sigma_N \) are given in Figs. 3.8 and 3.9.

They apply to stress conditions with uniaxial or biaxial normal stresses.

In case of superimposed stresses due to longitudinal and shear loads, the maximum notch stress \(\sigma_{N,max} \) of rectangular openings with rounded corners can approximately be calculated as follows:

\[
\sigma_{N,max} = \begin{cases}
+ K_{tv} \cdot \sqrt{\sigma_1^2 + 3 \cdot \tau_1^2} & \text{For } \sigma_1 = \text{tensile stress} \\
- K_{tv} \cdot \sqrt{\sigma_1^2 + 3 \cdot \tau_1^2} & \text{For } \sigma_1 = \text{compressive stress}
\end{cases}
\]

\(K_{tv} = \) notch factor for equivalent stress

\(m, c = \) parameters according to Fig. 3.10
\(t, a = \) length and height of opening
\(\tau_1 = \) shear stress related to gross area of section
\(\sigma_1 = \) longitudinal stress (in direction of length \(t \) of opening) related to gross area of section
\(r = \) radius of rounded corner
\(\rho = \) ratio of smaller length to radius of corner (\(t/r \) or \(a/r \))
\(\rho_{\text{min}} = 3 \)

![Fig. 3.8 - Notch factor \(K_t \) for rounded openings](image)

![Fig. 3.9 - Notch factor \(K_t \) for rectangular openings with rounded corners at uniaxial stress condition (left) and at biaxial stress condition (right)](image)
Fig. 3.10 Parameters m and c to determine the notch factors of rectangular openings loaded by superimposed longitudinal and shear stresses

Note
Because the notch factor and the equivalent stress are always positive, the sign of \(F_1 \) governs the most unfavourable superposition of the stress components in any of the four corners. A load consisting of shear only, results in notch stresses of equal size with two positive and two negative values in the opposite corners.

An exact evaluation of notch stresses is possible by means of finite element calculations. For fatigue investigations the stress increase due to geometry of cut-outs has to be considered, see Table 20.3.

Note
These notch factors can only be used for girders with multiple openings if there is no correlation between the different openings regarding deformations and stresses.

K. Corrosion Additions

1. The scantling requirements of the subsequent Sections imply the following general corrosion addition \(t_K \):

\[
t_K = 1.5 \text{ mm for } t' \leq 10 \text{ mm}
\]

\[
t_K = \frac{0.1 \cdot t'}{\sqrt{k}} + 0.5 \text{ mm, max. 3.0 mm for } t' > 10 \text{ mm}
\]

\(t' \) = required rule thickness excluding \(t_K \) [mm].

\(k \) = material factor according to Section 2, B.2.

2. For structural elements in specified areas \(t_K \) is not to be less than given in Table 3.6. For corrosion protection see Section 38.

Table 3.6 - Minimum corrosion addition

<table>
<thead>
<tr>
<th>Area</th>
<th>(t_{Kmin}) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>In ballast tanks where the weather deck forms the tank top, 1.5 m below tank top(^{1)}).</td>
<td>2,5</td>
</tr>
<tr>
<td>In cargo oil tanks where the weather deck forms the tank top, 1.5 m below tank top.</td>
<td>2,0</td>
</tr>
<tr>
<td>Horizontal members in cargo oil and fuel oil tanks.</td>
<td></td>
</tr>
<tr>
<td>Deck plating below elastically mounted deckhouses</td>
<td>3,0</td>
</tr>
<tr>
<td>Longitudinal bulkheads of ships assigned to the Notation G and exposed to grab operation</td>
<td>2,5</td>
</tr>
<tr>
<td>(^{1)}) (t_K = 2.5 \text{ mm for all structures within topside tanks of bulk carriers.})</td>
<td></td>
</tr>
</tbody>
</table>
3. For structures in dry spaces such as box girders of container ships and for similar spaces the corrosion addition is:

\[t_K = \frac{0.1 \cdot t'}{\sqrt{k}}, \quad \text{max. 2.5 mm} \]

however, not less than 1.0 mm.

4. Corrosion addition for hatch covers and hatch coamings are to be determined according to Section 17.

L. Additional Stresses in Asymmetric Sections

1. Additional stresses for fatigue strength analysis

The additional stress \(\sigma_h \) occurring in non-symmetric sections may be calculated by the following formulae:

\[
\sigma_h = \frac{Q \cdot \ell_f \cdot \ell_r}{c \cdot W_y \cdot W_z} \left(b_1^2 - b_2^2 \right) \quad \text{[N/mm}^2\text{]}.
\]

- \(Q = \) load on section parallel to its web within the unsupported span \(\ell_f \) [kN]
- \(\ell_f = \) unsupported span of flange [m]
- \(t_f, b_1, b_2 = \) flange dimensions [mm] as shown Fig. 3.11.
- \(b_1 \geq b_2 \)
- \(W_y = \) Section modulus of section related to the y-y axis including the effective width of plating [cm³]
- \(W_z = \) section modulus of the partial section consisting of flange and half of web area related to the z-z axis [cm³] (Bulb sections may be converted into a similar L-section)

\[\ell_r \]

\[b_1 \]

\[b_2 \]

\[W_y \]

\[W_z \]

\[c \]

- \(c = \) factor depending on kind of load, stiffness of the section’s web and length and kind of support of the profile.

For profiles clamped at both ends and constant area load \(c = 80 \) can be taken for approximation. A precise calculation may be required, e.g. for longitudinal frames of tankers.

This additional stress \(\sigma_h \) is to be added directly to other stresses such as those resulting from local and hull girder bending.

2. Correction of section modulus

The required section modulus \(W_y \) according to A.2. is to be multiplied with the factor \(k_{op} \) according to Table 3.7
Table 3.7 - Increase factor k_{sp}

<table>
<thead>
<tr>
<th>Type of Profile</th>
<th>k_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat bars and symmetric T-profiles</td>
<td>1,00</td>
</tr>
<tr>
<td>Bulb profiles</td>
<td>1,03</td>
</tr>
<tr>
<td>Asymmetric T profiles ($\frac{b_2}{b_1} = 0,5$)</td>
<td>1,05</td>
</tr>
<tr>
<td>Rolled angels (L-profiles)</td>
<td>1,15</td>
</tr>
</tbody>
</table>
Section 4

Design Loads

A. General, Definitions

1. General.

This Section provides data regarding design loads for determining the scantlings of the hull structural elements by means of the design formulae given in the following Sections or by means of direct calculations. The dynamic portions of the design loads are design values which can only be applied within the design concept of this Volume.

2. Definitions

2.1 Load centre

2.1.1 For plates:
- Vertical stiffening system:
 0,5 · stiffener spacing above the lower support of plate field, or lower edge of plate when the thickness changes within the plate field.
- Horizontal stiffening system:
 Midpoint of plate field.

2.1.2 For stiffeners and girders:

Centre of span \(t \).

2.2 Definition of symbols

\[\begin{align*}
 v_0 & = \text{ship's speed according to Section 1, H.5.} \\
 \rho_c & = \text{density of cargo as stowed [t/m}^3] \\
 \rho & = \text{density of liquids [t/m}^3] \\
 & = 1,0 \text{ t/m}^3 \text{ for fresh water and sea water} \\
 z & = \text{vertical distance of the structure's load centre above base line [m]} \\
 x & = \text{distance from aft end of length } L \text{ [m]} \\
 p_0 & = \text{basic external dynamic load} \\
 & = 2,1 \cdot (C_B + 0,7) \cdot c_0 \cdot c_L \cdot f \text{ [kN/m}^2] \\
 & \text{for wave directions with or against the ship's heading} \\
 p_{01} & = 2,6 \cdot (C_B + 0,7) \cdot c_0 \cdot c_L \text{ [kN/m}^2] \\
 & \text{for wave directions transverse the ship's heading} \\
 C_B & = \text{moulded block coefficient according to Section 1, H.4., where } C_B \text{ is not to be taken less than 0,60.} \\
 c_0 & = \text{wave coefficient} \\
 & = \left[\frac{L}{25} + 4,1 \right] c_{RW} \text{ for } L < 90 \text{ m} \\
 & = \left[10,75 - \left(\frac{300 - L}{100} \right)^{1,5} \right] c_{RW} \text{ for } 90 \leq L \leq 300 \text{ m} \\
 & = 10,75 \cdot c_{RW} \text{ for } L > 300 \text{ m}
\end{align*} \]
c_L = length coefficient

- \[\sqrt{\frac{L}{90}} \] for \(L < 90 \) m
- 1.0 for \(L \geq 90 \) m

c_RW = service range coefficient

- 1.00 for unlimited service range
- 0.90 for service range P
- 0.75 for service range L
- 0.60 for service range T

f = probability factor

- 1.0 for plate panels of the outer hull (shell plating, weather decks)
- 0.75 for secondary stiffening members of the outer hull (frames, deck beams), but not less than \(f_Q \) according to Section 5, D.1.
- 0.60 for girders and girder systems of the outer hull (web frames, stringers, grillage systems), but not less than \(f_Q/1.25 \)

\[c_D, c_F = \text{distribution factors according to Table 4.1.} \]

B. External Sea Loads

1. Load on weather decks

1.1 The load on weather deck is to be determined according to the following formula:

\[p_D = p_0 \frac{20 \cdot T}{(10 + z - T)} \cdot H \cdot \text{c_D} \quad \text{[kN/m}^2]\]

Table 4.1 Distribution factors for sea loads on ship’s sides and weather decks

<table>
<thead>
<tr>
<th>Range</th>
<th>Factor c_D</th>
<th>Factor c_F (^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 (\leq \frac{x}{L} < 0.2)</td>
<td>(1.2 - \frac{x}{L})</td>
</tr>
<tr>
<td>M</td>
<td>0.2 (\leq \frac{x}{L} < 0.7)</td>
<td>1.0</td>
</tr>
</tbody>
</table>
| F | 0.7 \(\leq \frac{x}{L} \leq 1.0 \) | \(1.0 + \frac{c}{3} \left(\frac{x}{L} - 0.7 \right) \) | \(1.0 + \frac{20}{c_B} \left(\frac{x}{L} - 0.7 \right)^2 \)

\(^1\) Within the range A the ratio \(x/L \) need not be taken less than 0.1, within the range F the ratio \(x/L \) need not be taken greater than 0.93

Fig. 4.1 Longitudinal sections A, M, and F according to Table 4.1
1.2 For strength decks which are to be treated as weather decks as well as for forecastle decks the load is not to be less than the greater of the following two values:
\[
p_{D_{\text{min}}} = 16 \cdot f \quad [\text{kN/m}^2]
\]
and
\[
p_{D_{\text{min}}} = 0.7 \cdot p_0 \quad [\text{kN/m}^2]
\]

1.3 Where deck cargo is intended to be carried on the weather deck resulting in load greater than the value determined according to 1.1, the scantlings are governed by the greater load (see also C).

Where the stowage height of deck cargo is less than 1.0 m, the deck cargo load may require to be increased by the following value:
\[
p_z = 10 \left(1 - h_c \right) \quad [\text{kN/m}^2]
\]
\[
h_c = \text{stowage height of the cargo [m]}
\]

2. **Load on ship’s sides and of bow and stern structures**

2.1 **Load on ship’s sides**

The external load \(p_s \) on the ship's sides is to be determined according to 2.1.1 and 2.1.2.

2.1.1 For elements the load centre of which is located below load waterline:
\[
p_s = 10(T - z) + p_0 \cdot c_F \left(1 + \frac{z}{T} \right) \quad [\text{kN/m}^2]
\]
for wave directions with or against the ship’s heading.
\[
p_{s1} = 10 \left(T - z \right) + p_0 \left[1 + \frac{z}{T} \left(2 - \frac{z}{T} \right) \right] \cdot 2 \frac{y}{B} \quad [\text{kN/m}^2]
\]
for wave directions transverse to the ship's heading including quasi-static pressure increase due to heel.
\[
y = \text{horizontal distance between load centre and centreline [m]}
\]

2.1.2 For elements the load centre of which is located above the load waterline:
\[
p_s = p_0 \cdot c_F \frac{20}{10 + z - T} \quad [\text{kN/m}^2]
\]
for wave directions with or against the ship’s heading.
\[
p_{s1} = p_0 \left(\frac{20}{5 + z - T} \cdot \frac{\|v\|}{B} \right) \quad [\text{kN/m}^2]
\]
for wave directions transverse to the ship’s heading including quasi-static pressure increase due to heel.

2.2 **Load on bow structures**

The design load for bow structures from forward to 0.1 \(L \) behind F.P. and above the ballast waterline in accordance with the draft \(T_B \) in 4. is to be determined according to the following formulae:
\[
p_c = c \left[0.20 \cdot v_0 + 0.6 \sqrt{L} \right]^2 \quad [\text{kN/m}^2]
\]
with \(L_{\text{max}} = 300 \text{ m} \).
\[
c = 0.8 \text{ in general}
\]
\[
c = \frac{0.4}{(1.2 - 1.09 \cdot \sin \alpha)}
\]
for extremely flared sides where the flare angle \(\alpha \) is larger than 40°.

The flare angle \(\alpha \) at the load centre is to be measured in the plane of frame between a vertical line and the tangent to the side shell plating.

For unusual bow shapes \(p_c \) can be specially considered.

BKI - Rules for Hull -2014
p_e shall not be smaller than p_s according to 2.1.1 or 2.1.2 respectively.

Aft of 0,1 L from F.P. up to 0,15 L from F.P. the pressure between p_e and p_s is to be graded steadily.

The design load for bow doors is given in Section 6, H.3.

2.3 Load on stern structures

The design load for stern structures from the aft end to 0,1 L forward of the aft end of L and above the smallest design ballast draught at the centre of the rudder stock up to T + c_0/2 is to be determined according to the following formulae:

\[p_e = c_A \cdot L \] [kN/m²]

with \(L_{max} = 300 \text{ m} \).

\[c_A = 0,3 \cdot c \geq 0,36 \]

\[c = \text{see 2.2} \]

\[p_e \] shall not be smaller than p_s according to 2.1.1 or 2.1.2 respectively

3. Load on the ship's bottom

The external load p_B of the ship's bottom is to be determined according to the greater of the following formulae:

\[p_B = \frac{10}{0} \cdot T + p_0 \cdot c_F \] [kN/m²]

For wave direction with or against the ship’s heading.

\[p_{B1} = \frac{10}{0} \cdot T + p_{01} \cdot 2 \frac{V}{B} \] [kN/m²]

For wave direction transverse to the ship’s heading including quasi-static pressure increase due to heel.

4. Design bottom slamming pressure

The design bottom slamming pressure in the fore body may be determined by the following formulae:

\[p_{SL} = 162 \sqrt{L} \cdot c_1 \cdot c_{SL} \cdot c_A \cdot c_s \] [kN/m²] for \(L \leq 150 \text{ m} \)

\[= 1984 (1,3 - 0,002 \cdot L) \cdot c_1 \cdot c_{SL} \cdot c_A \cdot c_s \] [kN/m²] for \(L > 150 \text{ m} \)

\[c_1 = 3,6 - 6,5 \left(\frac{T_b}{L} \right)^{0,2} \quad 0 \leq c_1 \leq 1,0 \]

\[T_b = \text{smallest design ballast draught at F.P for normal ballast conditions [m], according to which the strengthening of bottom forward, see Section 6, E. has to be done.} \]

This value has to be recorded in the Class Certificate and in the loading manual.

Where the sequential method for ballast water exchange is intended to be applied, \(T_b \) is to be considered for the sequence of exchange.

Note

With respect to the observation of the smallest design ballast draught \(T_b \), an exception is possible, if during the exchange of ballast water weather conditions are observed the parameters of which are put down in the annex to the Certificate of Class.

\[c_{SL} = \text{distribution factor, see also Fig. 4.2} \]

\[c_{SL} = 0 \quad \text{for } \frac{X}{L} \leq 0,5 \]

\[= \frac{X}{L} - 0,5 \quad \text{for } 0,5 < \frac{X}{L} \leq 0,5 + c_2 \]

\[= 1,0 \quad \text{for } 0,5 + c_2 < \frac{X}{L} \leq 0,65 + c_2 \]
Section 4 - Design Loads B

\[c_2 = 0,33 \cdot C_B + \frac{L}{2500} \]

\[c_{2\text{max}} = 0,35 \]

\[c_A = \frac{10}{A} \]

\[= 1,0 \text{ for plate panels and stiffeners.} \]

\[A = \text{loaded area between the supports of the structure considered} \ [\text{m}^2] \]

\[0,3 \leq c_A \leq 1,0 \]

\[c_s = \frac{1 + c_{RW}}{2} \]

\[c_{RW} = \text{see A.2.2} \]

Fig. 4.2 Distribution factor \(c_{SL} \)

5. Load on decks of superstructures and deckhouses

5.1 The load on exposed decks and parts of superstructure and deckhouse decks, which are not to be treated as strength deck, is to be determined as follows:

\[p_{DA} = p_D \cdot n \quad [\text{kN/m}^2] \]

\[p_D = \text{load according 1.1} \]

\[n = 1 - \frac{Z - H}{10} \]

\[= 1,0 \text{ for the forecastle deck} \]

\[n_{\text{min}} = 0,5 \]

For deckhouses the value so determined may be multiplied by the factor

\[\left(0,7 \cdot \frac{b'}{B'} + 0,3 \right) \]

\[b' = \text{breadth of deckhouse} \]

\[B' = \text{largest breadth of ship at the position considered.} \]

Except for the forecastle deck the minimum load is:

\[p_{DA,\text{min}} = 4 \quad [\text{kN/m}^2] \]

5.2 For exposed wheel house tops the load is not to be taken less than

\[p = 2,5 \quad [\text{kN/m}^2] \]
C. Cargo Loads, Load on Accommodation Decks

1. Load on cargo decks

1.1 The load on cargo decks is to be determined according to the following formulae:

\[p_L = p_c (1 + a_v) \quad [\text{kN/m}^2] \]

- **\(p_c \)** = static cargo load [kN/m²]
- **\(a_v \)** = acceleration factor as follows:
 - \(F = 0.11 \frac{v_0}{\sqrt{L}} \)
 - \(m = \frac{m_o - 5 (m_o - 1)}{0.3} \frac{x}{L} \) for \(0 \leq \frac{x}{L} \leq 0.2 \)
 - \(1.0 \) for \(0.2 < \frac{x}{L} \leq 0.7 \)
 - \(1 + \frac{m_o + 1}{0.3} \left[\frac{x}{L} - 0.7 \right] \) for \(0.7 < \frac{x}{L} \leq 1.0 \)
- **\(m_o \)** = \((1.5 + F) \)
- **\(v_0 \)** = see A.2.2. \(v_0 \) is not to be taken less than \(\sqrt{h} \) [kn]

In way of hatch casings the increased height of cargo is to be taken into account.

\[a_v = \frac{F \cdot m}{v_0} \]

1.2 For timber and coke deck cargo the load on deck is to be determined by the following formulae:

\[p_L = 5 \cdot h_s (1 + a_v) \quad [\text{kN/m}^2] \]

- **\(h_s \)** = stowing height of cargo [m].

1.3 The loads due to single forces \(P_E \) (e.g. in case of containers) are to be determined as follows:

\[P = P_E (1 + a_v) \quad [\text{kN}] \]

1.4 The cargo pressure of bulk cargoes is to be determined by the following formulae:

\[p_{bc} = p_c (1 + a_v) \quad [\text{kN/m}^2] \]

- **\(p_c \)** = static bulk cargo load
- \(9.81 \cdot p_c \cdot h \cdot n \) [kN/m²]
- **\(h \)** = distance between upper edge of cargo and the load centre [m]
- **\(n \)** = \[\tan^2 \left(45^\circ - \frac{\alpha}{2} \right) \sin^2 \alpha + \cos^2 \alpha \]
- **\(\alpha \)** = angle [°] between the structural element considered and a horizontal plane
- **\(\gamma \)** = angle of repose of the cargo [°]

2. Load on inner bottom

2.1 The inner bottom cargo load is to be determined as follows:

\[p_i = 9.81 \cdot \frac{G}{V} \cdot h (1 + a_v) \quad [\text{kN/m}^2] \]

- **\(G \)** = mass of cargo in the hold [t]
- **\(V \)** = volume of the hold [m³] (hatchways excluded)
- **\(h \)** = height of the highest point of the cargo above the inner bottom [m], assuming hold to be completely filled.
av = see 1.1

For calculating av the distance between the centre of gravity of the hold and the aft end of the length L is to be taken.

2.2 For inner bottom load in case of ore stowed in conical shape, see Section 23, B.3.

3. Loads on accommodation and machinery decks

3.1 The deck load in accommodation and service spaces is:

\[p = 3.5 \times (1 + av) \, [\text{kN/m}^2] \]

3.2 The deck load of machinery decks is:

\[p = 8 \times (1 + av) \, [\text{kN/m}^2] \]

3.3 Significant single forces are also to be considered, if necessary.

D. Load on Tank Structures

1. Design pressure for filled tanks

1.1 The design pressure for service conditions is the greater of the following values:

\[p_1 = 9.81 \times h_1 \times \rho \times (1 + av) + 100 \times p_v \, [\text{kN/m}^2] \]

or

\[p_1 = 9.81 \times \rho \times [h_1 \times \cos \varphi + (0.3 \times b + y) \times \sin \varphi] + 100 \times p_v \, [\text{kN/m}^2] \]

\[h_1 = \text{distance of load centre from tank top} \, [\text{m}] \]

\[a_v = \text{see C.1.1} \]

\[\varphi = \text{design heeling angle} \, [\text{°}] \text{ for tanks} \]

\[= \arctan \left(\frac{f_{bk} \times H}{B} \right) \text{ in general} \]

\[f_{bk} = 0.5 \text{ for ships with bilge keel} \]

\[= 0.6 \text{ for ships without bilge keel} \]

\[\varphi \geq 20° \text{ for hatch covers of holds carrying liquids} \]

\[b = \text{upper breadth of tank} \, [\text{m}] \]

\[y = \text{distance of load centre from the vertical longitudinal central plane of tank} \, [\text{m}] \]

\[p_v = \text{set pressure of pressure relief valve} \, [\text{bar}], \text{if a pressure relief valve is fitted} \]

\[= \text{working pressure during ballast water exchange} \, [\text{bar}] \]

\[= \frac{\Delta z - 2.5}{10} + \Delta p_v \]

\[\Delta z = \text{distance from top of overflow to tank top} \, [\text{m}] \]

\[\Delta p_v = \text{pressure losses in the overflow line} \, [\text{bar}] \]

\[\Delta p_{v\min} = 0.1 \text{ bar} \]

\[p_{v\min} = 0.1 \text{ bar during ballast water exchange for both, the sequential method as well as the flow-through method} \]

\[= 0.2 \text{ bar (2.0 mWS) for cargo tanks of tankers (see also Rules for Machinery Installations, Volume III, Section 15).} \]

Smaller set pressures than 0.2 bar may be accepted in special cases. The actual set pressure will be entered into the Class Certificate.
The maximum static design pressure is:

\[p_2 = 9,81 \cdot h_2 \quad [kN/m^2] \]

where \(h_2 \) is the distance of load centre from top of overflow or from a point 2.5 m above tank top, whichever is the greater.

Tank venting pipes of cargo tanks of tankers are not to be regarded as overflow pipes.

For tanks equipped with pressure relief valves and/or for tanks intended to carry liquids of a density greater than 1 \(t/m^3 \), the head \(h_2 \) is at least to be measured to a level at the following distance \(h_p \) above tank top:

\[h_p = \begin{cases} 2,5 \cdot \rho & [mWS], \quad \text{head of water [m]}, \\ 10 \cdot p_v & [mWS], \quad \text{where } p_v > 0,25 \cdot \rho \end{cases} \]

Regarding the design pressure of fuel tanks and ballast tanks which are connected to an overflow system, the dynamic pressure increase due to the overflowing is to be taken into account in addition to the static pressure height up to the highest point of the overflow system, see also Regulation for Construction, Equipment and Testing of Closed Fuel Overflow Systems.

2. Design pressure for partially filled tanks

2.1 For tanks which may be partially filled between 20% and 90% of their height, the design pressure is not to be taken less than given by the following formulae:

2.1.1 For structures located within 0,25 \(\ell_t \) from the bulkheads limiting the free liquid surface in the ship's longitudinal direction:

\[p_d = \left(4 - \frac{L}{150} \right) \ell_t \cdot \rho \cdot n_x + 100 \cdot p_v \quad [kN/m^2] \]

where \(n_x = 1 - \frac{4}{\ell_t} x_1 \)

2.1.2 For structures located within 0,25 \(b_t \) from the bulkheads limiting the free liquid surface in the ship's transverse direction:

\[p_d = \left[5,5 - \frac{B}{20} \right] b_t \cdot \rho \cdot n_y + 100 \cdot p_v \quad [kN/m^2] \]

where \(n_y = 1 - \frac{4}{b_t} y_1 \)

2.2 For tanks with ratios \(\ell_t/L > 0,1 \) or \(b_t/B > 0,6 \) a direct calculation of the pressure \(p_d \) may be required.

E. Design Values of Acceleration Components

1. Acceleration components

The following formulae may be taken for guidance when calculating the acceleration components owing to ship's motions.

Vertical acceleration:

\[a_z = \pm a_0 \sqrt{1 + \left[5,3 - \frac{45}{L} \right]^2 \left[\frac{x}{L} - 0,45 \right]^2 \left[\frac{0,6}{C_n} \right]^{1,5}} \]
Transverse acceleration:

\[a_y = \pm a_0 \sqrt{0.6 + 2.5 \left(\frac{x}{L} - 0.45 \right)^2 + k \left[1 + 0.6 \cdot k \frac{z - T}{B} \right]^2} \]

Longitudinal acceleration:

\[a_x = \pm a_0 \sqrt{0.06 + A^2 - 0.25 \cdot A} \]

where

\[A = 0.7 - \frac{L}{1200} + 5 \frac{z - T}{L} \frac{0.6}{C_B} \]

The acceleration components take account of the following components of motion:

Vertical acceleration (vertical to the base line) due to heave, and pitch.

Transverse acceleration (vertical to the ship's side) due to sway, yaw, and roll including gravity component of roll.

Longitudinal acceleration (in longitudinal direction) due to surge and pitch including gravity component of pitch.

\(a_x, a_y, \) and \(a_z \) are maximum dimensionless accelerations (i.e., relative to the acceleration gravity \(g \)) in the related direction \(x, y \), and \(z \). For calculation purposes they are considered to act separately.

\[a_0 = \left[0.2 \cdot \frac{v_0}{\sqrt{\tau_0}} + \frac{3 \cdot c_0 \cdot \tau_0}{L_0} \right] f_Q \]

\(L_0 = \) length of ship \(L \) [m], but for determination of \(a_0 \) the length \(L_0 \) shall not be taken less than 100 m

\(k = \frac{13 \cdot GM}{B} \]

\(GM = \) metacentric height [m]

\(k_{min} = 1.0 \]

\(f_Q = \) probability factor depending on probability level \(Q \) as outline in Table 4.2.

Table 4.2 Probability factor \(f_Q \) for a straightline spectrum of seaway-induced stress ranges

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(f_Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-8})</td>
<td>1.000</td>
</tr>
<tr>
<td>(10^{-7})</td>
<td>0.875</td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>0.750</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>0.625</td>
</tr>
<tr>
<td>(10^{-4})</td>
<td>0.500</td>
</tr>
</tbody>
</table>

2. **Combined acceleration**

The combined acceleration \(a_k \) may be determined by means of the "acceleration ellipse" according to Fig. 4.3 (e.g. \(y-z \)-plane).
Fig. 4.3 Acceleration ellipse
Section 5

Longitudinal Strength

A. General

1. Scope

1.1 For ships of categories I - II as defined in 4.1.3, the scantlings of the longitudinal hull structure are to be determined on the basis of longitudinal bending moments and shear forces calculations. For ships which do not belong to these categories i.e. in general for ships of less than 65 m in length, see also Section 7, A. 4.

1.2 The wave bending moments and shear forces specified under B.3. are design values which, in connection with the scantling formulae, correspond to a probability level $Q = 10^{-8}$. Reduced values may be used for the purpose of determining combined stresses as specified under D.1.

2. Calculation Particulars

The curves of the still water bending moments and still water shear forces for the envisaged loading and ballast conditions are to be calculated.

3. Assumptions for calculation, loading conditions

3.1 The calculation of still water bending moments and shear forces is to be carried out for the following three loading conditions:

.1 departure condition
.2 arrival condition
.3 transitory conditions (reduced provisions and ballast variations between departure and arrival)

For determining the scantlings of the longitudinal hull structure the maximum values of the still water bending moments and shear forces are to be used.

3.2 In general, the loading conditions specified in 4.4.2 are to be investigated.

3.3 For other ship types and special ships, the calculation of bending moments and shear forces for other loading conditions according to the intended service may be required to be investigated, see also G.

3.4 Where for ships of unusual design and form as well as for ships with large deck openings a complex stress analysis of the ship in the seaway becomes necessary, the analysis will normally be done by using computer programs approved by BKI and processing the data prepared by the yard.

4. Loading guidance information

4.1 General, definitions

4.1.1 Loading guidance information is a means in accordance with Regulation 10(1) of ICLL which enables the master to load and ballast the ship in a safe manner without exceeding the permissible stresses.

4.1.2 An approved loading manual is to be supplied for all ships except those of Category II with length less than 90 m in which the deadweight does not exceed 30% of the displacement at the summer loadline.

In addition, an approved loading instrument is to be supplied for all ships of Category I of 100 m in length and above. In special cases, e.g. extreme loading conditions or unusual structural configurations, BKI may also require an approved loading instrument for ships of Category I less than 100 m in length.

Special requirements for bulk carriers, ore carriers and combination carriers are given in Section 23, B.10.
4.1.3 The following definitions apply:

A **loading manual** is a document which describes:
- the loading conditions on which the design of the ship has been based, including permissible limits of still water bending moment and shear force,
- the results of the calculations of still water bending moments, shear forces and where applicable, limitations due to torsional and lateral loads,
- the allowable local loading for the structure (hatch covers, decks, double bottom, etc.).

A **loading instrument** is an approved analogue or digital instrument consisting of:
- loading computer (Hardware) and
- loading program (Software)

by means of which it can be easily and quickly ascertained that, at specified read-out points, the still water bending moments, shear forces, and the still water torsional moments and lateral loads, where applicable, in any load or ballast condition will not exceed the specified permissible values.

An approved operational manual is always to be provided for the loading instrument. The operational manual is to be approved. Loading computers have to be type tested and certified, see also 4.5.1. Type approved hardware may be waived, if redundancy is ensured by a second certified loading instrument.

Type approval is required if:
- the computers are installed on the bridge or in adjacent spaces
- interfaces to other systems of ship operation are provided.

For type approval the relevant rules and guidelines are to be observed.

Loading programs shall be approved and certified, see also 4.3.1 and 4.5.2. Single point loading programs are not acceptable.

Ship categories for the purpose of this Section are defined for all classed seagoing ships of 65 m in length and above which were contracted for construction on or after 1st July 1998 as follows:

Category I Ships:
Ships with large deck openings where, according to F., combined stresses due to vertical and horizontal hull girder bending and torsional and lateral loads have to be considered.
Chemical tankers and gas carriers.
Ships more than 120 m in length, where the cargo and/or ballast may be unevenly distributed.
Ships less than 120 m in length, when their design takes into account uneven distribution of cargo or ballast, belong to Category II.

Category II Ships:
Ships with arrangement giving small possibilities for variation in the distribution of cargo and ballast (e.g. passenger vessels).
Ships on regular and fixed trading patterns where the loading manual gives sufficient guidance.

The exceptions given under Category I.

4.2 **Conditions of approval of loading manuals**

Manual should contain the design loading and ballast conditions, subdivided into departure and arrival conditions, and ballast exchange at sea conditions, where applicable, upon which the approval of the hull scantlings is based.

4.4.2 contains as guidance only a list of the loading conditions which in general are to be included in the loading manual. In case of modifications resulting in changes in the main data of the ship, a new approved loading manual is to be issued. The loading manual shall be prepared in a language understood by the users. If this language is not English, a translation into English is to be included.

4.3 **Conditions of approval of loading instruments**

4.3.1 The approval of the loading instrument is to include:
– verification of type approval, if required, see 4.1.3
– verification that the final data of the ship has been used,
– acceptance of number and position of read-out points,
– acceptance of relevant limits for all read-out points,
– checking of proper installation and operation of the instrument on board in accordance with agreed test conditions, and availability of the approved operation manual.

4.3.2 4.5 contains information on approval procedures for loading instruments.

4.3.3 In case of modifications implying changes in the main data of the ship, the loading program is to be modified accordingly and newly approved.

4.3.4 The operation manual and the instrument output must be prepared in a language understood by the users. If this language is not English, a translation into English is to be included.

4.3.5 The operation of the loading instrument is to be verified upon installation. It is to be checked that the agreed test conditions and the operation manual for the instrument are available on board.

The permissible limits for the still water bending moments and shear forces to be applied for the ballast water exchange at sea are to be determined in accordance with E., where B.3.1 is to be used for the wave bending moments and B.3.2 for the wave shear forces.

4.4 Design cargo and ballast loading conditions

4.4.1 In general the loading manual should contain the design loading and ballast conditions, subdivided into departure and arrival conditions and, where applicable, ballast exchange at sea conditions upon which the approval of the hull scantlings is based.

Where the amount and disposition of consumables at any transitory stage of the voyage are considered to result in a more severe loading condition, calculations for such transitory conditions are to be submitted in addition to those for departure and arrival conditions.

Also, where any ballasting and/or deballasting is intended during voyage, calculations of the transitory conditions before and after ballasting and/or deballasting any ballast tank are to be submitted and, after approval, included in the loading manual for guidance.

4.4.1.1 Partially filled ballast tanks in ballast loading condition

Ballast loading conditions involving partially filled peak and/or other ballast tanks at departure, arrival or during intermediate conditions are not permitted to be used as design conditions, unless

– design stress limits are not exceeded in all filling levels between empty and full.
– for bulk carriers, where applicable, the requirements of G. are complied with for all filling levels between empty and full.

To demonstrate compliance with all filling levels between empty and full, it will be acceptable if, in each condition at departure, arrival and where required by 4.3.2 any intermediate condition, the tanks intended to be partially filled are assumed to be:

– empty
– full
– partially filled at intended level

Where multiple tanks are intended to be partially filled, all combinations of empty, full or partially filled at intended level for those tanks are to be investigated.

However, for conventional ore carriers with large wing water ballast tanks in cargo area, where empty or full ballast water filling levels of one or maximum two pairs of these tanks lead to the ship's trim exceeding one of the following conditions, it is sufficient to demonstrate compliance with maximum, minimum and intended partial filling levels of these one or maximum two pairs of ballast tanks such that the ship's condition does not exceed any of these trim limits.

Filling levels of all other wing ballast tanks are to be considered between empty and full.
The trim conditions mentioned above are:

- trim by stern of 0.03 \(L\), or
- trim by bow of 0.015 \(L\), or
- any trim that cannot maintain propeller immersion \((I/D)\) not less than 25%

\[
\begin{align*}
I &= \text{the distance from propeller centreline to the waterline} \\
D &= \text{propeller diameter}
\end{align*}
\]

The maximum and minimum filling levels of the above mentioned pairs of side ballast tanks are to be indicated in the loading manual.

4.4.1.2 Partially filled ballast tanks in combination with cargo loading conditions

In such cargo loading conditions, the requirements in 4.4.1.1 apply to the peak tanks only. Requirements of 4.4.1.1 and 4.4.1.2 are not applicable to ballast water exchange using the sequential method.

4.4.2 In particular the following loading conditions should be included:

For Dry-Cargo Ships, Containerships, Ro-Ro Ships, Refrigerated Carriers, Ore Carriers and Bulk Carriers:

- loading conditions at maximum draught,
- ballast conditions,
- special loading conditions, e.g. container or light load conditions at less than the maximum draught, heavy cargo, empty holds or non-homogeneous cargo conditions, deck cargo conditions, etc., where applicable,
- short voyages or harbour conditions, where applicable,
- docking condition afloat,
- loading and unloading transitory conditions, where applicable.
- all loading conditions specified in Section 23, F.4. for ships with Notations BC-A, BC-B or BC-C, where applicable

For oil tankers (see also Section 24, B.):

- homogeneous loading conditions (excluding dry and segregated ballast tanks) and ballast or part loaded conditions for both departure and arrival,
- any specified non-uniform distribution of loading,
- mid-voyage conditions relating to tank cleaning or other operations where these differ significantly from the ballast conditions,
- docking condition afloat,
- loading and unloading transitory conditions.

For chemical tankers:

- conditions as specified for oil tankers,
- conditions for high density or heated cargo, see also Section 12, A.6.,
- segregated cargo where these are included in the approved cargo list.

For Liquefied gas carriers:

- homogeneous loading conditions for all approved cargoes for both arrival and departure,
- ballast conditions for both arrival and departure,
- cargo condition where one or more tanks are empty or partially filled or where more than one type of cargo having significantly different densities is carried for both arrival and departure,
- harbour condition for which an increased vapour pressure has been approved (see Rules for Ships Carrying Liquefied Gas in Bulk, Volume IX, Section 4, 4.2.6.4),
- docking condition afloat.
For combination carriers:
 - conditions as specified for oil tankers and cargo ships

4.5 Approval procedures of loading instruments

4.5.1 Type test of the loading computer

The type test requires:
 - The loading computer to undergo successful tests in simulated conditions to prove its suitability for shipboard operation,
 - The testing of a design may be waived if a loading instrument has been tested and certified by an independent and recognized authority, provided the testing program and results are considered satisfactory.

4.5.2 Certification of the loading program

4.5.2.1 After the successful type test of the hardware, if required, see 4.1.3, the producer of the loading program shall apply at BKI for certification.

4.5.2.2 The number and location of read-out points are to be to the satisfaction of BKI. Read-out points should usually be selected at the position of the transverse bulkheads or other obvious boundaries. Additional read-out points may be required between bulkheads of long holds or tanks or between container stacks.

4.5.2.3 BKI will specify:
 - the maximum permissible still water shear forces, bending moments (limits) at the agreed read-out points and when applicable, the shear force correction factors at the transverse bulkheads,
 - when applicable, the maximum permissible torsional moments,
 - also when applicable the maximum lateral load.

4.5.2.4 For approval of the loading program the following documents have to be submitted:
 - operation manual for the loading program,
 - print-outs of the basic ship data like distribution of light ship weight, tank and hold data etc.,
 - print-outs of at least 4 test cases,
 - diskettes with loading program and stored test cases.

The calculated strength results at the fixed read-out points shall not differ from the results of the test cases by more than 5 % related to the approved limits.

4.5.3 Loading instrument

Final approval of the loading instrument will be granted when the accuracy of the loading instrument has been checked after installation on board ship using the approved test conditions.

If the performance of the loading instrument is to be found satisfactory, the Surveyor will fix as a sign of approval a self-adhering label, provided for this purpose, to the loading instrument casing in a prominent position. The date of approval (month, year) and the number of the corresponding approval certificate are stated on the proof label.

A certificate will then be issued. A copy of the Certificate is to be included in the operation manual.

4.6 Class maintenance of loading guidance information

At each Annual and Class Renewal Survey, it is to be checked that the approved loading guidance information is available on board.

The loading instrument is to be checked for accuracy at regular intervals by the ship's Master by applying test loading conditions. At each Class Renewal Survey this checking is to be done in the presence of the Surveyor.

5. Definitions

\[k = \text{material factor according to Section 2, B.2.} \]

\[C_B = \text{block coefficient as defined in Section 1,H.4.} \quad C_B \text{ is not to be taken less than 0.6} \]
A, B Section 5 - Longitudinal Strength

\[x = \text{distance [m] between aft end of length } L \text{ and the position considered} \]
\[v_0 = \text{speed of the ship [kn] according to Section.1, H.5.} \]
\[I_y = \text{moment of inertia of the midship section [m}^4\text{] around the horizontal axis at the position } x/L \]
\[e_B = \text{distance [m] between neutral axis of hull section and base line} \]
\[e_D = \text{distance [m] between neutral axis of hull section and deck line at side} \]
\[e_z = \text{vertical distance of the structural element considered from the horizontal neutral axis [m] (positive sign for above the neutral axis, negative sign for below)} \]
\[W_B = \text{section modulus of section [m}^3\text{] related to base line} \]
\[W_D = \text{section modulus of section [m}^3\text{] related to deck line at side} \]
\[S = \text{first moment of the sectional area considered [m}^3\text{] related to the neutral axis} \]
\[M_T = \text{total bending moment in the seaway [kNm]} \]
\[= M_{SW} + M_{WV} \]
\[M_{SW} = \text{permissible vertical still water bending moment [kNm] (positive sign for hogging, negative sign for sagging condition)} \]
\[M_{WV} = \text{vertical wave bending moment [kNm] (positive sign for hogging, } M_{WV_{hogg}} \text{ negative sign for sagging condition, } M_{WV_{sag}} \text{)} \]
\[M_{WH} = \text{horizontal wave bending moment [kNm] (positive sign for tension starboard side, negative for compression in starboard side)} \]
\[M_{ST} = \text{static torsional moment [kNm]} \]
\[M_{WT} = \text{wave induced torsional moment [kNm]} \]
\[Q_T = \text{total vertical shear force in the seaway [kN]} \]
\[= Q_{SW} + Q_{WV} \]
\[Q_{SW} = \text{permissible vertical still water shear force [kN]} \]
\[Q_{WV} = \text{vertical wave shear force [kN]} \]
\[Q_{WH} = \text{horizontal wave shear force [kN]} \]

Sign rule see Fig. 5.1

Fig. 5.1 Sign rule

B. Loads on the Ship’s Hull

1. General

In general the global loads on the hull in a seaway can be calculated with the formulae stated below. For ships of unusual form and design (e.g. \(L/B \leq 5, B/H \geq 2,5, L \geq 500 \text{ m or } C_B < 0,6 \)) and for ships with a speed of:
\[v_0 \geq 1,6 \cdot \sqrt{L} \quad [\text{kn}] \]

as well as for ships with large bow and stern flare and with cargo on deck in these areas BKI may require determination of
wave bending moments as well as their distribution over the ship's length by approved calculation procedures. Such calculation procedures shall take into account the ship's motions in a natural seaway.

2. Still Water Loads

2.1 General

Due to the provided loading cases the vertical longitudinal bending moments and shear forces are to be proved by calculations for cases in intact conditions (MSW, QSW) and if required (see G.1.) for damage conditions (MSWf, QSWf).

If statical torsional moments are likely to be expected from the loading or construction of the ship, they have to be taken into account.

Still water loads have to be superimposed with the wave induced loads according to 3.

2.2 Guidance values for containerships with irregular loading

2.2.1 Still water bending moments

When determining the required section modulus of the midship section of containerships in the range:

\[\frac{x}{L} = 0,3 \; \text{to} \; \frac{x}{L} = 0,55 \]

it is recommended to use at least the following initial value for the hogging still water bending moment:

\[M_{SWi} = n_1 \cdot c_0 \cdot L^2 \cdot B \cdot \left(0,123 - 0,015 \cdot C_B\right) \; [\text{kNm}] \]

\[n_1 = 1,07 \cdot \left[1 + 15 \cdot \left(\frac{n}{10^4}\right)^2\right] \leq 1,2 \]

\[n = \text{according to 2.2.2} \]

\[M_{SWi} \] shall be graduated regularly to ship’s ends.

2.2.2 Static torsional moment

The maximum static torsional moment may be determined by:

\[M_{ST, max} = \pm 20 \cdot B \cdot \sqrt{CC} \; [\text{kNm}] \]

\[CC = \text{maximum permissible cargo capacity of the ship [t]} \]

\[n = \text{maximum number of 20'-containers (TEU) of the mass G the ship can carry} \]

\[G = \text{mean mass of a single 20'-container [t]} \]

For the purpose of a direct calculation the following envelope curve of the static torsional moment over the ship's length is to be taken:

\[M_{ST} = 0,568 \cdot M_{ST, max} \left(|c_{T1}| + c_{T2}\right) \; [\text{kNm}] \]

\[c_{T1}, c_{T2} = \text{distribution factors, see also Fig. 5.2} \]

\[c_{T1} = \sin \left(\frac{2\pi x}{L}\right) \quad \text{for} \; 0 \leq \frac{x}{L} < 0,25 \]

\[= \sin \left(2\pi \frac{x}{L}\right) \quad \text{for} \; 0,25 \leq \frac{x}{L} \leq 1,0 \]

\[c_{T2} = \sin \left(\frac{\pi x}{L}\right) \quad \text{for} \; 0 \leq \frac{x}{L} < 0,5 \]

\[= \sin \left(\pi \frac{x}{L}\right) \quad \text{for} \; 0,5 \leq \frac{x}{L} \leq 1,0 \]
3. Wave induced loads

3.1 Vertical wave bending moments

The vertical wave bending moment are to be determined according to the following formulae:

\[M_{WV} = L^2 \cdot B \cdot c_0 \cdot c_1 \cdot c_L \cdot c_M \] [kNm]

- \(c_0, c_L \) see Section 4.A.2.2
- \(c_1 \) hogging/sagging condition as follows:
 - \(c_{1H} = 0,19 \cdot C_B \) for hogging condition
 - \(c_{1S} = - 0,11 \cdot (C_B + 0,7) \) for sagging condition
- \(c_M \) distribution factor, see also Fig. 5.3
- \(c_{MH} \) hogging condition
 - \(= 2,5 \cdot \frac{x}{L} \) for \(0 \leq \frac{x}{L} < 0,4 \)
 - \(= 1,0 \) for \(0,4 \leq \frac{x}{L} \leq 0,65 \)
 - \(= \frac{1 - \frac{x}{L}}{0,35} \) for \(0,65 < \frac{x}{L} \leq 1 \)
- \(c_{MS} \) sagging condition
 - \(= c_v \cdot 2,5 \cdot \frac{x}{L} \) for \(0 \leq \frac{x}{L} < 0,4 \)
 - \(= c_v \) for \(0,4 \leq \frac{x}{L} \leq 0,65 \cdot c_v \)
 - \(= \frac{x}{L} - 0,65 \cdot c_v \) for \(0,65 \cdot c_v < \frac{x}{L} \leq 1 \)
Section 5 - Longitudinal Strength

3.2 Vertical wave shear forces

The vertical wave shear forces are to be determined by the following formulae:

\[Q_{wv} = c_0 \cdot c_L \cdot B \cdot (c_B + 0.7) \cdot c_Q \] [kN]

- \(c_0, c_L \) = see Section 4, A.2.2
- \(c_Q \) = distribution factor according to Table 5.1, see also Fig. 5.4.
- \(m = \frac{c_{1H}}{c_{1S}} \)
- \(c_{1H}, c_{1S} \) = see 3.1.

Table 5.1 - Distribution factor \(c_Q \)

<table>
<thead>
<tr>
<th>Range</th>
<th>for positive shear forces</th>
<th>for negative shear forces</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 \leq \frac{x}{L} < 0.2)</td>
<td>(1.38 \cdot m \cdot \frac{x}{L})</td>
<td>(-1.38 \cdot \frac{x}{L})</td>
</tr>
<tr>
<td>(0.2 \leq \frac{x}{L} < 0.3)</td>
<td>(0.276 \cdot m)</td>
<td>(-0.276)</td>
</tr>
<tr>
<td>(0.3 \leq \frac{x}{L} < 0.4)</td>
<td>(1.104 \cdot m - 0.63 + (2.1 - 2.76 \cdot m) \cdot \frac{x}{L})</td>
<td>(-0.474 - 0.66 \cdot \frac{x}{L})</td>
</tr>
<tr>
<td>(0.4 \leq \frac{x}{L} < 0.6)</td>
<td>(0.21)</td>
<td>(-0.21)</td>
</tr>
<tr>
<td>(0.6 \leq \frac{x}{L} < 0.7)</td>
<td>((3 \cdot c_v - 2.1) \left(\frac{x}{L} - 0.6 \right) + 0.21)</td>
<td>(-1.47 - 1.8 \cdot m + 3 \cdot (m - 0.7) \cdot \frac{x}{L})</td>
</tr>
<tr>
<td>(0.7 \leq \frac{x}{L} < 0.85)</td>
<td>(0.3 \cdot c_v)</td>
<td>(-0.3 \cdot m)</td>
</tr>
<tr>
<td>(0.85 \leq \frac{x}{L} \leq 1.0)</td>
<td>(\frac{1}{3} \left[c_v \left(14 \cdot \frac{x}{L} - 11 \right) - 20 \cdot \frac{x}{L} + 17 \right])</td>
<td>(-2 \cdot m \left[1 - \frac{x}{L} \right])</td>
</tr>
</tbody>
</table>

Fig 5.4 Distribution factor \(c_Q \)
3.3 **Horizontal bending moments**

\[M_{WH} = 0.32 \cdot L \cdot Q_{WHmax} \cdot c_M \] [kNm]

- \(c_M \): see 3.1, but for \(c_M = 1 \)
- \(Q_{WHmax} \): see 3.4

3.4 **Horizontal shear forces**

\[Q_{WHmax} = \pm c_N \cdot L \cdot T \cdot B \cdot \frac{c_B}{c_D} \cdot \frac{c_L}{c} \] [kN]

- \(c_N \): 1 + 0.15 \(\cdot \frac{L}{B} \)
- \(c_{Nmin} \): 2
- \(Q_{WH} \): \(Q_{WHmax} \cdot c_{QH} \)
- \(c_{QH} \): distribution factor according to Table 5.2, see also Fig. 5.5

![Fig 5.5 Distribution factor cQH](image)

Table 5.2 - Distribution factor \(c_{QH} \)

<table>
<thead>
<tr>
<th>Range</th>
<th>(c_{QH})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (\leq \frac{X}{L}) < 0.1</td>
<td>0.4 + 6 (\cdot \frac{X}{L})</td>
</tr>
<tr>
<td>0.1 (\leq \frac{X}{L}) (\leq) 0.3</td>
<td>1</td>
</tr>
<tr>
<td>0.3 (< \frac{X}{L}) (<) 0.4</td>
<td>1.0 - 5 (\cdot \left(\frac{X}{L} - 0.3 \right))</td>
</tr>
<tr>
<td>0.4 (\leq \frac{X}{L}) (<) 0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>0.6 (< \frac{X}{L}) (<) 0.7</td>
<td>0.5 + 5 (\cdot \left(\frac{X}{L} - 0.6 \right))</td>
</tr>
<tr>
<td>0.7 (\leq \frac{X}{L}) (\leq) 0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>0.8 (< \frac{X}{L}) (\leq) 1.0</td>
<td>1.0 - 4.25 (\cdot \left(\frac{X}{L} - 0.8 \right))</td>
</tr>
</tbody>
</table>

3.5 **Torsional moments**

The maximum wave induced torsional moment is to be determined as follows:

\[M_{WTmax} = \pm L \cdot B^2 \cdot c_B \cdot c_0 \cdot c_L \cdot \left[0.11 + \sqrt{a^2 + 0.012} \right] \] [kNm]

- \(a = \sqrt{\frac{T \cdot c_N \cdot Z_Q}{B}} \)
- \(a_{min} = 0.1 \)
- \(c_N = \) see 3.4
\[Z_Q = \text{distance [m] between shear centre and a level at } 0,2 \cdot \frac{B}{T} \text{ above the basis} \]

When a direct calculation is performed, for the wave induced torsional moments the following envelope curve is to be taken:

\[M_{WT} = \pm L \cdot B^2 \cdot C_B \cdot c_0 \cdot c_{WT} [\text{Nm}] \]

\[c_{WT} = \text{distribution factor, see also Fig. 5.6} \]

\[= \left[a \cdot |c_{T1} + 0,22 \cdot c_{T2}| \cdot (0,9 + 0,08 \cdot a) \right] \]

\[c_{T1}, c_{T2} = \text{see 2.2.2} \]

![Distribution factor CWT](image)

Fig. 5.6 - Distribution factor \(C_{WT} \)

Note

The envelope can be approximated by superposition of both distributions according to Fig. 5.2.

C. Section Moduli, Moments of Inertia, Shear and Buckling Strength

1. Section moduli as a function of the longitudinal bending moments

1.1 The section moduli related to deck \(W_D \) respectively \(W'_D \) or bottom \(W_B \) are not to be less than:

\[W = f_r \cdot \frac{|M_{SW} + M_{WV}|}{\sigma_p \cdot 10^3} [\text{m}^3] \]

\[f_r = 1,0 \text{ in general} \]

\[= \text{according to F.2. for ships with large openings} \]

\[\sigma_p = \text{permissible longitudinal bending stress [N/mm}^2] \]

\[= c_s \cdot \sigma_{p0} \]

\[\sigma_{p0} = 18,5 \frac{\sqrt{L}}{k} \text{ for } L < 90 \text{ m} \]

\[= 175 \frac{k}{k} \text{ for } L \geq 90 \text{ m} \]

\[c_s = 0,5 + \frac{5}{3} \frac{x}{L} \text{ for } 0 \leq \frac{x}{L} < 0,30 \]

\[= 1,0 \text{ for } 0,30 \leq \frac{x}{L} \leq 0,70 \]

\[= \frac{5}{3} \left[1,3 - \frac{x}{L} \right] \text{ for } 0,70 < \frac{x}{L} \leq 1,0 \]

1.2 For the ranges outside 0,4 \(L \) amidships the factor \(c_s \) may be increased up to \(c_s = 1,0 \), if this is justified under consideration of combined stresses due to longitudinal hull girder bending (including bending to impact loads), horizontal bending, torsion and local loads and under consideration of buckling strength.
2. Minimum midship section modulus

2.1 The section modulus related to deck and bottom is not to be less than the following minimum value:

\[W_{\text{min}} = k \cdot c_0 \cdot L^2 \cdot B \cdot (C_B + 0.7) \cdot 10^{-6} \, \text{[m}^3\text{]} \]

\(c_0 \) according to Section 4, A.2.2 for unlimited service range.

For ships classed for a restricted range of service, the minimum section modulus may be reduced as follows:

- P (Restricted Ocean Service) : by 5%
- L (Coasting Service) : by 15%
- T (Shallow Water Service) : by 25%

2.2 The scantlings of all continuous longitudinal members based on the minimum section modulus requirement are to be maintained within 0.4 \(L \) amidships.

3. Midship section moment of inertia

The moment of inertia related to the horizontal axis is not to be less than:

\[I_y = 3 \cdot 10^{-2} \cdot W \cdot \frac{L}{k} \, \text{[m}^4\text{]} \]

W see 1.1 and/or 2.1, the greater value is to be taken.

4. Calculation of section moduli

4.1 The bottom section modulus \(W_B \) and the deck section modulus \(W_D \) are to be determined by the following formulae:

\[
W_B = \frac{I_y}{e_B} \, \text{[m}^3\text{]} \\
W_D = \frac{I_y}{e_D} \, \text{[m}^3\text{]}
\]

Continuous structural elements above \(e_B \) (e.g. trunks, longitudinal hatch coamings, decks with a large camber, longitudinal stiffeners and longitudinal girders arranged above deck, bulwarks contributing to longitudinal strength etc.) may be considered when determining the section modulus, provided they have shear connection with the hull and are effectively supported by longitudinal bulkheads or by rigid longitudinal or transverse deep girders.

The fictitious deck section modulus is then to be determined by the following formulae:

\[
W_D' = \frac{I_y}{e_D'} \, \text{[m}^3\text{]} \\
e_D' = z \left(0.9 + 0.2 \cdot \frac{y}{B} \right) \, \text{[m]} \\
z = \text{distance [m] from neutral axis of the cross section considered to top of continuous strength member} \\
y = \text{distance [m] from centre line to top of continuous strength member}
\]

It is assumed that \(e_D' > e_D \).

For ships with multi-hatchways see 5.

4.2 When calculating the section modulus, openings of continuous longitudinal strength members shall be taken into account. Large openings, i.e. openings exceeding 2.5 m in length or 1.2 m in breadth and scallops, where scallop-welding is applied, are always to be deducted from the sectional areas used in the section modulus calculation.

Smaller openings (manholes, lightening holes, single scallops in way of seams etc.) need not be deducted provided that the sum of their breadths or shadow area breadths in one transverse section is not reducing the section modulus at deck or bottom by more than 3% and provided that the height of lightening holes, draining holes and single scallops in longitudinals or longitudinal girders does not exceed 25% of the web depth, for scallops 75 mm at most. (See fig. 5.7.)

A deduction-free sum of smaller opening breadths in one transverse section in the bottom or deck area of 0.06 \((B - \Sigma b) \) (where \(B = \text{breadth of ship at the considered transverse section, } \Sigma b = \text{sum of breadth of openings} \) may be considered equivalent to the above reduction in section modulus by 3%.

BKI - Rules for Hull - 2014
The shadow area will be obtained by drawing two tangent lines with an opening angle of 30° (see Fig. 5.7).

4.3 Where in the upper and lower flange thicknesses of continuous longitudinal structures forming boundaries of oil or ballast tanks have been reduced due to arrangement of an effective corrosion protection system, these thickness reduction shall not result in a reduction of midship section modulus of more than 5%.

Note
In case of large openings local strengthenings may be required which will be considered in each individual case (see also Section 7, A.3.1).

Fig 5.7 Shadow area

5. **Ships with multi-hatchways**

5.1 For the determination of section moduli 100% effectivity of the longitudinal hatchway girders between the hatchways may be assumed, if an effective attachment of these girders is given.

5.2 An effective attachment of the longitudinal hatchway girder must fulfil the following condition:

The longitudinal displacement f_L of the point of attachment due to action of a standard longitudinal force P_L is not to exceed

$$f_L = \frac{l}{20} \text{ [mm]}$$

- l = length of transverse hatchway girder according to Fig. 5.8 [m]
- $P_L = 10 \cdot A_{LG}$ [kN]
- A_{LG} = entire cross sectional area of the longitudinal hatchway girder [cm²]

see also Fig. 5.8.

Where the longitudinal displacement exceeds $f_L = l/20$, special calculation of the effectivity of the longitudinal hatchway girders may be required.

Fig. 5.8 Ship with multi-hatchways
5.3 For the permissible combined stress see Section 10, E.3.

6. Shear strength

The shear stress in longitudinal structures due to the vertical transverse forces Q_T acc. to E.2. and shall not exceed $110/\kappa [N/mm^2]$.

For ships with large deck openings and/or for ships with large static torsional moments, also the shear stresses due to $M_{ST\text{max}}$ have to be considered adversely, i.e. increasing the stress level.

The shear stresses are to be determined according to D.3.

7. Proof of buckling strength

All longitudinal hull structural elements subjected to compressive stresses resulting from M_T according to E.1 and Q_T according to E.2. are to be examined for sufficient resistance to buckling according to Section 3, F. For this purpose the following load combinations are to be investigated:

- M_T and $0.7 \cdot Q_T$
- $0.7 \cdot M_T$ and Q_T.

8. Ultimate load calculation of the ship's transverse sections

8.1 In extreme conditions, larger loads than referred to in B. may occur. Therefore, dimensioning of longitudinal structures is to be verified by proving the ultimate capacity according to 8.2 and 8.3. The calculations are to include those structural elements contributing to the hull girder longitudinal strength and are to be based on gross scantlings.

The following safety factors are to be assumed:

| γ_R | 1.20 |
| γ_{WV} | 1.20 |

8.2 Ultimate vertical bending moment

$$\left| M_{SW} + \frac{\gamma_{WV} \cdot M_{WV}}{c_s} \right| \leq \left[\frac{M_{U\text{H}}}{\gamma_R} \right]$$

$$\left| M_{SWf} + \frac{0.8 \cdot \gamma_{WV} \cdot M_{WV}}{c_s} \right| \leq \left[\frac{M_{UF}}{\gamma_R} \right]$$

M_{SW} = maximum vertical still water bending moment in flooded conditions [kNm]. For a transverse section under consideration, the most severe levels of vertical still water bending moments are to be selected from those cases of flooding used in the damage stability calculations (see Section 36).

$M_{U\text{H}}$ = ultimate vertical bending moments of the ship's transverse section in the hogging ($M_{U\text{H}}$) and sagging ($M_{U\text{S}}$) conditions [kNm]. See 8.2.1.

$M_{U\text{S}}$ = ultimate vertical bending moments of the ship's damaged transverse section in the hogging ($M_{U\text{Hd}}$) and sagging ($M_{U\text{Sd}}$) conditions [kNm]. If no assumptions regarding the extent of damage are prescribed, $M_{U\text{Sd}} = \kappa_{dM} \cdot M_{U\text{S}}$, where κ_{dM} is a reduction factor for the ultimate moments in damaged conditions ($\kappa_{dM} \leq 1$). The reduction factor κ_{dM} equals 1 unless a smaller value is specified by the owner or shipyard.

8.2.1 Progressive collapse analysis

A progressive collapse analysis is to be used to calculate the ultimate vertical bending moments of a ship's transverse section. The procedure is to be based on a simplified incremental-iterative approach where the capacities are defined as the peaks of the resulting moment-curvature curve (M-χ) in hogging (positive) and sagging (negative) conditions, i.e. χ is the hull girder curvature [1/m]. See Fig. 5.9.
Section 5 - Longitudinal Strength

Fig. 5.9 Moment-curvature curve

The main steps to be used in the incremental-iterative approach are summarized as follows:

Step 1 The ship's transverse section is to be divided into plate-stiffener combinations (see 8.2.2.2(a)) and hard corners (see 8.2.2.2(b)).

Step 2 The average stress–average strain relationships $\sigma_{CRk} - \epsilon$ for all structural elements (i.e., stiffener-plate combinations and hard corners) are to be defined, where the subscript k refers to the modes 0, 1, 2, 3 or 4, as applicable (see 8.2.2).

Step 3 The initial and incremental value of curvature $\Delta \chi$ is to be defined by the following formula:

$$
\Delta \chi = \frac{0.05 \frac{R_{sh}}{E}}{z_D - z_{NA,e}}
$$

R_{sh} = minimum nominal yield point of structural elements in the strength deck [N/mm²]
z_D = z co-ordinate of strength deck at side [m] (see also Fig. 5.1)
$z_{NA,e}$ = z co-ordinate of elastic neutral axis for the ship's transverse section [m]

Step 4 For the value of curvature, $\chi_j = \chi_{j-1} + \Delta \chi_j$, the average strain $\epsilon_{ij} = \chi_j z_i$ and corresponding average stress σ_{ij} is to be defined for each structural element i (see 8.2.2). For structural elements under tension, $\sigma_{ij} = \sigma_{CR0}$ (see 8.2.2.1). For plate-stiffener combinations under compression, $\sigma_{ij} = \min \{\sigma_{CR1}, \sigma_{CR2}, \sigma_{CR3}\}$ (see 8.2.2.2(a)). For hard corners under compression, $\sigma_{ij} = \sigma_{CR4}$ (see 8.2.2.2(b)).

z_i = z co-ordinate of ith structural element [m] relative to basis, see also Fig. 5.11

Step 5 For the value of curvature, $\chi_j = \chi_{j-1} + \Delta \chi_j$, the height of the neutral axis $z_{NA,j}$ is to be determined iteratively through force equilibrium over the ship's transverse section:

$$
\sum_{i=1}^{m} A_i \sigma_{ij} = \sum_{i=1}^{n} A_i \sigma_{ij}
$$

m is the number of structural elements located above $z_{NA,j}$
n is the number of structural elements located below $z_{NA,j}$
A_i = cross-sectional area of ith plate-stiffener combination or hard corner

Step 6 For the value of curvature, $\chi_j = \chi_{j-1} + \Delta \chi_j$, the corresponding bending moment is to be calculated by summing the contributions of all structural elements within the ship's transverse section:

$$
M_{U,j} = \sum \sigma_{ij} A_i (z_{NA,j} - z_i)
$$

Steps 4 through 6 are to be repeated for increasing increments of curvature until the peaks in the $M-\chi$ curve are well defined. The ultimate vertical bending moments $M_{U,H}$ and $M_{U,S}$ are to be taken as the peak values of the $M-\chi$ curve.

8.2.2 Average stress - average strain curves

A typical average stress – average strain curve $\sigma_{CRk} - \epsilon$ for a structural element within a ship's transverse section is shown in Fig. 5.10, where the subscript k refers to the modes 0, 1, 2, 3 or 4, as applicable.
8.2.2.1 Negative strain ($\sigma_{\text{CRO}} - \varepsilon$)

The portion of the curve corresponding to negative strain (i.e. tension) is in every case to be based on elasto-plastic behavior (i.e. material yielding) according to the following:

$$\sigma_{\text{CRO}} = \phi \cdot R_{\text{ell}} \quad [\text{N/mm}^2]$$

- ϕ = edge function
- $\varepsilon = -1 \text{ for } \varepsilon < -1$
- ε = relative strain
- $\varepsilon_y = \text{strain at yield stress in the element}$
- $\varepsilon_E = \text{element strain}$
- $\varepsilon_E = \frac{R_{\text{ell}}}{E}$

8.2.2.2 Positive strain

The portion of the curve corresponding to positive strain (i.e. compression) is to be based on some mode of collapse behaviour (i.e. buckling) for two types of structural elements; (a) plate-stiffener combinations and (b) hard corners. See Fig. 5.11.

(a) Plate-stiffener combinations ($\sigma_{\text{CR1}} - \varepsilon, \sigma_{\text{CR2}} - \varepsilon, \sigma_{\text{CR3}} - \varepsilon$)

Plate-stiffener combinations are comprised of a single stiffener together with the attached plating from adjacent plate fields. Under positive strain, three average stress – average strain curves are to be defined for each plate stiffener combination based on beam column buckling ($\sigma_{\text{CR1}} - \varepsilon$), torsional buckling ($\sigma_{\text{CR2}} - \varepsilon$) and web/flange local buckling ($\sigma_{\text{CR3}} - \varepsilon$).

(i) Beam column buckling $\sigma_{\text{CR1}} - \varepsilon$

The positive strain portion of the average stress – average strain curve $\sigma_{\text{CR1}} - \varepsilon$ based on beam column buckling of plate-stiffener combinations is described according to the following:
Section 5 - Longitudinal Strength

\[\sigma_{\text{CR1}} = \Phi \, R_{\text{sh}} \, \kappa_{\text{BC}} \frac{A_{\text{stiff}} + b_{m,1} \, t_1/2 + b_{m,2} \, t_2/2}{A_{\text{stiff}} + b_1 \, t_1/2 + b_2 \, t_2/2}\]

\(\Phi\)	edge function
\(= \varepsilon\) for \(0 \leq \varepsilon \leq 1\)	
\(= 1\) for \(\varepsilon > 1\)	
\(\kappa_{\text{BC}}\)	reduction factor
\(= 1\) for \(\lambda_K \leq 0,2\)	
	\(= \frac{1}{k_D + \sqrt{k_D^2 - \lambda_K^2}}\) for \(\lambda_K > 0,2\)
\(\lambda_K\)	
\(= \frac{e_B \lambda^2 A_X}{\pi^2 I_X} \cdot 10^{-4}\)	
\(k_D\)	\((1 + 0,21 (\lambda_K - 0,2) + \lambda_K^2) / 2\)
\(a\)	length of stiffener [mm]
\(A_X\)	sectional area of stiffener with attached shell plating of breadth \((b_{m,1}/2 + b_{m,2}/2)\) [mm²]
\(I_X\)	moment of inertia of stiffener with attached shell plating of breadth \((b_{m,1}/2 + b_{m,2}/2)\) [cm⁴]
\(b_{m,1}, b_{m,2}\)	effective breadths of single plate fields on sides 1 and 2 of stiffener [mm] according to Section 3, F.2.2, in general based on Load Case 1 of Table 3.3, where the reference degree of slenderness is to be defined as
\(\lambda\)	\(= \frac{e_B}{\sqrt{0,9 \left(\frac{t}{b}\right)^2} K}\)
\(b_1, b_2\)	breadths of single plate fields on sides 1 and 2 of stiffener [mm], see also Fig. 5.11
\(t_1, t_2\)	thicknesses of single plate fields on sides 1 and 2 of stiffener [mm]
\(A_{\text{stiff}}\)	sectional area of the stiffener without attached plating [mm²]

(ii) Torsional buckling \(\sigma_{\text{CR2}}\) - \(\varepsilon\)

The positive strain portion of the average stress – average strain curve \(\sigma_{\text{CR2}} - \varepsilon\) based on torsional buckling of plate-stiffener combinations is described according to the following:

\[\sigma_{\text{CR2}} = \Phi \, R_{\text{sh}} \frac{A_{\text{stiff}} \, \kappa_T \, b_{m,1} \, t_1/2 + b_{m,2} \, t_2/2}{A_{\text{stiff}} + b_1 \, t_1/2 + b_2 \, t_2/2}\]

| \(\kappa_T\) | reduction factor according to Section 3, F.3.3.

(iii) Web/flange local buckling \(\sigma_{\text{CR3}} - \varepsilon\)

The positive strain portion of the average stress – average strain curve \(\sigma_{\text{CR3}} - \varepsilon\) based on web/flange local buckling of plate-stiffener combinations is described according to the following:

\[\sigma_{\text{CR3}} = \Phi \, R_{\text{sh}} \frac{h_{w,m} \, t_w + b_{f,m} \, t_f + b_{m,1} \, t_1/2 + b_{m,2} \, t_2/2}{h_{w,m} \, t_w + b_f \, t_f + b_1 \, t_1/2 + b_2 \, t_2/2}\]

| \(h_{w,m}, b_{f,m}\) | effective width of web/flange plating [mm] according to Section 3, F.2.2 (generally based on Load Case 3 of Table 3.3 for flat bars and flanges, otherwise Load Case 1) where the reference degree of slenderness is to be defined as
| \(h_w\) | web height [mm]
| \(t_w\) | web thickness [mm]

BKI - Rules for Hull - 2014
b_f = flange breadth, where applicable [mm]

\(t_f = \) flange thickness, where applicable [mm]

(b) **Hard corners** (\(\sigma_{CR,e} \))

Hard corners are sturdy structural elements comprised of plates not lying in the same plane. Bilge strakes (i.e. one curved plate), sheer strake-deck stringer connections (i.e. two plane plates) and bulkhead-deck connections (i.e. three plane plates) are typical hard corners. Under positive strain, single average stress – average strain curves are to be defined for hard corners based on plate buckling (\(\sigma_{CR,e} \)).

(i) **Plate buckling** \(\sigma_{CR,e} \)

\[
\sigma_{CR4} = \Phi \frac{R_{\text{eff}} \sum_{i=1}^{n} b_{m,i} t_i}{\sum_{i=1}^{n} b_i t_i}
\]

\(b_{m,i} = \) effective breadths of single plate fields [mm] according to Section 3, F.2.2, as applicable, in general based on applicable Load Cases in Table 3.3 and Table 3.4, where the reference degree of slenderness is to be defined as

\[
\lambda = \sqrt{\frac{\frac{t}{b_f}}{0.9 \left(\frac{t}{b_f} \right)^2 K}}
\]

\(b_i = \) breadth of single plate fields [mm], see also Fig. 5.11

\(t_i = \) thickness of single plate fields [mm]

\(n = \) number of plates comprising hard corner

8.3 **Ultimate vertical shear force**

\[
\left[Q_{SW} + \frac{\gamma_{WV}}{c_s} \cdot Q_{WV} \right] \leq \frac{Q_U}{\gamma_R}
\]

\[
\left[Q_{SWf} + 0.8 \cdot \frac{\gamma_{WV}}{c_s} \cdot Q_{WV} \right] \leq \frac{Q_{UF}}{\gamma_R}
\]

Notes:
- \(Q_{SWf} = \) maximum vertical still water shear force in flooded conditions [kN]. For a transverse section under consideration, the most severe levels of vertical still water shear forces are to be selected from those cases of flooding used in the damage stability calculations (see Section 36).
- \(c_s = \) stress factor according to 1.1
- \(Q_U = \) ultimate vertical shear force of the ship's transverse section [kN]

\[
Q_U = \frac{1}{1000 \cdot \sqrt{3}} \cdot \sum_{i=1}^{q_i} \kappa_{ti} \cdot b_i \cdot t_i \cdot R_{\text{eff},i}
\]

- \(q_i = \) number of shear force transmitting plate fields (in general, these are only the vertical plate fields of the ship's transverse section, e.g. shell and longitudinal bulkhead plate fields)
- \(\kappa_{ti} = \) reduction factor of the \(i^{th} \) plate field according to Section 3, F.2.1.
- \(b_i = \) breadth of the \(i^{th} \) plate field [mm]
- \(t_i = \) thickness of the \(i^{th} \) plate field [mm]
- \(R_{\text{eff},i} = \) minimum nominal yield point of the \(i^{th} \) plate field [N/mm²]
- \(Q_{UF} = \) ultimate vertical shear force of the ship's undamaged transverse section [kN]. If no assumptions regarding the extent of damage are prescribed, \(Q_{UF} = \kappa_{\text{SM}} Q_U \), where \(\kappa_{\text{SM}} \) is a reduction factor for the ultimate force in damaged conditions (\(\kappa_{\text{SM}} \leq 1 \)).
D. Design Stresses

1. General

Design stresses for the purpose of this rule are global load stresses, which are acting:
- as normal stresses σ_L in ship's longitudinal direction:
 - for plates as membrane stresses
 - for longitudinal profiles and longitudinal girders in the bar axis
- shear stresses τ_L in the plate level

The stresses σ_L and τ_L are to be considered in the formulas for dimensioning of plate thicknesses (Section 6, B.1. and C.1. and Section 12, B.1.), longitudinals (Section 9, B.2.) and grillage systems (Section 8, B.8. and Section 10, E.2.).

The calculation of the stresses can be carried out by an analysis of the complete hull. If no complete hull analysis is carried out, the most unfavourable values of the stress combinations according to Table 5.3 are to be taken for σ_L and τ_L respectively.

The formulae in Table 5.3 contain σ_{SW}, σ_{WV}, σ_{WH}, σ_{ST} and σ_{WT} according to 2. and τ_{SW}, τ_{WV}, τ_{WH}, τ_{ST} and τ_{WT} according to 3. as well as:

$$f_F = \text{weighting factor for the simultaneousness of global and local loads}$$
$$= \begin{cases}
0.8 & \text{for dimensioning of longitudinal structures according to Sections 3 and 6 to 12} \\
0.5 & \text{for fatigue strength calculations according to Section 20}
\end{cases}$$

$$f_Q = \text{probability factor according to Table 4.2}$$
$$f_{Q\text{min}} = 0.75 \text{ for } Q = 10^{-6}$$

Note

f_Q is a function of the planned lifetime. For a lifetime of $n > 20$ years, f_Q may be determined by the following formulae for a straight-line spectrum of seaway induced stress ranges:

$$f_Q = -0.125 \cdot \log \left(\frac{2 \cdot 10^{-5}}{n} \right)$$

For greatest vertical wave bending moment:

$$\sigma_{WV} = (0.43 + C) \cdot \sigma_{WV\text{log}}$$
$$\tau_{WV} = (0.43 + C) \cdot \tau_{WV\text{log}}$$

For smallest vertical wave bending moment:

$$\sigma_{WV} = \left[(0.43 + C - (0.5 - C)) \cdot \sigma_{WV\text{log}} + (0.43 + C) \cdot \sigma_{WV\text{seg}} \right]$$
$$\tau_{WV} = \left[(0.43 + C - (0.5 - C)) \cdot \tau_{WV\text{log}} + (0.43 + C) \cdot \tau_{WV\text{seg}} \right]$$
$$C = \left(\frac{x}{L} - 0.5 \right)^2$$

Note

For the preliminary determination of the scantlings, it is generally sufficient to consider load case 1, assuming the simultaneous presence of σ_{L1a} and τ_{L1b}, but disregarding stresses due to torsion.

The stress components (with the proper signs: tension positive, compression negative) are to be added such, that for σ_L and τ_L extreme values are resulting.

1.1 Buckling strength

For structures loaded by compression or shear forces, sufficient buckling strength according to Section 3, F. is to be proved.
1.2 Permissible stresses

The equivalent stress from σ_L and τ_L is not to exceed the following value:

$$\sigma_v = \sqrt{\sigma_L^2 + \frac{3}{2} \tau_L^2} \leq \frac{190}{k} \text{ [N/mm}^2\text{]}$$

Table 5.3 - Load cases and stress combinations

<table>
<thead>
<tr>
<th>Load Case</th>
<th>Design stresses σ_L, τ_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1a</td>
<td>$\sigma_{L1a} = \sigma_{SW} + \sigma_{ST} + f_Q \cdot \sigma_{WV}$</td>
</tr>
<tr>
<td></td>
<td>$\tau_{L1a} = 0,7 \cdot \tau_{SW} + \tau_{ST} + 0,7 \cdot f_Q \cdot \tau_{WV}$</td>
</tr>
<tr>
<td>L1b</td>
<td>$\sigma_{L1b} = 0,7 \cdot \sigma_{SW} + \sigma_{ST} + 0,7 \cdot f_Q \cdot \sigma_{WV}$</td>
</tr>
<tr>
<td></td>
<td>$\tau_{L1b} = \tau_{SW} + \tau_{ST} + f_Q \cdot \tau_{WV}$</td>
</tr>
<tr>
<td>L2a</td>
<td>$\sigma_{L2a} = \sigma_{SW} + \sigma_{ST} + f_Q \cdot (0,6 \cdot \sigma_{WV} + \sigma_{WH})$</td>
</tr>
<tr>
<td></td>
<td>$\tau_{L2a} = 0,7 \cdot \tau_{SW} + \tau_{ST} + 0,7 \cdot f_Q \cdot (0,6 \cdot \tau_{WV} + \tau_{WH})$</td>
</tr>
<tr>
<td>L2b</td>
<td>$\sigma_{L2b} = 0,7 \cdot \sigma_{SW} + \sigma_{ST} + 0,7 \cdot f_Q \cdot (0,6 \cdot \sigma_{WV} + \sigma_{WH})$</td>
</tr>
<tr>
<td></td>
<td>$\tau_{L2b} = \tau_{SW} + \tau_{ST} + f_Q \cdot (0,6 \cdot \tau_{WV} + \tau_{WH})$</td>
</tr>
<tr>
<td>L3a</td>
<td>$\sigma_{L3a} = f_p \cdot \left[\sigma_{SW} + \sigma_{ST} + f_Q \cdot \left(\sigma_{WV} + \sigma_{WH} + \sigma_{WT} \right) \right]$</td>
</tr>
<tr>
<td></td>
<td>$\tau_{L3a} = f_p \cdot \left[0,7 \cdot \tau_{SW} + \tau_{ST} + f_Q \cdot \left[0,7 \cdot \left(\tau_{WV} + \tau_{WH} \right) + \tau_{WT} \right] \right]$</td>
</tr>
<tr>
<td>L3b</td>
<td>$\sigma_{L3b} = f_p \cdot \left[0,7 \cdot \sigma_{SW} + \sigma_{ST} + f_Q \cdot \left[0,7 \cdot \left(\sigma_{WV} + \sigma_{WH} \right) + \sigma_{WT} \right] \right]$</td>
</tr>
<tr>
<td></td>
<td>$\tau_{L3b} = f_p \cdot \left[\tau_{SW} + \tau_{ST} + f_Q \cdot \left[\tau_{WV} + \tau_{WH} + \tau_{WT} \right] \right]$</td>
</tr>
</tbody>
</table>

L1a,b = Load caused by vertical bending and static torsional moment.
L2a,b = Load caused by vertical and horizontal bending moment as well as static torsional moment.
L3a,b = Load caused by vertical and horizontal bending moment as well as static and wave induced torsional moment.

1.3 Structural design

1.3.1 In general, longitudinal structures are to be designed such, that they run through transverse structures continuously. Major discontinuities have to be avoided.

If longitudinal structures are to be staggered, sufficient shifting elements shall be provided.

1.3.2 The required welding details and classifying of notches result from the fatigue strength analysis according to Section 20.

Within the upper and lower hull girder flange, the detail categories for the welded joints (see Table 20.3) shall not be less than

$$\Delta \sigma_{R, min} = \frac{(M_{WVhog} - M_{WVsag}) \cdot |f_p|}{(4825 - 29 \cdot n) \cdot l_y} \text{ [N/mm}^2\text{]}$$

M_{WVhog}, M_{WVsag} = vertical wave bending moment for hogging and sagging according to B.3.1

n = design lifetime of the ship

≥ 20 [years]
Section 5 - Longitudinal Strength

2. Normal stresses in the ship’s longitudinal direction

2.1 Normal stresses from vertical bending moments

2.1.1 statical from M_{SW}:

$$\sigma_{SW} = \frac{M_{SW} \cdot e_x}{I_y \cdot 10^3} \quad [\text{N/mm}^2]$$

M_{SW} = still water bending moment according to A.5. at the position x/L

2.1.2 dynamical from M_{WV}:

$$\sigma_{WV} = \frac{M_{WV} \cdot e_x}{I_y \cdot 10^3} \quad [\text{N/mm}^2]$$

2.2 Normal stresses due to horizontal bending moments

dynamical from M_{WH}:

$$\sigma_{WH} = -\frac{M_{WH} \cdot e_y}{I_z \cdot 10^3} \quad [\text{N/mm}^2]$$

M_{WH} = horizontal wave bending moment according to B.3.3 at the position x/L

I_z = moment of inertia $[m^4]$ of the transverse ship section considered around the vertical axis at the position x/L

e_y = horizontal distance of the structure considered from the vertical, neutral axis $[m]$ e_y is positive at the port side, negative at the starboard side

2.3 Normal stresses from torsion of the ship’s hull

When assessing the cross sectional properties the effect of wide deck strips between hatches constraining the torsion may be considered, e.g. by equivalent plates at the deck level having the same shear deformation as the relevant deck strips.

2.3.1 statical from $M_{ST_{max}}$:

For a distribution of the torsional moments according to B.2.2.2, the stresses can be calculated as follows:

$$\sigma_{ST} = \frac{0.65 \cdot C_{Tor} \cdot M_{ST_{max}} \cdot \omega_t}{\lambda \cdot I_w \cdot 10^3} \cdot \left(1 - \frac{2}{e \cdot 10^3}\right) \quad [\text{N/mm}^2]$$

$M_{ST_{max}}$ = max. static torsional moment according to B.2.2.2

C_{Tor}, I_w, ω_t, γ, ϵ, ι_p, C_p, x_h see 2.3.2.

For other distributions the stresses have to be determined by direct calculations.

2.3.2 dynamical from $M_{WT_{max}}$:

$$\sigma_{WT} = \frac{C_{Tor} \cdot M_{WT_{max}} \cdot \omega_t}{\lambda \cdot I_w \cdot 10^3} \cdot \left(1 - \frac{2}{e \cdot 10^3}\right) \quad [\text{N/mm}^2]$$

$M_{WT_{max}}$ = according to B.3.5

C_{Tor} = $4 \cdot \left(\sqrt{C_B} - 0.1\right) \cdot \frac{x}{L}$ for $0 \leq \frac{x}{L} < 0.25$

$= \sqrt{C_B} - 0.1$ for $0.25 \leq \frac{x}{L} < 0.65$

$= \frac{\sqrt{C_B} - 0.1}{0.35} \cdot \left(1 - \frac{x}{L}\right)$ for $0.65 \leq \frac{x}{L} < 1$

I_w = sectorial inertia moment $[m^4]$ of the ship's transverse section at the position X/L
section 5 - longitudinal strength

\[\omega_i = \text{sectorial coordinate [m}^2\text{] of the structure considered} \]

\[\lambda = \text{warping value} \]

\[\lambda = \sqrt{\frac{\text{I}_T}{2.6 \cdot \omega}} \quad [1/m] \]

\[\text{I}_T = \text{torsional moment of inertia [m}^2\text{] of the ship's transverse section at the position x/L} \]

\[e = \text{Euler number (e = 2,718...)} \]

\[a = \lambda \cdot \epsilon_c \]

\[\epsilon_c = \text{characteristical torsion length [m]} \]

\[\epsilon_c = 2 \cdot C_B \cdot \left[1 - \left(1 - \frac{0.5}{C_B} \right) \cdot \left(\frac{L}{B} - 1 \right)^2 \right] \cdot L \cdot C_e \quad \text{for } \frac{L}{B} < 5,284 \]

\[\epsilon_c = 257 \cdot \left(\frac{B}{L} \right)^{2.333} \cdot B \cdot C_e \quad \text{for } \frac{L}{B} \geq 5,284 \]

\[C_c = 0.8 - \frac{x_A}{L} + \left(0.5 + 2.5 \frac{x_A}{L} \right) \cdot \frac{x}{L} \quad \text{for } 0 \leq \frac{x}{L} \leq 0.4 \text{ and } 0 \leq \frac{x_A}{L} \leq 0.4 \]

\[C_c = 1 \quad \text{for } 0.4 < \frac{x}{L} \leq 0.55 \]

\[C_c = 1 - \frac{1}{0.45} \cdot \left(\frac{x}{L} - 0.55 \right) \quad \text{for } 0.55 < \frac{x}{L} \leq 1 \]

\[x_A = 0 \text{ for ships without cargo hatches} \]

\[x_A = \text{distance [m] between the aft end of the length L and the aft edge of the hatch forward of the engine room front bulkhead on ships with cargo hatches, see also Fig. 5.13} \]

3. Shear stresses

Shear stress distribution shall be calculated by calculation procedures approved by BKI. For ships with multi-cell transverse cross sections (e.g. double hull ships), the use of such a calculation procedure, especially with non-uniform distribution of the load over the ship's transverse section, may be stipulated.

3.1 Shear stresses due to vertical shear forces

For ships without longitudinal bulkheads or with two longitudinal bulkheads, the distribution of the shear stress in the shell and in the longitudinal bulkheads can be calculated with the following formulae:

statistical from \(Q_{SW} \):

\[\tau_{SW} = \frac{Q_{SW} \cdot S_z(z)}{I_y \cdot t} (0,5 - \alpha) \quad [N/mm^2] \]

dynamical from \(Q_{WV} \):

\[\tau_{WV} = \frac{Q_{WV} \cdot S_z(z)}{I_y \cdot t} (0,5 - \alpha) \quad [N/mm^2] \]

\(S_z(z) = \) first moment of the sectional area considered [m²], above or below, respectively, the level \(z \) considered, and related to the horizontal, neutral axis

\(t = \) thickness of side shell or longitudinal bulkhead plating [mm] at the section considered

\(\alpha = 0 \text{ for ships having no longitudinal bulkhead} \)

If 2 (two) longitudinal bulkheads are arranged:

\[\alpha = 0,16 + 0,08 \frac{A_z}{A_L} \quad \text{for the longitudinal bulkheads} \]
3.2 Shear stresses due to horizontal shear forces

3. is to be applied to correspondingly.

3.3 Shear stresses due to torsional moments

Statistical from \(M_{ST_{\text{max}}} \):

For a distribution of torsional moments according to B.2.2.2, the stresses can be calculated as follows:

\[
\tau_{ST} = 0.65 \cdot C_{\text{TOT}} \cdot \frac{M_{ST_{\text{max}}}}{I_t} \cdot \frac{S_{st}}{t_i} \quad \text{[N/mm}^2]\]

- \(C_{\text{Tor}} \) = according to D.2.3.1
- \(M_{ST_{\text{max}}} \) = according to B.2.2.2
- \(M_{W_{T_{\text{max}}}} \) = according to B.3.5
- \(I_t \) = according to D.2.3.1
- \(S_{st} \) = statistical sector moment \([m^4]\) of the structure considered
- \(t_i \) = thickness\([mm]\) of the plate considered

For other distributions the stresses have to be determined by direct calculations.

Dynamical from \(M_{W_{T_{\text{max}}}} \):

\[
\tau_{WT} = C_{\text{Tor}} \cdot M_{W_{T_{\text{max}}}} \cdot \frac{S_{st}}{I_t \cdot t_i} \quad \text{[N/mm}^2]\]

E. Permissible Still Water Loads

1. Vertical bending moments

The permissible still water bending moments for any section within the length \(L \) are to be determined by the following formulae:

\[
M_{SW} = M_T - M_{W_{SV}} \quad \text{[kNm]}
\]

- \(M_{W_{SV}} \) = see B.3.1

For harbour- and offshore terminal conditions the wave loads may be multiplied with the following factors:

- harbour conditions (normally) : 0,1
- offshore terminal conditions : 0,5

From the following two values for \(M_T \):

\[
M_T = \sigma_D \cdot W_{D(a)} \cdot \frac{10^3}{f_t} \quad \text{[kNm]}
\]

or

\[
M_T = \sigma_B \cdot W_{B(a)} \cdot \frac{10^3}{f_t} \quad \text{[kNm]}
\]

the smaller value is to be taken.

- \(W_{D(a)} \), \(W_{B(a)} \) = actual section modulus in the deck or bottom, respectively
- \(\sigma_D \), \(\sigma_B \) = longitudinal bending stress \([N/mm}^2]\) for the ship’s upper hull girder flange
5-24/27

E

Section 5 - Longitudinal Strength

\[
\sigma_{B} = \text{longitudinal bending stress [N/mm}^2\text{]} \text{ for the ship’s lower hull girder flange}
\]

\[
\sigma_{SW}, \sigma_{WV} \text{ longitudinal stress according to D.2.} \\
\]

\[f_{r} = 1,0 \text{ (in general).} \]

In the range \(x/L = 0,3\) to \(x/L = 0,7\) the permissible still water bending moment should generally not exceed the value obtained for \(x/L = 0,5\).

2. Vertical shear forces

The permissible still water shear forces for any cross section within the length \(L\) are to be determined by the following formulae:

\[
Q_{SW} = Q_{T} - Q_{WV} \quad \text{[kN]}
\]

\(Q_{T}\) = permissible total shear force [kN], for which the permissible shear stress \(\tau = \tau_{SW} + \tau_{WV}\) will be reached but not exceeded at any point of the section considered.

\(\tau\) = permissible shear stress [N/mm\(^2\)]

\(Q_{WV}\) = according to B.3.2

For harbour and offshore terminal conditions, see 1.

2.1 Correction of still water shear force curve

In case with empty cargo hold, the conventional shear force curve may be corrected according to the direct load transmission by the longitudinal bottom structure at the transverse bulkheads. See also Fig. 5.12.

2.2 The supporting forces of the bottom grillage at the transverse bulkheads may either be determined by direct calculation or by approximation, according to 2.3.

![Diagram: Correction of the shear force curve](image)

\[\Delta Q = u \cdot P - v \cdot T^{*} \quad \text{[kN]}\]

\(P\) = mass of cargo or ballast [t] in the hold considered, including any contents of bottom tanks within the flat part of the double bottom

\(T^{*}\) = draught [m] at the centre of the hold

\(u, v\) = correction coefficients for cargo and buoyancy as follows:

\[u = \frac{10 \cdot \kappa \cdot t \cdot b \cdot h}{V} \quad \text{[kN/t]}\]

Fig. 5.12 Correction of the shear force curve

2.3 The sum of the supporting forces of the bottom grillage at the aft or forward boundary bulkhead of the hold considered may be determined by the following formulae:
\[v = 10 \cdot \kappa \cdot \ell \cdot b \quad [\text{kN/m}] \]
\[\kappa = \frac{B}{2.3 (B + \ell)} \]
\[\ell = \text{length of the flat part of the double bottom} \quad [\text{m}] \]
\[b = \text{breadth of the flat part of the double bottom} \quad [\text{m}] \]
\[h = \text{height of the hold} \quad [\text{m}] \]
\[V = \text{volume of the hold} \quad [\text{m}^3]. \]

3. **Static torsional moments**

The permissible static torsional moments have to be determined on the basis of the design stresses in Table 5.3, together with the formula in D.2.3.1.

3.1 For ships with torsional moments according to B.2, it has to be proved by means of the loading computer, that the maximum permissible values are exceeded at no location. Excess values are permissible, if the actual torsional moments at the adjacent calculation points are correspondingly less than the permissible values.

3.2 Unless shown by a particular proof, during loading and unloading the static torsional moments shall not be higher than 75\% of the wave induced torsional moment according to B.3.5.

F. Guidance Values for Large Deck Openings

1. **General**

1.1 Displacements of the upper hull girder flange mainly caused by torsional loads, induce additional local bending moments and forces acting in the deck strips. These moments act about the z-axis, see Fig. 5.1. After consultation with BKI stresses resulting from that have to be calculated for longitudinal and transverse girders and to be taken into account for the design.

The calculation of these stresses can be dispensed with, if the guidance values according to 2. and 3. are observed.

1.2 A ship is regarded as one with large deck openings if one of the following conditions applies to one or more hatch openings:

\[\frac{b_L}{B_M} > 0.6 \]
\[\frac{\ell_L}{\ell_M} > 0.7 \]

\(b_L \) = breadth of hatchway, in case of multi hatchways, \(b_L \) is the sum of the individual hatchway-breadths

\(\ell_L \) = length of hatchway

\(B_M \) = breadth of deck measured at the mid length of hatchway

\(\ell_M \) = distance between centres of transverse deck strips at each end of hatchway. Where there is no further hatchway beyond the one under consideration, \(\ell_M \) will be specially considered.

2. **Guidance values for the determination of the section modulus**

The section moduli of the transverse sections of the ship are to be determined according to C.1. and C.2.

The factor \(f_r \) amounts to:

\[f_r = \frac{\sigma_L}{\sigma_{SW} + 0.75\sigma_{WV}} \]

\(\sigma_L, \sigma_{SW}, \sigma_{WV} \) according to D. for the ship's upper respectively lower girder. The greater value is to be taken.

The calculation of the factor \(f_r \) may be dispensed with, if \(f_r \) is selected according to Fig. 5.13.
3. **Guidance values for the design of transverse box girders of container ships**

The scantlings of the transverse box girders are to be determined by using the following design criteria:

- support forces of hatch covers, see Section 17, B.4.5 - B.4.7.
- support forces of the containers stowed in the hold place (e.g. due to longitudinal acceleration)
- stresses due to the torsional deformations of the hull,
- stresses resulting from the water pressure, if the transverse box girder forms part of a watertight bulkhead, see Section 11.

In general the plate thickness shall not be less than obtained from the following formulae (see also Fig. 5.14):

\[
\begin{align*}
t_1 & = \sqrt{L} \quad [\text{mm}] \quad \text{or} \quad t_1 = 0.5 \ t_0 \quad [\text{mm}] \\
t_0 & = \text{thickness of longitudinal hatch coaming or of the uppermost strake of the longitudinal bulkhead} \\
t_2 & = 0.85 \sqrt{L} \quad [\text{mm}] \quad \text{or} \quad t_2 = 12 \cdot a \quad [\text{mm}] \\
a & = \text{spacing of stiffeners [m]}. \end{align*}
\]

The larger of the values \(t_1 \) or \(t_2 \) is to be taken. \(L \) need not be taken greater than 200 m.

For coamings on the open deck see also Section 17, B.1.
4. **Guidance values for the displacements of the upper girder of the ship**

In general, the relative displacement Δu between the ship sides is to be determined by direct calculations. For the dimensioning of hatch cover bearings and seals, the following value may be used for the displacement:

$$\Delta u = 6 \cdot 10^{-4} \cdot (M_{\text{STmax}} + M_{\text{WTmax}}) \cdot \left(1 - \frac{L}{450}\right) \cdot \left[4 + 0.1 \left(\frac{L}{B}\right)^2\right] \cdot c_u + 20 \text{ [mm]}$$

M_{STmax}, M_{WTmax} according to B.2.2.2 or B.3.5, respectively

c_u = distribution factor according to B.2.2.2 or B.3.5, respectively

c_A = value for c_u at the aft part of the open region, see also Fig. 5.13

$$c_u = \left(1.25 - \frac{L}{400}\right) \left(1.6 - \frac{3 \cdot x_A}{L}\right) \leq 1.0$$

x_A = according to D.2.3.1; for x_A no smaller value than 0.15 L and no greater value than 0.3 L is to be taken.

G. Bulk Carriers

1. **General**

In addition to the requirements of B., for all bulk carriers with the Notation BC-A or BC-B according to Section 23, F.2.1, the longitudinal strength is to be checked to be adequate for specified flooded conditions, in each of the cargo and ballast conditions considered in the intact longitudinal strength calculations. The loading conditions "harbour", "docking, afloat", "loading and unloading transitory conditions" as well as "ballast water exchange" need not be considered.

The required moment of inertia according to C.3. and the strength of local structural members are excluded from this proof. For accessibility see Section 1, D.1.

2. **Flooding criteria**

To calculate the weight of ingressing water, the following assumptions are to be made:

- The permeability of empty cargo spaces and volume left in loaded cargo spaces above any cargo is to be taken as 0.95.
- Appropriate permeabilities and bulk densities are to be used for any cargo carried. For iron ore, a minimum permeability of 0.3 with a corresponding bulk density of 3.0 t/m3 is to be used. For cement, a minimum permeability of 0.3 with a corresponding bulk density of 1.3 t/m3 is to be used. In this respect, "permeability" for solid bulk cargo means the ratio of the floodable volume between the cargo parts to the gross volume of the bulk cargo.
- For packed cargo conditions (such as steel mill products), the actual density of the cargo should be used. The permeability has to be harmonized case by case (pipes, flat steel, coils etc.) with BKI.

3. **Flooding conditions**

Each cargo hold is to be considered individually flooded up to the equilibrium waterline. This does not apply for cargo holds of double hull construction where the double hull spacing exceeds 1 000 mm, measured vertically to the shell at any location of the cargo hold length.

The wave induced vertical bending moments and shear forces in the flooded conditions are assumed to be equal to 80% of the wave loads, as given in B.3.1. and B.3.2.
Section 6
Shell Plating

A. General, Definitions

1. General

1.1 The application of the design formulae given in B.1.2 and C.1.2 to ships of less than 90 m in length may be accepted when a proof of longitudinal strength has been carried out.

1.2 The plate thicknesses are to be tapered gradually, if different. Gradual taper is also to be effected between the thicknesses required for strengthening of the bottom forward as per E.2. and the adjacent thicknesses.

2. Definitions

\(k \) = material factor according to Section 2, B.2.

\(p_B, p_{B1} \) = load on bottom \([kN/m^2]\) according to Section 4, B.3.

\(p_s, p_{sl} \) = load on sides \([kN/m^2]\) according to Section 4, B.2.1

\(p_e \) = design pressure for the bow area \([kN/m^2]\) according to Section 4, B.2.2 or according to Section 4, B.2.3 for the stern area as the case may be

\(p_{SL} \) = design slamming pressure \([kN/m^2]\) according to Section 4, B.4.

\(n_f \) = 1,0 for transverse framing

\(= 0,83 \) for longitudinal framing

\(\sigma_{LB} \) = Maximum bottom design hull girder bending stress \([N/mm^2]\) according to Section 5, D.1.

\(\sigma_{LS} \) = maximum design hull girder bending stress in the side shell at the station considered according to Section 5, D.1. \([N/mm^2]\).

\(\tau_L \) = maximum design shear stress due to longitudinal hull girder bending \([N/mm^2]\), according to Section 5, D.1.

\(\sigma_{perm} \) = permissible design stress \([N/mm^2]\)

\(= \left(\frac{0,8 + \frac{L}{450}}{k} \right) \left(\frac{230}{k} \right) \) \([N/mm^2]\) for \(L < 90 \)

\(= \frac{230}{k} \) \([N/mm^2]\) for \(L = 90 \)

\(t_K \) = corrosion addition according to Section 3, K.

B. Bottom Plating

1. Plate thickness based on load stress criteria

1.1 Ships with lengths \(L < 90 \) m

The thickness of the bottom shell plating within 0,4 \(L \) amidships is not to be less than:

\(t_{B1} = 1,9 \cdot n_f \cdot a \sqrt{p_B} \cdot k + t_K \) \([mm]\)

Within 0,1 \(L \) forward of the aft end of the length \(L \) and within 0,05 \(L \) aft of F.P., the thickness is not to be less than \(t_{B2} \) according to 1.2.

1.2 Ships with length \(L \geq 90 \) m

The thickness of the bottom plating is not to be less than the greater of the two following values:
Section 6 - Shell Plating

2. Critical plate thickness, buckling strength

2.1 Guidance values for critical plate thickness

For ships, for which proof of longitudinal strength is required or carried out respectively, the following guidance values for the critical plate thickness are recommended:

for \(\sigma_{LB} \leq 0.6 \cdot R_{eh} \):

\[
I_{crit} = c \cdot 2.32 \cdot a \sqrt{\sigma_{LB}} + t_K \quad [\text{mm}]
\]

for \(\sigma_{LB} > 0.6 \cdot R_{eh} \):

\[
I_{crit} = c \cdot 1.57 \cdot a \sqrt{R_{eh}} + t_K \quad [\text{mm}]
\]

\[c = 0.5\] for longitudinal framing

\[c = \frac{1}{(1 + \alpha^2) \sqrt{F_i}}\] for transverse framing

\[\alpha = \text{aspect ratio} \ a/b \ of \ plate \ panel \ considered \ (see \ Section \ 3, \ F. \ 1.)\]

\(\sigma_{LB} = \text{largest compressive stress in the bottom due to longitudinal hull girder bending}\)

\(F_i = \text{see Section 3, F.1. (Table 3.2)}\)

\(1.0 \ for \ longitudinal \ framing.\)

2.2 Buckling strength

The guidance values obtained from 2.1 are to be verified according to Section 3, F. Section 5, C.6. applies where solely longitudinal hull girder bending stress need to be considered. Section 8, B.8. applies where the combined action of longitudinal hull girder bending and local loads has to be considered.

3. Minimum thickness

At no point the thickness of the bottom shell plating shall be less than:

\[
t_{min} = (1.5 - 0.01 \cdot L) \sqrt{L \cdot k} \quad [\text{mm}] \quad \text{for} \ L < 50 \ m
\]

\[
t_{min} = \sqrt{L \cdot k} \quad [\text{mm}] \quad \text{for} \ L \geq 50 \ m
\]

\[t_{max} = 16.0 \ mm \ \text{in general}\]

or bulk carriers see Section 23, B.5.3, for tankers see Section 24, A.14.

4. Bilge strake

4.1 The thickness of the bilge strake is to be determined as required for the bottom plating according to 1.

The thickness so determined is to be verified for sufficient buckling strength according to the requirements of Section 5, C.6., and Section 3, F., see Table 3.4, load cases 1a, 1b, 2 and 4.
If this verification shows that a smaller thickness than that of the bottom plating is possible, such smaller thickness may be permitted.

4.2 If according to Section 2, B. a higher steel grade than A/AH is required for the bilge strake, the width of the bilge strake is not to be less than:

\[b = 800 + 5 \cdot L \quad [\text{mm}] \]

4.3 At the end of the curved bilge strake longitudinal stiffeners or girders are to be arranged. When the stiffeners are arranged outside the bilge radius sufficient buckling resistance according to Section 3, F. is to be shown for the plane plate fields

\[a_L \cdot \left(b_L + \frac{R}{4} \right) \]

taking into account the stresses according to Section 5, D.1 and the compression stresses

\[\sigma_q = \frac{p \cdot R}{t \cdot 10^3} \quad [\text{N/mm}^2] \]

acting coincidently in the transverse direction.

The thickness of these plate fields shall not be less than the thickness derived from 1., 3. and C.1. respectively.

For the frame spacing \(a \) and the field length \(l \), \(a_L \) and \(b_L + R/4 \) are to be taken accordingly, see sketch.

- \(a_L = \) spacing of the floors or transverse stiffeners respectively [mm]
- \(b_L = \) distance of the longitudinal stiffener from the end of corner radius [mm]
- \(R = \) bilge radius [mm]
- \(p = p_{c, r}, p_{s, 1} \) or \(p_{hi} \) at the end of corner radius or \(p_{SL} \) according to Section 4, B.4.1 as the case may be [kN/m²].
- \(t = \) plate thickness [mm]

If the derived thickness for the plane plate field is larger than that for the curved bilge strake according to 4.1 the reinforcement is to be expanded by a minimum of \(R/6 \) into the radius.

5. Flat plate keel and garboard strake

5.1 The width of the flat plate keel is not to be less than:

\[b = 800 + 5 \cdot L \quad [\text{mm}] \]

The thickness of the flat plate keel is not to be less than:

- \(t_{FK} = t_i + 2,0 \quad [\text{mm}] \)
- \(t_{FK} = t \quad [\text{mm}] \) otherwise

within \(0,7 \cdot L \) amidships and in way of the engine seating
For ships exceeding 100 m in length, the bottom of which is longitudinally framed, the flat plate keel is to be stiffened by additional longitudinal stiffeners fitted at a distance of approx. 500 mm from centre line. The sectional area of one longitudinal stiffener should not be less than 0,2 \(\text{L} \) [cm\(^2\)].

Where a bar keel is arranged, the adjacent garboard strake is to have the scantlings of a flat plate keel.

C. Side Shell Plating

1. Plate thickness based on load stress criteria

1.1 Ships with lengths \(\text{L} < 90 \text{ m} \)

The thickness of the side shell plating within 0,4 \(\text{L} \) amidship is not to be less than:

\[
t_{S1} = 1,9 \cdot n_\tau \cdot a \sqrt{P_x \cdot k} + t_K \quad \text{[mm]}
\]

Within 0,1 \(\text{L} \) forward of the aft end of the length \(\text{L} \) and within 0,05 \(\text{L} \) aft of \(\text{F.P} \) the thickness is not to be less than \(t_{S2} \) according to 1.2.

1.2 Ships with lengths \(\text{L} \geq 90 \text{ m} \)

The thickness of the side shell plating is not to be less than the greater of the following values:

\[
t_{S1} = 18,3 \cdot n_\tau \cdot a \sqrt{P_x \cdot \sigma_{\text{Pl}} + t_K} \quad \text{[mm]}
\]

\[
t_{S2} = 1,21 \cdot a \sqrt{P \cdot \sigma_{\text{Pl}} + t_K} \quad \text{[mm]}
\]

\[
t_{S3} = 18,3 \cdot n_\tau \cdot a \sqrt{P_x \cdot \sigma_{\text{Pl}} + t_K} \quad \text{[mm]}
\]

\[
\sigma_{\text{Pl}} = \sqrt{\sigma_{\text{perm}}^2 - 3 \cdot \tau^2_{\text{L}} - 0,89 \cdot \sigma_{\text{LS}}} \quad \text{[N/mm}\^2\text{]}\]

\[
\sigma_{\text{Pl}} = \sqrt{\left(\frac{230}{k} \right)^2 - 3 \cdot \tau^2_{\text{L}} - 0,89 \cdot \sigma_{\text{LS}}} \quad \text{[N/mm}\^2\text{]}\]

\(p = p_s \) or \(p_e \) as the case may be.

Note:

As a first approximation \(\sigma_{\text{LS}} \) and \(\tau_{\text{L}} \) may be taken as follows:

\[
\sigma_{\text{LS}} = 0,76 \cdot \sigma_{\text{LB}} \quad \text{[N/mm}\^2\text{]}\]

\[
\tau_{\text{L}} = \frac{55}{k} \quad \text{[N/mm}\^2\text{]}\]

\(\sigma_{\text{LB}} \) = see B.1.2.

1.3 In way of large shear forces, the shear stresses are to be checked in accordance with Section 5.D.

2. Minimum thickness

For the minimum thickness of the side shell plating B.3 applies accordingly.

Above a level \(T + c_0/2 \) above base line smaller thicknesses than \(t_{\min} \) may be accepted if the stress level permits such reduction.

For \(c_0 \) see Section 4, A.2.2.
3. **Sheerstrake**

3.1 The width of the sheerstrake is not to be less than:

\[b = 800 + 5 \cdot L \quad [\text{mm}] \]
\[b_{\text{max}} = 1800 \quad [\text{mm}] \]

3.2 The thickness of the sheerstrake shall, in general, not be less than the greater of the following two values:

\[t = 0,5 \left(t_D + t_S \right) \quad [\text{mm}] \]
\[= t_S \quad [\text{mm}] \]

- \(t_D \) = required thickness of strength deck
- \(t_S \) = required thickness of side shell.

3.3 Where the connection of the deck stringer with the sheerstrake is rounded, the radius is to be at least 15 times the plate thickness.

3.4 Welds on upper edge of sheerstrake are subject to special approval.

Regarding welding between sheerstrake and deck stringer see Section 7, A.2.

Holes for scuppers and other openings are to be carefully rounded, any notches shall be avoided.

4. **Buckling strength**

For ship for which proof of longitudinal strength is required or carried out proof of buckling strength of the side shell is to be provided in accordance with the requirements of Section 5, C.6. and Section 3, F.

5. **Strengthenings for harbour and tug manoeuvres**

5.1 In those zones of the side shell which may be exposed to concentrated loads due to harbour manoeuvres the plate thickness is not to be less than required by 5.2. These zones are mainly the plates in way of the ship's fore and aft shoulder. The exact locations where the tugs shall push are to be defined in the building specification. They are to be identified in the shell expansion plan. The length of the strengthened areas shall not be less than approximately 5 m. The height of the strengthened areas shall extend from about 0,5 m above ballast waterline to about 4,0 m above load water line.

For ships of 100 m in length and over at least one strengthened area is to be provided amidships in addition to the two strengthened areas at the ship's shoulders.

Where the side shell thickness so determined exceeds the thickness required by 1. - 3. it is recommended to specially mark these areas.

5.2 The plate thickness in the strengthened areas is to be determined by the following formulae:

\[t = 0,65 \cdot \sqrt{P_R \cdot k} + t_k \quad [\text{mm}] \]

- \(P_R \) = local design impact force [kN]
- \(k \) = \(D/100 \) [kN] with a minimum of 200 kN and a maximum of 1000 kN
- \(D \) = displacement of the ship [t].

Any reductions in thickness for restricted service are not permissible.

5.3 In the strengthened areas the section modulus of side longitudinals is not to be less than:

\[W = 0,35 \cdot P_R \cdot \ell \cdot k \quad [\text{cm}^3] \]

- \(\ell \) = unsupported span of longitudinal [m].

5.4 Tween decks, transverse bulkheads, stringer and transverse walls are to be investigated for sufficient buckling strength against loads acting in the ship's transverse direction. For scantlings of side transverses supporting side longitudinals see Section 9, B.4.4.
D. Side Plating of Superstructures

1. The side plating of effective superstructures is to be determined according to C.

2. The side plating of non-effective superstructures is to be determined according to Section 16.

3. For the definition of effective and non-effective superstructures see Section 16, A.1. For strengthening at ends of superstructures see Section 16, A.3.

E. Strengthening of Bottom Forward

1. Arrangement of floors and girders

1.1 For the purpose of arranging floors and girders the following areas are defined:

- forward of \(\frac{X}{L} = 0,7 \) for \(L \leq 100 \text{ m} \)
- forward of \(\frac{X}{L} = 0,6 + 0,001 \text{ L} \) for \(100 < L \leq 150 \text{ m} \)
- forward of \(\frac{X}{L} = 0,75 \) for \(L > 150 \text{ m} \)

1.2 In case of transverse framing, plate floors are to be fitted at every frame. Where the longitudinal framing system or the longitudinal girder system is adopted the spacing of plate floors may be equal to three transverse frame spaces.

1.3 In case of transverse framing, the spacing of side girders is not to exceed \(L/250 + 0,9\text{ [m]} \), up to a maximum of 1,4 m. In case of longitudinal framing, the side girders are to be fitted not more than two longitudinal frame spacings apart.

1.4 Distances deviating from those defined in 1.2 and 1.3 may be accepted on the basis of direct calculations.

1.5 Within the areas defined in 1.1 any scalloping is to be restricted to holes for welding and for limbers.

2. Bottom plating forward of \(\frac{X}{L} = 0,5 \)

2.1 The thickness of the bottom plating of the flat part of the ship's bottom up to a height of \(0,05 \cdot T_b \) or 0,3 m above base line, whichever is the smaller value, is not to be less than:

\[
t = 0,9 \cdot f_2 \cdot a \sqrt{p_{SL}} \cdot k + t_k \text{ [mm]}
\]

\(T_b \) = smallest design ballast draft at the forward perpendicular [m].

\(f_2 \) = see Section 3, A.3.

2.2 Above 0,05 \(T_b \) or 0,3 m above base line the plate thickness may gradually be tapered to the rule thickness determined according to B. For ships with a rise of floor the strengthened plating shall at least extend to the bilge curvature.

3. Stiffeners forward of \(\frac{X}{L} = 0,5 \)

3.1 The section modulus of transverse or longitudinal stiffeners is not to be less than:

\[
W = 0,155 \cdot p_{SL} \cdot a \cdot l^2 \cdot k \text{ [cm}^3].
\]

3.2 The shear area of the stiffeners is not to be less than:

\[
A = 0,028 \cdot p_{SL} \cdot a (l - 0,5 \cdot a) k \text{ [cm}^2].
\]

The area of the welded connection has to be at least twice this value.
F. Strengthenings in Way of Propellers and Propeller Shaft Brackets, Bilge Keels

1. Strengthenings in way of propellers and propeller brackets

1.1 The thickness of the shell plating in way of propellers is to be determined according to C.

Note

It is recommended that plate fields and stiffeners of shell structures in the vicinity of the propeller(s) be specially considered from a vibration point of view (see also Section 8, A.1.2.1 and Section 12, A.8). For vessels with a single propeller, plate fields and stiffeners within $d_r = 3$ should fulfill the following frequency criteria:

$$
\begin{align*}
\text{for } \alpha \geq 60^\circ : & \quad f_{\text{plate}} > \frac{4.6}{d_r} \cdot f_{\text{blade}} \\
& \quad f_{\text{stiff}} > \frac{4.6}{d_r} \cdot f_{\text{blade}} \\
\text{for } \alpha < 60^\circ : & \quad f_{\text{plate}} > \frac{2.3}{d_r} \cdot f_{\text{blade}}
\end{align*}
$$

α = flare angle of frame section in propeller plane measured between a vertical line and the tangent to the bottom shell plating

f_{plate} = lowest natural frequency of isotropic plate field under consideration of additional outfitting and hydrodynamic masses [Hz]

f_{stiff} = lowest natural frequency of stiffener under consideration of additional outfitting and hydrodynamic masses [Hz]

$d_r = \frac{r}{d_p} \geq 1,0$

r = distance of plate field or stiffener to 12 o'clock propeller blade tip position [m]

d_p = propeller diameter [m]

f_{blade} = propeller blade passage excitation frequency at n [Hz]

$$f_{\text{blade}} = \frac{1}{60} \cdot n \cdot z$$

n = maximum propeller shaft revolution rate [1/min]

z = number of propeller blades

1.2 In way of propeller shaft brackets, Section 19, B.4.3 has to be observed

1.3 Where propeller revolutions are exceeding 300 rpm (approx.), particularly in case of flat bottoms intercostal carlings are to be fitted above or forward of the propeller in order to reduce the size of the bottom plate panels (see also Section 8, A. 1.2.3.4).

2. Bilge keels

2.1 Where bilge keels are provided they are to be welded to continuous flat bars, which are connected to the shell plating with their flat side by means of a continuous watertight welded seam, see bottom of Fig. 6.1.

2.2 The ends of the bilge keels are to have soft transition zones according to Fig. 6.1, top. The ends of the bilge keels shall terminate above an internal stiffening element.

2.3 Any scallops or cut-outs in the bilge keels are to be avoided.

G. Openings in the Shell Plating

1. General

1.1 Where openings are cut in the shell plating for windows or side scuttles, hawses, scuppers, sea valves etc., they
are to have well rounded corners. If they exceed 500 mm in width in ships up to \(L = 70 \) m, and 700 mm in ships having a length \(L \) of more than 70 m, the openings are to be surrounded by framing, a thicker plate or a doubling.

1.2 Above openings in the sheerstrake within \(0.4L \) amidships, generally a strengthened plate or a continuous doubling is to be provided compensating the omitted plate sectional area. For shell doors and similar large openings see J. Special strengthening is required in the range of openings at ends of superstructures.

1.3 The shell plating in way of the hawse pipes is to be reinforced.

2. Pipe connections at the shell plating

Scupper pipes and valves are to be connected to the shell by weld flanges. Instead of weld flanges short flanged sockets of adequate thickness may be used if they are welded to the shell in an appropriate manner. Reference is made to Section 21, D.

Construction drawings are to be submitted for approval.

![Fig 6.1 Soft transition zones at the ends of bilge keels](image)

H. Bow Doors and Inner Doors

1. General, definitions

1.1 Applicability

1.1.1 These requirements apply to the arrangement, strength and securing of bow doors and inner doors leading to a complete or long forward enclosed superstructure, or to a long non-enclosed superstructure, where fitted to attain minimum bow height equivalence.

The requirements apply to all ro-ro passenger ships and ro-ro cargo ships engaged on international voyages and also to ro-ro passenger ships and ro-ro cargo ships engaged only in domestic (non-international) voyages, except where specifically indicated otherwise herein.
The requirements are not applicable to high speed, light displacement craft as defined in the IMO Code of Safety for High Speed Craft.

1.1.2 Two types of bow door are covered by these requirements:
- **Visor doors** opened by rotating upwards and outwards about a horizontal axis through two or more hinges located near the top of the door and connected to the primary structure of the door by longitudinally arranged lifting arms.
- **Side-opening doors** opened either by rotating outwards about a vertical axis through two or more hinges located near the outboard edges or by horizontal translation by means of linking arms arranged with pivoted attachments to the door and the ship. It is anticipated that side-opening bow doors are arranged in pairs.

Other types of bow door will be specially considered in association with the applicable requirements of these Rules.

Arrangement

1.2.1 Bow doors are to be situated above the freeboard deck. A watertight recess in the freeboard deck located forward of the collision bulkhead and above the deepest waterline fitted for arrangement of ramps or other related mechanical devices, may be regarded as a part of the freeboard deck for the purpose of this requirement.

1.2.2 An inner door is to be provided. The inner door is to be part of the collision bulkhead. The inner door needs not be fitted directly above the collision bulkhead below, provided it is located within the limits specified in Section 11, A.2.1 for the position of the collision bulkhead. A vehicle ramp may be arranged for this purpose, provided its position complies with Section 11, A.2.1. If this is not possible, a separate inner weathertight door is to be installed, as far as practicable within the limits specified for the position of the collision bulkhead.

1.2.3 Bow doors are to be so fitted as to ensure tightness consistent with operational conditions and to give effective protection to inner doors. Inner doors forming part of the collision bulkhead are to be weathertight over the full height of the cargo space and arranged with fixed sealing supports on the aft side of the doors.

1.2.4 Bow doors and inner doors are to be so arranged as to preclude the possibility of the bow door causing structural damage to the inner door or to the collision bulkhead in the case of damage to or detachment of the bow door. If this is not possible, a separate inner weathertight door is to be installed, as indicated in 1.2.2.

1.2.5 The requirements for inner doors are based on the assumption that the vehicles are effectively lashed and secured against movement in stowed position.

Definitions

Securing device is a device used to keep the door closed by preventing it from rotating about its hinges.

Supporting device is a device used to transmit external or internal loads from the door to a securing device and from the securing device to the ship’s structure, or a device other than a securing device, such as a hinge, stopper or other fixed device, that transmits loads from the door to the ship’s structure.

Locking device is a device that locks a securing device in the closed position.

Strength criteria

2.1 Primary structure and securing and supporting devices

2.1.1 Scantlings of the primary members, securing and supporting devices of bow doors and inner doors are to be so designed that under the design loads defined in 3. the following stresses are not exceeded:

Bending stress:

\[
\sigma = \frac{120}{k} \text{ [N/mm}^2\text{]}
\]

Shear stress:

\[
\tau = \frac{80}{k} \text{ [N/mm}^2\text{]}
\]

Equivalent stress:

\[
\sigma_v = \sqrt{\sigma^2 + 3 \tau^2} = \frac{150}{k} \text{ [N/mm}^2\text{]}
\]

where k is the material factor as given in Section 2, B.2.1, but is not to be taken less than 0.72 unless a fatigue analysis is carried out according to Section 20.
2.1.2 The buckling strength of primary members is to be verified according to Section 3, F.

2.1.3 For steel to steel bearings in securing and supporting devices, the nominal bearing pressure calculated by dividing the design force by the projected bearing area is not to exceed $0.8 \times R_{YH}$, where R_{YH} is the yield stress of the bearing material. For other bearing materials, the permissible bearing pressure is to be determined according to the manufacturer's specification.

2.1.4 The arrangement of securing and supporting devices is to be such that threaded bolts do not carry support forces. The maximum tension stress in way of threads of bolts not carrying support forces is not to exceed $125/k [N/mm^2]$.

3. Design loads

3.1 Bow doors

3.1.1 The design external pressure to be considered for the scantlings of primary members of bow doors is not to be less than

$$p_e = 2.75 \left(\frac{1 + c_{RW}}{2} \right) \cdot c_H \cdot \left(0.22 + 0.15 \cdot \tan \alpha \right) \cdot \left(0.4 \cdot v_o \cdot \sin \beta + 0.6 \sqrt{v_o} \right)^2 \text{ [kN/m2]}$$

$v_o =$ ship's speed [kn] as defined in Section 1, H.5
$L =$ ship's length [m]. $L \leq 200$ m
$c_{RW} =$ service range coefficient according to Section 4, A.2.2
$c_H =$ 0.0125 · L for $L < 80$ m
$= 1.0$ for $L \geq 80$ m
$\alpha =$ flare angle at the point to be considered, defined as the angle between a vertical line and the tangent to the side shell plating, measured in a vertical plane normal to the horizontal tangent to the shell plating
$\beta =$ entry angle at the point to be considered, defined as the angle between a longitudinal line parallel to the centreline and the tangent to the shell plating in a horizontal plane.

See also Fig. 6.2.

3.1.2 The design external forces for determining scantlings of securing and supporting devices of bow doors are not to be less than:

$$F_x = p_e \cdot A_x \text{ [kN]}$$
$$F_y = p_e \cdot A_y \text{ [kN]}$$
\[F_z = p_e \cdot A_z \quad [\text{kN}] \]

\[A_x = \text{area} \left[\text{m}^2 \right] \text{of the transverse vertical projection of the door between the levels of the bottom of the door and the upper deck or between the bottom of the door and the top of the door, whichever is the lesser,} \]

\[A_y = \text{area} \left[\text{m}^2 \right] \text{of the longitudinal vertical projection of the door between the levels of the bottom of the door and the upper deck or between the bottom of the door and the top of the door, whichever is the lesser,} \]

\[A_z = \text{area} \left[\text{m}^2 \right] \text{of the horizontal projection of the door between the levels of the bottom of the door and the upper deck or between the bottom of the door and the top of the door, whichever is the lesser,} \]

for \(A_x \), \(A_y \) and \(A_z \) see also Fig. 6.3.

\[h = \text{height} \left[\text{m} \right] \text{of the door between the levels of the bottom of the door and the upper deck or between the bottom of the door and the top of the door, whichever is the lesser,} \]

\[t = \text{length} \left[\text{m} \right] \text{of the door at a height } h/2 \text{ above the bottom of the door,} \]

\[p_e = \text{external design pressure} \left[\text{kN/m}^2 \right] \text{as given in 3.1.1 with angles } \alpha \text{ and } \beta \text{ defined as follows:} \]

\[\alpha = \text{flare angle measured at the point on the bow door, } t/2 \text{ aft of the stem line on the plane } h/2 \text{ above the bottom of the door, as shown in Fig. 6.2.} \]

\[\beta = \text{entry angle measured at the same point as } \alpha. \]

For bow doors, including bulwark, of unusual form or proportions, e.g. ships with a rounded nose and large stem angles, the areas and angles used for determination of the design values of external forces may require to be specially considered.

3.1.3 For visor doors the closing moment \(M_y \) under external loads is to be taken as:

\[M_y = F_x \cdot a + 10 \cdot W \cdot c - F_z \cdot b \quad [\text{kN m}] \]

\[W = \text{mass of the visor door} \left[\text{t} \right] \]

\[a = \text{vertical distance} \left[\text{m} \right] \text{from visor pivot to the centroid of the transverse vertical projected area } A_x \text{ of the visor door, as shown in Fig.6.3} \]

\[b = \text{horizontal distance} \left[\text{m} \right] \text{from visor pivot to the centroid of the horizontal projected area } A_z \text{ of the visor door, as shown in Fig. 6.3} \]

\[c = \text{horizontal distance} \left[\text{m} \right] \text{from visor pivot to the centre of gravity of visor mass, as shown in Fig. 6.3.} \]

![Fig. 6.3 Bow door of visor type](image)

3.1.4 Moreover, the lifting arms of a visor door and its supports are to be dimensioned for the static and dynamic forces applied during the lifting and lowering operations, and a minimum wind pressure of 1.5 kN/m\(^2\) is to be taken into account.
3.2 Inner doors

3.2.1 The design external pressure ρ_e considered for the scantlings of primary members, securing and supporting devices and surrounding structure of inner doors is to be taken as the greater of the following:

- $\rho_e = 0.45 \cdot L$ [kN/m2] or
- hydrostatic pressure $\rho_h = 10 \cdot h$ [kN/m2], where h is the distance [m] from the load point to the top of the cargo space

Where L is the ship's length, as defined in 3.1.1.

3.2.2 The design internal pressure ρ_i considered for the scantlings of securing devices of inner doors is not to be less than:

$$\rho_i = 25$$ [kN/m2]

4. Scantlings of bow doors

4.1 General

4.1.1 The strength of bow doors is to be commensurate with that of the surrounding structure.

4.1.2 Bow doors are to be adequately stiffened and means are to be provided to prevent lateral or vertical movement of the doors when closed. For visor doors adequate strength for the opening and closing operations is to be provided in the connections of the lifting arms to the door structure and to the ship structure.

4.2 Plating and secondary stiffeners

4.2.1 The thickness of the bow door plating is not to be less than the side shell thickness t_{s2} according to C.1.2, using bow door stiffener spacing, but in no case less than the required minimum thickness of the shell plating according to C.2.

4.2.2 The section modulus of horizontal or vertical stiffeners is not to be less than that required for framing at the position of the door according to Section 9. Consideration is to be given, where necessary, to differences in fixity between ship's frames and bow doors stiffeners.

4.2.3 The stiffener webs are to have a net sectional area not less than:

$$A_w = \frac{Q \cdot k}{10}$$ [cm2]

$Q =$ shear force [kN] in the stiffener calculated by using uniformly distributed external design pressure ρ_e as given in 3.1.1

4.3 Primary structure

4.3.1 The bow door secondary stiffeners are to be supported by primary members constituting the main stiffening of the door.

4.3.2 The primary members of the bow door and the hull structure in way are to have sufficient stiffness to ensure integrity of the boundary support of the door.

4.3.3 Scantlings of the primary members are generally to be verified by direct calculations in association with the external design pressure given in 3.1.1 and permissible stresses given in 2.1.1. Normally, formulae for simple beam theory may be applied.

5. Scantlings of inner doors

5.1 General

5.1.1 For determining scantlings of the primary members the requirements of 4.3.3 apply in conjunction with the loads specified in 3.2.

5.1.2 Where inner doors also serve as vehicle ramps, the scantlings are not to be less than those required for vehicle decks as per Section 7, B.2.

5.1.3 The distribution of the forces acting on the securing and supporting devices is generally to be verified by direct calculations...
taking into account the flexibility of the structure and the actual position and stiffness of the supports.

6. **Securing and supporting of bow doors**

6.1 **General**

6.1.1 Bow doors are to be fitted with adequate means of securing and supporting so as to be commensurate with the strength and stiffness of the surrounding structure. The hull supporting structure in way of the bow doors is to be suitable for the same design loads and design stresses as the securing and supporting devices. Where packing is required, the packing material is to be of a comparatively soft type, and the supporting forces are to be carried by the steel structure only. Other types of packing may be considered. The maximum design clearance between securing and supporting devices is generally not to exceed 3 mm.

A means is to be provided for mechanically fixing the door in the open position.

6.1.2 Only the active supporting and securing devices having an effective stiffness in the relevant direction are to be included and considered to calculate the reaction forces acting on the devices. Small and/or flexible devices such as cleats intended to provide load compression of the packing material are not generally to be included in the calculations called for in 6.2.5. The number of securing and supporting devices are generally to be the minimum practical whilst taking into account the redundancy requirements given in 6.2.6 and 6.2.7 and the available space for adequate support in the hull structure.

6.1.3 For opening outwards visor doors, the pivot arrangement is generally to be such that the visor is self closing under external loads, that is \(M_y > 0 \). Moreover, the closing moment \(M_y \) as given in 3.1.3 is to be not less than:

\[
M_{y0} = 10 \cdot W \cdot c + 0,1 \sqrt{a^2 + b^2} \cdot \sqrt{F_y^2 + F_z^2} \quad [kNm]
\]

6.2 **Scantlings**

6.2.1 Securing and supporting devices are to be adequately designed so that they can withstand the reaction forces within the permissible stresses given in 2.1.1.

6.2.2 For visor doors the reaction forces applied on the effective securing and supporting devices assuming the door as a rigid body are determined for the following combination of external loads acting simultaneously together with the self weight of the door:

- Case 1 : \(F_x \) and \(F_z \),
- Case 2 : \(0,7 \cdot F_y \) acting on each side separately together with \(0,7 \cdot F_x \) and \(0,7 \cdot F_z \).

The forces \(F_x \), \(F_y \) and \(F_z \) are to be determined as indicated in 3.1.2 and applied at the centroid of the projected areas.

6.2.3 For side-opening doors the reaction forces applied on the effective securing and supporting devices assuming the door as a rigid body are determined for the following combination of external loads acting simultaneously together with the self weight of the door:

- Case 1 : \(F_x \), \(F_y \) and \(F_z \) acting on both doors
- Case 2 : \(0,7 \cdot F_y \) and \(0,7 \cdot F_z \) acting on both doors and \(0,7 \cdot F_x \) acting on each door separately,

for \(F_x \), \(F_y \) and \(F_z \) see 6.2.2.

6.2.4 The support forces as determined according to 6.2.2 and 6.2.3 shall generally result in a zero moment about the transverse axis through the centroid of the area \(A_x \).

For visor doors, longitudinal reaction forces of pin and/or wedge supports at the door base contributing to this moment are not to be of the forward direction.

6.2.5 The distribution of the reaction forces acting on the securing and supporting devices may require to be verified by direct calculations taking into account the flexibility of the hull structure and the actual position and stiffness of the supports. This is, for instance, the case when the bow door is supported statically undetermined.

6.2.6 The arrangement of securing and supporting devices in way of these securing devices is to be designed with redundancy so that in the event of failure of any single securing or supporting device the remaining devices are capable of withstanding the reaction forces without exceeding by more than 20% the permissible stresses as given in 2.1.
6.2.7 For visor doors, two securing devices are to be provided at the lower part of the door, each capable of providing the full reaction force required to prevent opening of the door within the permissible stresses given in 2.1.1. The opening moment \(M_0 \) to be balanced by this reaction force, is not to be taken less than the greater of the following values:

\[
\begin{align*}
M_{01} &= F_H \cdot d + 5 \cdot A_x \cdot a \\
M_{02} &= \Delta_x \cdot \sqrt{F_x^2 + F_z^2} \\
\end{align*}
\]

\(F_H \) = horizontal design force [kN], acting forward in the centre of gravity, \(F_H = 10 \times W \)
\(d \) = vertical distance [m] from the hinge axis to the centre of gravity of the door mass, as shown in Fig. 6.3
\(\Delta_x \) = lever
\(e \) = distance [m] as defined in Fig. 6.3
\(a \) = distance [m] as defined in 3.1.3

6.2.8 For visor doors, the securing and supporting devices excluding the hinges are to be capable of resisting the vertical design force \(F_v = F_z - 10 \times W \) [kN] within the permissible stresses given in 2.1.1.

6.2.9 All load transmitting elements in the design load path, from door through securing and supporting devices into the ship structure, including welded connections, are to be of the same strength standard as required for the securing and supporting devices.

6.2.10 For side-opening doors, thrust bearings are to be provided in way of girder ends at the closing of the two leaves to prevent one leaf to shift towards the other one under effect of unsymmetrical pressure. An example for a thrust bearing is shown in Fig. 6.4. Securing devices are to be provided so that each part of the thrust bearing can be kept secured on the other part. Any other arrangement serving the same purpose may be accepted.

Fig. 6.4 Thrust bearing

7. Arrangement of securing and locking devices

7.1 Systems for operation

7.1.1 Securing devices are to be simple to operate and easily accessible.

Securing devices are to be equipped with mechanical locking arrangement (self locking or separate arrangement), or to be of the gravity type. The opening and closing systems as well as securing and locking devices are to be interlocked in such a way that they can only operate in the proper sequence.

7.1.2 Bow doors and inner doors giving access to vehicle decks are to be provided with an arrangement for remote control, from a position above the freeboard deck of:

- the closing and opening of the doors, and
- associated securing and locking devices for every door.

Indication of the open/closed position of every securing and locking device is to be provided at the remote control stations.
The operating panels for operation of doors are to be inaccessible to unauthorized persons. A notice plate, giving instructions to the effect that all securing devices are to be closed and locked before leaving harbour, is to be placed at each operating panel and is to be supplemented by warning indicator lights.

7.1.3 Where hydraulic securing devices are applied, the system is to be mechanically lockable in closed position. This means that, in the event of loss of the hydraulic fluid, the securing devices remain locked.

The hydraulic system for securing and locking devices is to be isolated from other hydraulic circuits, when in closed position.

7.2 Systems for indication/monitoring

The requirements according to 7.2.3 – 7.2.6 are only for ships – with or without passengers – with Ro-Ro spaces as defined in Chapter II-2, Regulation 3 of SOLAS 74.

7.2.1 Separate indicator lights are to be provided on the navigation bridge and on the operating panel to show that the bow door and inner door are closed and that their securing and locking devices are properly positioned. Deviations from the correct closing state are to be indicated by acustic and visual alarms. The indication panel is to be provided with a lamp test function. It shall not be possible to turn off the indicator lights.

7.2.2 The indicator system is to be designed on the self-monitoring principle and is to be alarmed by visual and audible means if the door is not fully closed and not fully locked or if securing devices become open or locking devices become unsecured. The power supply for the indicator system is to be independent of the power supply for operating and closing doors. The sensors of the indicator system are to be protected from water, ice formation and mechanical damages. Degree of protection: at least IP 56.

Note:
The indicator system is considered designed on the fail - safe principal when:

1) The indication panel is provided with:
 - a power failure alarm
 - an earth failure alarm
 - a lamp test
 - separate indication for door closed, door locked, door not closed and door not locked

2) Limit switches electrically closed when the door is closed (when more limit switches are provided they may be connected in series).

3) Limit switches electrically closed when securing arrangements are in place (when more limit switches are provided they may be connected in series).

4) Two electrical circuits (also in one multicore cable), one for the indication of door closed/not closed and the other for door locked/not locked.

5) In case of dislocation of limit switches, indication to show: not closed/not locked/securing arrangement not in place - as appropriate.

7.2.3 The indication panel on the navigation bridge is to be equipped with a selector switch "harbour/sea voyage", so arranged that alarm is given if vessel leaves harbour with the bow door or inner door not closed and with any of the securing devices not in the correct position.

7.2.4 A water leakage detection system with audible alarm and television surveillance are to be arranged to provide an indication to the navigation bridge and to the engine control room of leakage through the inner door.

7.2.5 For the space between the bow door and the inner door a television surveillance system is to be fitted with a monitor on the navigation bridge and in the engine control room. The system shall monitor the position of doors and a sufficient number of their securing devices. Special consideration is to be given for lighting and contrasting colour of objects under surveillance.

7.2.6 A drainage system is to be arranged in the area between bow door and ramp, as well as in the area between the ramp and inner door where fitted. The system is to be equipped with an acoustic alarm function to the navigation bridge for water level in these areas exceeding 0.5 m above the car deck level.

7.2.7 For indication and monitoring systems see also Rules for Electrical Installations, Volume IV, Section 16, E.
8. Operating and maintenance manual

8.1 An Operating and Maintenance Manual for the bow door and inner door is to be provided on board and is to contain necessary information on:

- main particulars and design drawings, special safety precautions, details of vessel, equipment and design loading (for ramps), key plan of equipment (doors and ramps), manufacturer's recommended testing for equipment, description of equipment for:
 - bow doors
 - inner bow doors
 - bow ramp/doors
 - side doors
 - stern doors
 - central power pack
 - bridge panel
 - engine control room panel

- service conditions
 - limiting heel and trim of ship for loading/unloading
 - limiting heel and trim for door operations
 - doors/ramps operating instructions
 - doors/ramps emergency operating instructions

- maintenance
 - schedule and extent of maintenance
 - trouble shooting and acceptable clearances
 - manufacturer's maintenance procedures

- register of inspections, including inspection of locking, securing and supporting devices, repairs and renewals.

This Manual is to be submitted for approval that the above mentioned items are contained in the OMM and that the maintenance part includes the necessary information with regard to inspections, troubleshooting and acceptance/rejection criteria.

Note:

It is recommended that recorded inspections of the door supporting and securing devices be carried out by the ship's staff at monthly intervals and/or following incidents that could result in damage, including heavy weather and/or contact in the region of the shell doors. Any damages recorded during such inspections are to be reported to BKI.

8.2 Documented operating procedures for closing and securing the bow door and inner doors are to be kept on board and posted at an appropriate place.

J. Side Shell Doors and Stern Doors

1. General

1.1 These requirements apply to side shell doors abaft the collision bulkhead and to stern doors leading into enclosed spaces.

1.2 For the definition of securing, supporting and locking devices see H.1.3.

2. Arrangement

2.1 Stern doors for passenger vessels are to be situated above the freeboard deck. Stern doors for Ro-Ro cargo ships and side shell doors may be either below or above the freeboard deck.
2.2 Side shell doors and stern doors are to be so fitted as to ensure tightness and structural integrity commensurate with their location and the surrounding structure.

2.3 Where the sill of any side shell door is below the uppermost load line, the arrangement is to be specially considered. In case of ice strengthening see Section 15.

2.4 Doors should preferably open outwards.

3. Strength criteria

The requirements of H.2. apply.

4. Design loads

4.1 The design forces considered for the scantlings of primary members, securing and supporting devices of side shell doors and stern doors are to be not less than the greater of the following values:

4.1.1 Design forces for securing or supporting devices of doors opening inwards:

\[F_e = A \cdot p_e + F_p \] [kN]

\[F_i = F_o + 10 \cdot W \] [kN]

4.1.2 Design forces for securing or supporting devices of doors opening outwards:

\[F_e = A \cdot p_e \] [kN]

\[F_i = F_o + 10 \cdot W + F_p \] [kN]

4.1.3 Design forces for primary members:

\[F_e = A \cdot p_e \] [kN]

\[F_i = F_o + 10 \cdot W \] [kN]

\[A = \text{area of the door opening } [m^2] \]

\[W = \text{mass of the door } [t] \]

\[F_p = \text{total packing force}[kN], \text{where the packing line pressure is normally not to be taken less than } 5 \text{ N/mm} \]

\[F_o = \text{the greater of } F_c \text{ or } 5 \cdot A [kN] \]

\[F_c = \text{accidental force}[kN] \text{due to loose of cargo etc., to be uniformly distributed over the area } A \text{ and not to be taken less than } 300 \text{ kN}. \text{For small doors such as bunker doors and pilot doors, the value of } F_c \text{ may be appropriately reduced. However, the value of } F_c \text{ may be taken as zero, provided an additional structure such as an inner ramp is fitted, which is capable of protecting the door from accidental forces due to loose cargoes} \]

\[p_e = \text{external design pressure determined at the centre of gravity of the door opening and not taken less than:} \]

\[p_e = \text{p.e, acc. to Section 4, B.2.1 or:} \]

\[p_e = 10 \left(T - z_G \right) + 25 \text{ } [kN/m^2] \text{ for } z_G < T \]

\[= 25 \text{ } [kN/m^2] \text{ for } z_G \geq T \]

\[z_G = \text{height of centre of area of door above base line } [m]. \]

4.2 For stern doors of ships fitted with bow doors, \(p_e \) is not to be taken less than:

\[p_e = 0.6 \left(\frac{1 + c_{RW}}{2} \right) \cdot c_H \left(0.8 + 0.6 \sqrt{L} \right)^2 \] [kN/m²]

\[c_{RW} = \text{service range coefficient as defined in Section 4, A.2.2.} \]

\[c_H = \text{see H.3.1.1.} \]

5. Scantlings

5.1 General

The requirements of H.4.1 apply analogously with the following additions:
The strength of side shell doors and stern doors is to be commensurate with that of the surrounding structure.

Side shell doors and stern doors are to be adequately stiffened and means are to be provided to prevent any lateral or vertical movement of the doors when closed. Adequate strength is to be provided in the connections of the lifting/manoeuvring arms and hinges to the door structure and to the ship's structure.

where doors also serve as vehicle ramps, the design of the hinges shall take into account the ship's angle of trim and heel which may result in uneven loading on the hinges.

shell door openings are to have well-rounded corners and adequate compensation is to be arranged with web frames at sides and stringers or equivalent above and below.

5.2 Plating and secondary stiffeners

The requirements of H.4.2.1 and H.4.2.2 apply analogously with the following additions:

Where doors serve as vehicle ramps, plate thickness and stiffener scantlings are to comply with the requirements of Section 7, B.2.

The section modulus of horizontal or vertical stiffeners is not to be less than that required for side framing. Consideration is to be given, where necessary, to differences in fixity between ship's frames and door stiffeners.

Where doors serve as vehicle ramps, the stiffener scantlings are not to be less than required for vehicle decks.

5.3 Primary structure

The requirements of H.4.3 apply analogously taking into account the design loads specified in 4.

6. Securing and supporting of side shell and stern doors

6.1 General

The requirements of H.6.1.1 and H.6.1.2 apply analogously.

6.2 Scantlings

The requirements of H.6.2.1, H.6.2.5, H.6.2.6 and H.6.2.9 apply analogously taking into account the design loads specified in 4.

7. Arrangement of securing and locking devices

7.1 Systems for operation

7.1.1 The requirements of H.7.1.1 apply.

7.1.2 Doors which are located partly or totally below the freeboard deck with a clear opening area greater than 6 m² are to be provided with an arrangement for remote control, from a position above the freeboard deck according to H.7.1.2.

7.1.3 The requirements of H.7.1.3 apply.

7.2 Systems for indication/monitoring

7.2.1 The requirements of H.7.2.1, H.7.2.2 and H.7.2.3 apply analogously to doors leading directly to special category spaces or Ro-Ro spaces, as defined in SOLAS 1974, Chapter II-2, Reg. 3, through which such spaces may be flooded.

7.2.2 For Ro-Ro passenger ships, a water leakage detection system with audible alarm and television surveillance is to be arranged to provide an indication to the navigation bridge and to the engine control room of any leakage through the doors. For Ro-Ro cargo ships, a water leakage detection system with audible alarm is to be arranged to provide an indication to the navigation bridge.

8. Operating and maintenance manual

The requirements of H.8 apply analogously as well as the IACS unified requirement S9.
K. Bulwarks

1. The thickness of bulwark plating is not to be less than:

\[t = \begin{cases}
0.75 \cdot \frac{L}{1000} \sqrt{L} & \text{[mm] for } L \leq 100 \text{ m} \\
0.65 \cdot \sqrt{L} & \text{[mm] for } L > 100 \text{ m}
\end{cases} \]

\(L \) need not be taken greater than 200 m. The thickness of bulwark plating forward particularly exposed to wash of sea is to be equal to the thickness of the forecastle side plating according to Section 16, B.1.

In way of superstructures above the freeboard deck abaft 0.25 \(L \) from F.P. the thickness of the bulwark plating may be reduced by 0.5 mm.

2. The bulwark height or height of guard rail is not to be less than 1.0 m, the lesser height may be approved if adequate protection is provided.

3. Plate bulwarks are to be stiffened at the upper edge by a bulwark rail section.

4. The bulwark is to be supported by bulwark stays fitted at every alternate frame. Where the stays are designed as per Fig. 6.5, the section modulus of their cross section effectively attached to the deck is not to be less than:

\[W = 4 \cdot p \cdot e \cdot l \quad [\text{cm}^3] \]

\(p = p_s \) or \(p_e \) as the case may be

\(p_{\text{min}} = 15 \text{ kN/m}^2 \)

\(e = \) spacing of stays [m]

\(l = \) length of stay [m]

The dimension for calculation of \(W \) are to be taken vertical of the plating starting from the base of the stays.

In addition Section 3, E.2.3. must be considered.

The stays are to be fitted above deck beams, beam knees or carlings. It is recommended to provide flat bars in the lower part which are to be effectively connected to the deck plating. Particularly in ships the strength deck of which is made of higher tensile steel, smooth transitions are to be provided at the end connection of the flat bar faces to deck.

5. On ships carrying deck cargo, the bulwark stays are to be effectively connected to the bulwark and the deck. The stays are to be designed for a load at an angle of heel of 30°. Under such loads the following stresses are not to be exceeded:

bending stress:

\[\sigma_b = \frac{120}{k} \quad [\text{N/mm}^2] \]

shear stress:

\[\tau = \frac{80}{k} \quad [\text{N/mm}^2] \]

For loads caused by containers and by stow and lashing arrangements. See also Section 21, G.

6. An adequate number of expansion joints is to be provided in the bulwark. In longitudinal direction the stays adjacent to the expansion joints shall be as flexible as practicable.

The number of expansion joints for ships exceeding 60 m in length should not be less than:

\[n = \frac{L}{40}, \text{ but need not be greater than } n = 5. \]

7. Openings in the bulwarks shall have sufficient distance from the end bulkheads of superstructures. For avoiding cracks the connection of bulwarks to deckhouse supports is to be carefully designed.

8. For the connection of bulwarks with the sheer strake C.3.4 is to be observed.

9. Bulwarks are to be provided with freeing ports of sufficient size. See also Section 21, D. 2 and ICLL.
Fig. 6.5 Bulwark stay
Section 7

Decks

A. Strength Deck

1. General, Definition

1.1 The strength deck is:

1. the uppermost continuous deck which is forming the upper flange of the hull structure,
2. a superstructure deck which extends into 0.4 L amidships and the length of which exceeds 0.15 L,
3. a quarter deck or the deck of a sunk superstructure which extends into 0.4 L amidships.

At the option of the designer the deck below superstructure deck may be taken as strength deck.

1.2 In way of a superstructure deck which is to be considered as a strength deck, the deck below the superstructure deck is to have the same scantlings as a 2nd deck, and the deck below this deck the same scantlings as a 3rd deck. The thicknesses of a strength deck plating are to be extended into the superstructure for a distance equal to the width of the deck plating abreast the hatchway. For strengthening of the stringer plate in the breaks, see Section 16, A.3.

1.3 If the strength deck is protected by sheathing a smaller corrosion addition t_K than required by Section 3, K may be permitted. Where a sheathing other than wood is used, attention is to be paid that the sheathing does not affect the steel. The sheathing is to be effectively fitted to the deck.

1.4 For ships with a speed $v_0 > 1.6 \text{ [kn]}$, additional strengthening of the strength deck and the sheerstrake may be required.

1.5 The following definitions apply throughout this Section:

k = material factor according to Section 2, B.2.
p_D = load according to Section 4, B.1.
p_L = load according to Section 4, C.1.
t_K = corrosion addition according to Section 3, K.

2. Connection between strength deck and sheerstrake

2.1 The welded connection between strength deck and sheerstrake may be effected by fillet welds according to Table 19.3. Where the plate thickness exceeds approximately 25 mm, a double bevel weld connection according to Section 19, B.3.2, shall be provided for instead of fillet welds. Bevelling of the deck stringer to 0.65 times of its thickness in way of the welded connection is admissible.

In special cases a double bevel weld connection may also be required, where the plate thickness is less than 25 mm.

2.2 Where the connection of deck stringer to sheerstrake is rounded, the requirements of Section 6, C.3.3 are to be observed.

3. Openings in the strength deck

3.1 All openings in the strength deck are to have well rounded corners circular openings are to be edge-reinforced. The sectional area of the face bar is not to be less than:

$$A_f = 0.25 \cdot d \cdot t \quad [\text{cm}^2]$$

d = diameter of openings [cm]

t = deck thickness [cm].

The reinforcing face bar may be dispensed with, where the diameter is less than 300 mm and the smallest distance from another opening is not less than 5 x diameter of the smaller opening. The distance between the outer edge of openings for pipes etc.
and the ship's side is not to be less than the opening diameter.

3.2 The hatchway corners are to be surrounded by strengthened plates which are to extend over at least one frame spacing fore-and-aft and athwartships. Within 0.5 L amidstships, the thickness of the strengthened plate is to be equal to the deck thickness abreast the hatchway plus the deck thickness between the hatchways. Outside 0.5 L amidstships the thickness of the strengthened plating need not exceed 1.6 times the thickness of the deck plating abreast the hatchway.

The reinforcement may be dispensed with in case of proof by a fatigue analysis.

3.3 The hatchway corner radius is not to be less than:

\[r = n \cdot b \left(1 - \frac{b}{B}\right) \]

\[r_{\text{min}} = 0.1 \text{ m} \]

\[n = \frac{\ell}{200} \]

\[n_{\text{min}} = 0.1 \]

\[n_{\text{max}} = 0.25 \]

\[\ell = \text{length of hatchway [m]} \]

\[b = \text{breadth [m], of hatchway or total breadth of hatchways in case of more than one hatchway. } b/B \text{ need not be taken smaller than 0.4.} \]

For ships with large hatch openings see 3.6.

3.4 Where the hatchway corners are elliptic or parabolic, strengthening according to 3.2 is not required. The dimensions of the elliptical and parabolical corners shall be as shown in Fig. 7.1:

\[a \geq 2c \]

\[c = r \text{ according to 3.3} \]

Fig. 7.1 Elliptic or parabolic hatch corner

Where smaller values are taken for a and c, reinforced insert plates are required which will be considered in each individual case.

3.5 At the corners of the engine room casings, strengthenings according to 3.2 may also be required, depending on the position and the dimensions of the casing.

3.6 For ships with large deck openings according to Section 5, the design of the hatch corners will be specially considered on the basis of the stresses due to longitudinal hull girder bending, torsion and transverse loads.

Approximately the following formulae can be used to determine the radii of the hatchway corners:

\[r \geq c_1 \cdot c_2 \]

\[r_{\text{min}} = \begin{cases} 0.15 \text{ m for hatchway corners in the strength deck} \\ 0.1 \text{ in all other locations} \end{cases} \]

\[c_1 = \left(f_b + \frac{\ell}{750}\right) \cdot b_L \]

for hatchway corners at deck girders alongside the hatchway, adjacent to a closed deck area.
= 0.4 \cdot b_Q \quad \text{for hatchway corners at cross deck strips between hatchways adjacent to a closed deck area}

= \left(f_D + \frac{\ell}{750} \right) \cdot \sqrt{\frac{b_L^2 \cdot b_Q}{b_L^2 + b_Q}} \quad \text{for hatchway corners adjacent to a cross deck strip}

f_D = \begin{cases}
0,25 + \frac{L}{2000} & \text{for hatchway corners of the strength deck and for decks and coamings above the strength deck} \\
0,2 + \frac{L}{1800} & \text{for the strength deck, decks and coamings above the strength deck and for decks within the distance of maximum } b_L \text{ below the strength deck, if a further deck with the same hatchway corner radius is arranged in a distance of less than } b_L \text{ below the strength deck.} \\
0,1 & \text{for lower decks where the distance from the strength deck exceeds } b_L
\end{cases}

\ell = \text{relevant length of large deck openings [m] forward and/or aft of the superstructure}

L_{\text{min}} = 100 \text{ m}

L_{\text{max}} = 300 \text{ m}

b_L = \text{breadth of deck girder alongside the hatchway [m]}

b_Q = \text{breadth of cross deck strip between hatchways [m]}

For hatchway corners above or below the strength deck, \(b_L \) and \(b_Q \) are to be taken as the breadths of the longitudinal or transverse structural members adjacent to the hatchway corners.

\[c_2 = \frac{[M_T (z_D - z_0)]}{I_y \cdot 175 \cdot 10^4 \cdot c_s} \cdot \frac{t_D}{t_i} \cdot \frac{4}{\sqrt{k_i}} \]

\(t_D = \text{plate thickness of the longitudinal structural member [mm]}

\(t_i = \text{thickness of the hatchway corner plate [mm]}

1 \geq \frac{t_D}{t_i} \geq 0.625

M_T = \text{total longitudinal bending moment [kNm], according to Section 5, A.5 at the forward or aft edge of the relevant cross deck strip or the relevant closed deck area}

I_y = \text{moment of inertia [m}^4\text{]} \text{ of the section according to Section 5, A.5. in the hatchway corner without inserted strengthened plate}

\(c_s = \text{according to Section 5, C.1.1 for the strength deck}

1,0 \text{ for the lower decks}

z_0 = \text{distance of neutral axis of the hull section from the baseline [m]}

z_D = \text{distance of the relevant hatchway corner from the baseline [m]}

k_i = \text{material factor according to Section 2, B. of the relevant hatchway corner}

Where required by above calculation or on the basis of direct fatigue assessment hatchway corners are to be surrounded by strengthened plates, i.e. insert plates, which extend minimum distances \(a \) and \(b \) from hatch edges (see Fig. 7.2), where

\(a = 3 (t_i - t) + 300 \quad [\text{mm}] \)

\(a_{\text{min}} = 350 \text{ mm} \)

\(b = r + 3 (t_i - t) + 125 \quad [\text{mm}] \)

Openings in way of hatchway corners are not to be located within the following minimum distances (see Fig. 7.2)
Fig. 7.2 Strengthening of hatchway corners

a) Opening outside of insert plate
 \[c = 2t + h + 50 \text{ [mm]} \] for strength deck
 \[2t + h/2 + 50 \text{ [mm]} \] for lower decks

b) Opening inside of insert plate
 \[e = 2r + h/2 \text{ [mm]} \] for strength deck
 \[1,5r + h/2 \text{ [mm]} \] for lower decks

\[h \] = diameter of opening [mm]

On the basis of direct calculations, other minimum distances for specific cases may be accepted. Outside 0.5 L midships the thickness of the strengthened plate shall not exceed 1.6 times the thickness of the deck plating abreast the hatchway.

3.7 Stresses due to lateral loads

\[\sigma_Q = \frac{M_Q}{W_1 \cdot 10^3} \] [N/mm²]

\[M_Q \] = bending moment around the z-axis due to the action of the external water pressure according to Section 4, B.2 and/or cargo loads [kNm], stressing the girder consisting of deck strip, longitudinal hatch coaming and effective parts of longitudinal bulkhead and side shell plating.

\[W_1 \] = section modulus [m³] of the girder specified above abreast hatchway around the vertical axis. Longitudinal hatch coamings can only be included, if carried sufficiently beyond the hatchway ends.

For container ships with hatchway lengths not exceeding approximately 14 m and with transverse box girders of approximately equal rigidity, \(\sigma_Q \) may be determined by the following formulae:

\[\sigma_Q = \frac{T^3}{H \cdot 0,25 \cdot H \cdot p_0} \cdot \varepsilon_L^2 \cdot 7,2 \cdot W_1 \cdot 10^3 \] [N/mm²]

\[p_0 \] = see Section 4, A.2.2

In the hatch corners of ships with large deck openings according to Section 5, F., the following equation must be complied...
with:

\[\sigma_L + \sigma_Q \leq \sigma_v \]

\[\sigma_v = \text{see Section 5, D.1.2.} \]

\[\sigma_L = \text{see Section 5, D.1.} \]

4. **Scantlings of strength deck of ships up to 65 m in length**

The scantlings of the strength deck for ships, for which proof of longitudinal strength is not required, i.e. in general for ships with length \(L \leq 65 \) m, the sectional area of the strength deck within 0,4 \(L \) amidships is to be determined such that the requirements for the minimum midship section modulus according to Section 5, C.2. are complied with.

The thickness within 0,4 \(L \) amidship is not to be less than the minimum thickness according to 6.

For the range 0,1 \(L \) from ends, the requirement of 7.1 apply.

5. **Scantlings of strength deck of ships of more than 65 m in length**

5.1 **Deck sectional area**

The deck sectional area abreast the hatchways, if any, is to be so determined that the section modulii of the cross section is in accordance with the requirements of Section 5, C.

5.2 **Critical plate thickness, buckling strength**

5.2.1 The critical plate thickness is to be determined according to Section 6, B.2. analogously.

5.2.2 Reductions from the critical plate thickness on account of restricted service are not admissible.

5.2.3 In regard to buckling strength the requirements of Section 6, B.2.2 apply analogously.

5.3 **Deck stringer**

If the thickness of the strength deck plating is less than that of the side shell plating, a stringer plate is to be fitted having the width of the sheerstrake and the thickness of the side shell plating.

6. **Minimum thickness**

6.1 The thickness of deck plating for 0,4 \(L \) amidships outside line of hatchways, is not to be less than the greater of the two following values:

\[t_{min} = (4,5 + 0,05 \, L) \quad \text{[mm]} \]

or

\[t_E = \text{according to 7.1,} \]

\(L \) need not be taken greater than 200 m.

6.2 When the deck is located above a level of \(T + c_0 \) above basis a smaller thickness than \(t_{min} \) may be accepted if the stress level permits such reduction. \(c_0 \) see Section 4, A.2.2.

7. **End thickness, thickness inside line of hatchways**

7.1 The thickness of strength deck plating for 0,1 \(L \) from the ends and between hatchways is not to be less than:

\[t_{E1} = 1,21 \cdot a \sqrt{P_d \cdot k} + t_K \quad \text{[mm]} \]

\[t_{E2} = 1,1 \cdot a \sqrt{P_t \cdot k} + t_K \quad \text{[mm]} \]

\[t_{emin} = (5,5 + 0,02 \, L) \sqrt{k} \quad \text{[mm]} \]

\(L \) need not be taken greater than 200 m.

7.2 Between the midship thickness and the end thickness, the thicknesses are to be tapered gradually.

7.3 The strength of deck structure between hatch openings has to withstand compressive transversely acting loads. Proof of buckling strength is to be provided according to Section 3, F.
B. Lower Decks

1. Thickness of decks for cargo loads

1.1 The plate thickness is not to be less than:
\[
\begin{align*}
t &= 1,1 \sqrt{\frac{P_L \cdot k}{a}} + t_k \quad \text{[mm]} \\
t_{\text{min}} &= (5,5 + 0,02 L) \sqrt{k} \quad \text{[mm]}
\end{align*}
\]
for the 2nd deck
\[= 6,0 \text{ mm for other lower decks}\]
\[L \text{ need not be taken greater than 200 m.}\]

1.2 For the critical deck thickness see A.5.2.

2. Thickness of decks for wheel loading

2.1 The thickness of deck plating for wheel loading is to be determined by the following formulae:
\[
t = c \sqrt{\frac{P \cdot k}{a}} + t_k \quad \text{[mm]}
\]
\[P = \text{load [kN] of one wheel or group of wheels on a plate panel } a \cdot b \quad 1) \text{ considering the aceleration factor } a_v
\]
\[= \frac{Q}{n} \left(1 + a_v\right)
\]
\[Q = \text{axle load [kN]}
\]
For fork lift trucks Q is generally to be taken as the total weight of the fork lift truck.
\[n = \text{number of wheels or group of wheels per axle}
\]
\[a_v = \text{see Section 4, C.1.1}
\]
\[= 0 \text{ for harbour conditions}
\]
\[c = \text{factor according to the following formulae:}
\]
for the aspect ratio \(b/a = 1:
\[
\begin{align*}
\text{for the range } 0 < \frac{f}{F} < 0,3 : \\
&c = 1,87 - \sqrt{\frac{f}{F} \left[3,4 - 4,4 \frac{f}{F}\right]}
\end{align*}
\]
for the range \(0,3 \leq \frac{f}{F} \leq 1,0 : \\
\[
\begin{align*}
&c = 1,20 - 0,40 \frac{f}{F}
\end{align*}
\]
for the aspect ratio \(b/a \geq 2,5:
\[
\begin{align*}
\text{for the range } 0 < \frac{f}{F} < 0,3 : \\
&c = 2,00 - \sqrt{\frac{f}{F} \left[5,2 - 7,2 \frac{f}{F}\right]}
\end{align*}
\]
for the range \(0,3 \leq \frac{f}{F} \leq 1,0 : \\
\[
\begin{align*}
&c = 1,20 - 0,517 \frac{f}{F}
\end{align*}
\]
\]

1) Where no data available P is to be taken as 25 kN
for intermediate values of b/a the factor c is to be obtained by direct interpolation.

\[f = \text{print area of wheel or group of wheels} \]

\[F = \text{area of plate panel } a \cdot b \text{ according to Fig. 7.3} \]

\[a = \text{width of smaller side of plate panel (in general beam spacing)} \]

\[b = \text{width of larger side of plate panel} \]

F need not be taken greater than 2,5 \(a^2 \).

In case of narrowly spaced wheels these may be grouped together to one wheel print area.

![Footprint of wheel](image)

Fig. 7.3 Footprint of wheel

2.2 Where the wheel print area is not known, it may approximately be determined as follows:

\[f = \frac{50 \cdot n \cdot P}{p} \text{ [cm}^2\text{]} \]

\[p = \text{specific wheel pressure according to Table 7.1.} \]

2.3 In deck beams and girders, the stress is not to exceed 165/k [N/mm²].

<table>
<thead>
<tr>
<th>Type of vehicle</th>
<th>Specific wheel pressure p [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pneumatic tyres</td>
</tr>
<tr>
<td>private cars</td>
<td>2</td>
</tr>
<tr>
<td>trucks</td>
<td>8</td>
</tr>
<tr>
<td>trailers</td>
<td>8</td>
</tr>
<tr>
<td>fork lift trucks</td>
<td>6</td>
</tr>
</tbody>
</table>

3. Machinery decks and accommodation decks

The scantlings of machinery decks and other accommodation decks have to be based on the loads given in Section 4, C.3.

The thickness of the plates is not to be less than:

\[t = 1,1 \cdot a \cdot \sqrt{\frac{p \cdot k}{k}} + t_k \text{ [mm]} \]

\[t_{\text{min}} = 5 \text{ [mm]} \]

C. Helicopter Decks

1. General

1.1 The starting/landing zone is to be dimensioned for the largest helicopter type expected to use the helicopter deck.

1.2 For scantling purposes, other loads (cargo, snow/ice, etc.) are to be considered simultaneously or separately, depending
on the conditions of operation to be expected. Where these conditions are not known, the data contained in 2. may be used as a basis.

1.3 The following provisions in principle apply to starting/landing zones on special pillar-supported landing decks or on decks of superstructures and deckhouses.

\textit{Note}

For the convenience of the users of these Rules reference is made to the “Guide to Helicopter/Ship Operations” published by the International Chamber of Shipping (ICS).

2. Design Load

The following load cases (LC) are to be considered:

\begin{itemize}
\item \textbf{LC 1} Helicopter lashed on deck, with the following vertical forces acting simultaneously:
\begin{itemize}
\item \textbf{1.} Wheel and/or skid force P acting at the points resulting from the lashing position and distribution of the wheels and/or supports according to helicopter construction.
\[P = 0.5 \cdot G (1 + a_v) \quad [\text{kN}] \]
\[G = \text{maximum permissible take-off weight} \quad [\text{kN}] \]
\[a_v = \text{see Section 4, C.1.1} \]
\[P = \text{evenly distributed force over the contact area } f = 30 \times 30 \text{ cm for single wheel or according to data supplied by helicopter manufacturers; for dual wheels or skids to be determined individually in accordance with given dimensions.} \]
\[e = \text{wheel or skid distance according to helicopter types to be expected} \]
\item \textbf{2.} Force due to weight of helicopter deck M_e as follows:
\[M_e (1 + a_v) \quad [\text{kN}] \]
\item \textbf{3.} Load $p = 2.0 \text{kN/m}^2$ evenly distributed over the entire landing deck.
\end{itemize}

\item \textbf{LC 2} Helicopter lashed on deck, with the following horizontal and vertical forces acting simultaneously:
\begin{itemize}
\item \textbf{1.} Forces acting horizontally:
\[H = 0.6 (G + M_e) + W \quad [\text{kN}] \]
\[W = \text{Wind load, taking into account the lashed helicopter; wind velocity } v_w = 50 \text{ m/s.} \]
\item \textbf{2.} Forces acting vertically:
\[V = G + M_e \quad [\text{kN}] \]
\end{itemize}

\item \textbf{LC 3} Normal landing impact, with the following forces acting simultaneously:
\begin{itemize}
\item \textbf{1.} Wheel and/or skid load P at two points simultaneously, at an arbitrary (most unfavourable) point of the helicopter deck (landing zone + safety zone)
\[P = 0.75 G \quad [\text{kN}] \]
\item \textbf{2.} Load $p = 0.5 \text{kN/m}^2$ evenly distributed
\end{itemize}

(for taking into account snow or other environmental loads)

.3 Weight of the helicopter deck

.4 Wind load in accordance with the wind velocity admitted for helicopter operation (v_w), where no data are available, $v_w = 25 \text{ m/s}$ may be used.

3. Scantlings of structural members

3.1 Stresses and forces in the supporting structure are to be evaluated by means of direct calculations.

3.2 Permissible stresses for stiffeners, girders and substructure:

\[\sigma_{\text{perm}} = \frac{235}{k \cdot v_s} \]

\[v_s = \text{Safety factors according to Table 7.2.} \]

3.3 The thickness of the plating is to be determined according to B.2, where the coefficient c may be reduced by 5%.

3.4 Proof of sufficient buckling strength is to be carried out in accordance with Section 3, F. for structures subjected to compressive stresses.

Table 7.2 - Safety factor v_s

<table>
<thead>
<tr>
<th>Structural element</th>
<th>v_s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LC1, LC2</td>
</tr>
<tr>
<td>Stiffeners (deck beam)</td>
<td>1,25</td>
</tr>
<tr>
<td>main girders (deck girder)</td>
<td>1,45</td>
</tr>
<tr>
<td>load-bearing structure (pillar system)</td>
<td>1,7</td>
</tr>
</tbody>
</table>
Section 8 - Bottom Structures

A. Single Bottom

1. Floor plates

1.1 General

1.1.1 Floor plates are to be fitted at every frame. For the connection with the frames, see Section 19, B.4.2.

1.1.2 Deep floors, particularly in the after peak, are to be provided with buckling stiffeners.

1.1.3 The floor plates are to be provided with limbers to permit the water to reach the pump suctions.

1.2 Scantlings

1.2.1 Floor plates in the cargo hold area

On ships without double bottom or outside any double bottom the scantlings of floor plates fitted between after peak bulkhead and collision bulkhead are to be determined according to the following formulae.

The section modulus is not to be less than:

\[W = c \cdot \frac{T}{e} \cdot \frac{\ell^2}{R^2} \text{ [cm}^3\text{]} \]

- \(e \) = spacing of plate floor [m]
- \(\ell \) = unsupported span [m], generally measured on upper edge of floor from side shell to side shell.
- \(R_{\text{min}} \) = 0,7 \(B \), if the floors are not supported at longitudinal bulkheads
- \(c \) = 7,5 for spaces which may be empty at full draught, e.g. machinery spaces, storerooms, etc.
- \(c \) = 4,5 elsewhere.

The depth of the floor plates is not to be less than:

\[h = 55 \cdot B - 45 \text{ [mm]} \]

\(h_{\text{min}} = 180 \text{ mm.} \)

In ships having rise of floor, at 0,1 \(\ell \) from the ends of the length \(\ell \) where possible, the depth of the floor plate webs shall not be less than half the required depth.

In ships having a considerable rise of floor, the depth of the floor plate webs at the beginning of the turn of bilge is not to be less than the depth of the frame.

The web thickness is not to be less than:

\[t = \frac{h}{100} + 3 \text{ [mm]} \]

The web sectional area is to be determined according to B.6.2.2 analogously.

1.2.2 The face plates of the floor plates are to be continuous over the span \(\ell \). If they are interrupted at the centre keelson, they are to be connected to the centre keelson by means of full penetration welding.

1.2.3 Floor plates in the peaks

1. The thickness of the floor plates in the peaks is not to be less than:

\[t = 0,035 \cdot L + 5,0 \text{ [mm]} \]

The thickness, however, need not be greater than required by B.6.2.1.

2. The floor plate height in the fore peak above top of keel or stem shoe is not to be less than:
For small ship deviation from this requirement may be considered.

3. The floor plates in the after peak are to extend over the stern tube (see also Section 13, C.1.4).

4. Where propeller revolutions are exceeding 300 rpm (approx.) the peak floors above the propeller are to be strengthened. Particularly in case of flat bottoms additional longitudinal stiffeners are to be fitted above or forward of the propeller.

2. Longitudinal girders

2.1 General

2.1.1 All single bottom ships are to have a centre girder. Where the breadth measured on top of floors does not exceed 9 m one additional side girder is to be fitted, and two side girders where the breadth exceeds 9 m. Side girders are not required where the breadth does not exceed 6 m.

2.1.2 For the spacing of side girders from each other and from the centre girder in way of bottom strengthening forward see Section 6, E.1.

2.1.3 The centre and side girders are to extend as far forward and aft as practicable. They are to be connected to the girders of a non-continuous double bottom or are to be scarphed into the double bottom by two frame spacings.

2.2 Scantlings

2.2.1 Centre girder

The web thickness t_w and the sectional area of the face plate A_f within $0.7L$ amidships is not to be less than:

$$t_w = 0.07L + 5.5 \text{ [mm]}.$$

$$A_f = 0.7L + 12 \text{ [cm}^2\text{]}.$$

Towards the ends the thickness of the web plate and the sectional area of the face plate may be reduced by 10% Lightening holes are to be avoided.

2.2.2 Side girder

The web thickness t_w and the sectional area of the face plate A_f within $0.7L$ amidships is not to be less than:

$$t_w = 0.04L + 5 \text{ [mm]}.$$

$$A_f = 0.2L + 6 \text{ [cm}^2\text{]}.$$

Towards the ends, the thickness of the web plate and the sectional area of the face plate may be reduced by 10%.

B. Double Bottom

1. General

1.1 On passenger ships and cargo ships other than tankers a double bottom shall be fitted extending from the collision bulkhead to the afterpeak bulkhead, as far as this is practicable and compatible with the design and proper working of the ship. For oil tankers see Section 24.

1.2 The arrangement shall comply with Chapter II-1 of SOLAS as amended. See also Section 36, C.

1.3 Where a double bottom is required to be fitted the inner bottom shall be continued out to the ship's sides in such a manner as to protect the bottom to the turn of the bilge. Such protection will be deemed satisfactory if the inner bottom is not lower at any part than a plane parallel with the keel line and which is located not less than a vertical distance h measured from the keel line, as calculated by the formula:

$$h = \frac{B}{20}$$

However, in no case is the value of h to be less than 760 mm, and need not be taken as more than 2000 mm.
1.4 Small wells for hold drainage may be arranged in the double bottom, their depth, however, shall be as small as practicable. A well extending to the outer bottom, may, however, be permitted at the after end of the shaft tunnel. Other wells may be permitted if their arrangement does not reduce the level of protection equivalent to that afforded by a double bottom complying with this Section. In no case shall the vertical distance from the bottom of such a well to a plane coinciding with the keel line be less than 500 mm.

1.5 In fore- and after peak a double bottom need not be arranged.

1.6 The centre girder should be watertight at least for 0.5 L amidships, unless the double bottom is subdivided by watertight side girders. On ships which are assigned the load line permissible for timber deck load, the double bottom is to be subdivided watertight by the centre girder or side girders as required by the ICLL 66.

1.7 For the double bottom structures of bulk carriers, see Section 23, B.4.

1.8 For bottom strengthening forward see Section 6,E.

1.9 For the material factor k see Section 2, B.2. For the corrosion addition t_c see Section 3, K.

1.10 For buckling strength of the double bottom structures see 8.3.

1.11 Ships touching ground whilst loading and discharging

On request of the owner, the bottom structures of a ship which is expected to frequently touch ground whilst loading and discharging will be examined particularly.

To fulfil this requirement, where the transverse framing system is adopted, plate floors are to be fitted at every frame and the spacing of the side girders is to be reduced to half the spacing as required according to 3.1.

When the longitudinal framing system is adopted, the longitudinal girder system according to 7.5 is to be applied.

The thickness of bottom plating is to be increased by 10%, compared to the plate thickness according to Section 6, B.1. to B.5.

2. Centre girder

2.1 Lightening holes

Lightening holes in the centre girder are generally permitted only outside 0.75 L amidships. Their depth is not to exceed half the depth of the centre girder and their lengths are not to exceed half the frame spacing.

2.2 Scantlings

2.2.1 The depth of the centre girder is not to be less than:

$$h = 350 + 45 \cdot B \quad [\text{mm}]$$

$$h_{\text{min}} = 600 \text{ mm}$$

Where longitudinal wing bulkheads are fitted, the distance between the bulkheads may be inserted in lieu of B, however, not less than 0.8 B.

For double bottoms with wing tanks (e.g. on bulk carriers) instead of the breadth B the fictitious breadth B' according to Fig. 8.1 may be used, but not less than 0.8 B.

$$B' = \frac{1}{3} (2B + b) \quad \text{for } \alpha \geq 35^\circ$$

$$B' = B \quad \text{for } \alpha < 35^\circ$$

Fig. 8.1 - Fictitious breadth B'
2.2.2 The thickness of the centre girder is not to be less than:

- within 0.7 \(L \) amidships:
 \[
 t_m = \frac{h}{h_a} \left(\frac{h}{100} + 1.0 \right) \sqrt{k} \quad \text{[mm]} \quad \text{for } h \leq 1200 \quad \text{[mm]}
 \]
 \[
 t_m = \frac{h}{h_a} \left(\frac{h}{120} + 3.0 \right) \sqrt{k} \quad \text{[mm]} \quad \text{for } h > 1200 \quad \text{[mm]}
 \]

- 0.15 \(L \) at the ends:
 \[
 t_e = 0.9 \cdot t_m
 \]
 \[h_a = \text{depth of centre girder as built [mm]}
 \]
 \[h_a \text{ need not be taken less than } h \text{ to calculate } t_m
 \]
 \[t_m = \text{shall not be less than } t \text{ according to 7.5}
 \]

3. Side girders

3.1 Arrangement

At least one side girder shall be fitted in the engine room and in way of 0.25 \(L \) aft of F.P. In the other parts of the double bottom, one side girder shall be fitted where the horizontal distance between ship's side and centre girder exceeds 4.5 m. Two side girders shall be fitted where the distance exceeds 8 m, and three side girders where it exceeds 10.5 m. The distance of the side girders from each other and from centre girder and ship's side respectively shall not be greater than:

- 1.8 m in the engine room within the breadth of engine seatings,
- 4.5 m where one side girder is fitted in the other parts of double bottom,
- 4.0 m where two side girders are fitted in the other parts of double bottom,
- 3.5 m where three side girders are fitted in the other parts of double bottom.

3.2 Scantlings

The thickness of the side girders is not to be less than:

\[
t = \frac{h^2}{120 \cdot h_a} \sqrt{k} \quad \text{[mm]}
\]

\[h = \text{depth of the centre girder [mm] according to 2.2.}
\]

\[h_a = \text{as built depth of side girders [mm]}
\]

\[h_a \text{ need not be taken less than } h \text{ to calculate } t
\]

\[t = \text{shall not be less than } t \text{ according to 7.5.}
\]

For strengthenings under the engine seating, see C.2.3.

4. Inner bottom

4.1 The thickness of the inner bottom plating is not to be less than:

\[
t = 1.1 \cdot a \cdot \sqrt{p \cdot k} + t_k \quad \text{[mm]}
\]

\[p = \text{design pressure [kN/m}^2\]

\[p \text{ is the greater of the following values:}
\]

\[p_1 = 10 \cdot (T - h_{in})
\]

\[p_2 = 10 \cdot h, \text{where the inner bottom forms a tank boundary}
\]

\[p_3 = p, \text{according to Section 4, C.2.}
\]

\[h = \text{distance from top of overflow pipe to inner bottom [m]}
\]
4.2 If no ceiling according to Section 21, B.1. is fitted on the inner bottom, the thickness determined in accordance with 4.1 for \(p_1 \) or \(p_2 \) is to be increased by 2 mm. This increase is not required for ships with the Notation "CONTAINER SHIP".

4.3 For strengthening in the range of grabs, see Section 23, B.4.3.

4.4 For strengthening of inner bottom in machinery spaces, see C.2.4.

5. **Double bottom tanks**

5.1 **Scantlings**

Structures forming boundaries of double bottom tanks are to comply with the requirements of Section 12.

5.2 **Fuel and lubricating oil tanks**

5.2.1 In double bottom tanks, oil fuel may be carried, the flash point (closed cup test) of which exceeds 60\(^\circ\) C.

5.2.2 Where practicable, lubricating oil discharge tanks or circulating tanks shall be separated from the shell.

5.2.3 For the separation of oil fuel tanks from tanks for other liquids, see Section 12, A.5.

5.2.4 For air, overflow and sounding pipes, see Section 21, E. as well as Rules for Machinery Installations, Volume III, Section 11.

5.2.5 Manholes for access to oil fuel double bottom tanks situated under cargo oil tanks are not permitted in cargo oil tanks nor in the engine room (see also Section 24, A.12.4).

5.2.6 The thickness of structures is not to be less than the minimum thickness according to Section 12, A.7.

5.2.7 If the tank top of the lubricating oil circulating tank is not arranged at the same level as the adjacent inner bottom, this discontinuity of the flow of forces has to be compensated by vertical and/or horizontal brackets.

The brackets shall be designed with a soft taper at the end of each arm. The thickness of the vertical brackets shall correspond to the thickness of the floor plates according to C.2.2, the thickness of the horizontal brackets shall correspond to the tank top thickness of the circulating tank.

The brackets shall be connected to the ship structure by double-bevel welds according to Section 19, B.3.2.2.

5.3 **Bilge wells**

Bilge wells shall have a capacity of more than 0.2 m\(^3\). Small holds may have smaller bilge wells. For the use of manhole covers or hinged covers for the access to the bilge suction, see Rules for Machinery Installations, Volume III, Section 11. Bilge wells are to be separated from the shell. Section 29, F.5. shall be applied analogously.

5.4 **Sea chests**

5.4.1 The plate thickness of sea chests is not to be less than:

\[
 t = 12 \cdot a \cdot \sqrt{\frac{p}{k}} + t_k \quad [\text{mm}]
\]

\(a \) = spacing of stiffeners [m]

\(p \) = blow out pressure at the safety valve [bar]. \(p \) is not to be less than 2 bar (see also Rules for Machinery Installations, Volume III, Section 11)

5.4.2 The section modulus of sea chest stiffeners is not to be less than:

\[
 W = 56 \cdot a \cdot p \cdot \ell \cdot k \quad [\text{cm}^3]
\]

\(a \) and \(p \) see 5.4.1

\(\ell \) = unsupported span of stiffeners [m].
5.4.3 The sea-water inlet openings in the shell are to be protected by gratings.

5.4.4 A cathodic corrosion protection with galvanic anodes made of zinc or aluminium is to be provided in sea chests with chest coolers. For the suitably coated plates a current density of 30 μA/m² is to be provided and for the cooling area a current density of 180 μA/m².

6. Double bottom, transverse framing system

6.1 Plate floors

6.1.1 It is recommended to fit plate floors at every frame in the double bottom if transverse framing is adopted.

6.1.2 Plate floors are to be fitted at every frame:
1. in way of strengthening of the bottom forward according to Section 6, E.,
2. in the engine room,
3. under boiler seatings.

6.1.3 Plate floors are to be fitted:
1. below bulkheads
2. under corrugated bulkheads, see also Section 3, D.4. and Section 23, B.4.3.

6.1.4 For the remaining part of the double bottom, the spacing of plate floors shall not exceed approximately 3 m.

6.2 Scantlings

6.2.1 The thickness of plate floors is not to be less than:
\[
t_{pf} = (t_m - 2.0) \cdot \sqrt{k} \quad [\text{mm}]
\]
\[
t_m = \text{thickness of centre girder according to 2.2.2.}
\]
The thickness need not exceed 16.0 mm.

6.2.2 The web sectional area of the plate floors is not to be less than:
\[
A_w = \varepsilon \cdot T \cdot \ell \cdot e \cdot (1 - \frac{2y}{\ell}) k \quad [\text{cm}^2]
\]
\[
\varepsilon = \text{spacing of plate floors [m]}
\]
\[
\ell = \text{span between longitudinal bulkheads, if any, [m]}
\]
\[
= B, \text{if longitudinal bulkheads are not fitted}
\]
\[
y = \text{distance between supporting point of the plate floor (ship's side, longitudinal bulkhead) and the section considered [m]. The distance y is not to be taken greater than 0.4 } \ell.
\]
\[
\varepsilon = 0.5 \text{ for spaces which may be empty at full draught, e.g. machinery spaces, store rooms, etc.}
\]
\[
= 0.3 \text{ elsewhere.}
\]

6.2.3 Where in small ships side girders are not required (see 3.1) at least one vertical stiffener is to be fitted at every plate floor; its thickness is to be equal to that of the floors and its depth of web at least 1/15 of the height of centre girder.

6.2.4 In way of strengthening of bottom forward according to Section 6, E., the plate floors are to be connected to the shell plating and inner bottom by continuous fillet welding.

6.2.5 For strengthening of floors in machinery spaces, see C.2.2.

6.3 Watertight floors

6.3.1 The thickness of watertight floors is not to be less than that required for tank bulkheads according to Section 12, B.2. In no case their thickness is to be less than required for plate floors according to 6.2.
6.3.2 The scantlings of stiffeners at watertight floors are to be determined according to Section 12, B.3.

6.4 Bracket floors

6.4.1 Where plate floors are not required according to 6.1 bracket floors may be fitted.

6.4.2 Bracket floors consist of bottom frames at the shell plating and reversed frames at the inner bottom, attached to centre girder, side girders and ship's side by means of brackets.

6.4.3 The section modulus of bottom and inner bottom frames is not to be less than:

\[W = n \cdot c \cdot a \cdot \ell^2 \cdot p \cdot k \] \hspace{1cm} [cm^3]

\(p \) = design load, as applicable [kN/m^2] as follows:

for bottom frames
\(p = p_b \) according to Section 4, B.3.

for inner bottom frames
\(p = p_i \) according to Section 4, C.2.
\(= p_1 \) or \(p_2 \) according to Section 4, D.1.
\(= 10 (T - h_{DB}) \)

The greater value is to be used.

\(h_{DB} \) = double bottom height [m]
\(n = 0.44, \) if \(p = p_2 \)
\(= 0.55, \) if \(p = p_1 \) or \(p_i \)
\(= 0.70, \) if \(p = p_b \)
\(c = 0.60 \) where struts according to 6.6 are provided at \(\ell/2 \), otherwise \(c = 1.0 \)
\(\ell \) = unsupported span [m] disregarding struts, if any.

6.5 Brackets

6.5.1 The brackets are, in general, to be of same thickness as the plate floors. Their breadth is to be 0,75 of the depth of the centre girder as per 2.2. The brackets are to be flanged at their free edges, where the unsupported span of bottom frames exceeds 1 m or where the depth of floors exceeds 750 mm.

6.5.2 At the side girders, bottom frames and inner bottom frames are to be supported by flat bars having the same depth as the inner bottom frames.

6.6 Struts

The cross sectional area of the struts is to be determined according to Section 10, C.2. analogously. The design force is to be taken as the following value:

\[P = 0.5 \cdot p \cdot a \cdot \ell \] \hspace{1cm} [kN]

\(p = \) load according to 6.4.3
\(\ell = \) unsupported span according to 6.4.3

7. Double bottom, longitudinal framing system

7.1 General

Where the longitudinal framing system changes to the transverse framing system, structural continuity or sufficient scarphing is to be provided for.

7.2 Bottom and inner bottom longitudinals

7.2.1 The section moduli are to be calculated according to Section 9, B.
7.2.2 Where bottom and inner bottom longitudinals are coupled by struts in the centre of their unsupported span the section moduli may be reduced to 60% of the values required by Section 9 B. The scantlings of the struts are be determined in accordance with 6.6.

7.3 Plate floors

7.3.1 The floor spacing shall, in general, not exceed 5 times the mean longitudinal frame spacing.

7.3.2 Floors are to be fitted at every frame as defined in 6.1.3 as well as in the machinery space under the main engine. In the remaining part of the machinery space, floors are to be fitted at every alternate frame.

7.3.3 Regarding floors in way of the strengthening of the bottom forward, Section 6, E. is to be observed. For ships intended for carrying heavy cargo, see Section 23.

7.3.4 The scantlings of floors are to be determined according to 6.2.

7.3.5 The plate floors are to be stiffened at every longitudinal by a vertical stiffener having the same scantlings as the inner bottom longitudinals. The depth of the stiffener need not exceed 150 mm. If necessary a strength check can be required.

7.4 Brackets

7.4.1 Where the ship's sides are framed transversely flanged brackets having a thickness of the floors are to be fitted between the plate floors at every transverse frame, extending to the outer longitudinals at the bottom and inner bottom.

7.4.2 One bracket is to be fitted at each side of the centre girder between the plate floors where the plate floors are spaced not more than 2.5 m apart. Where the floor spacing is greater, two brackets should be fitted.

7.5 Longitudinal girder system

7.5.1 Where longitudinal girders are fitted instead of bottom longitudinals, the spacing of floors may be greater than permitted by 7.3.1, provided that adequate strength of the structure is proved.

7.5.2 The plate thickness of the longitudinal girders is not to be less than:

\[t = (5.0 + 0.03 L) \sqrt{\kappa} \quad [\text{mm}] \]

\[t_{\text{min}} = 6.0 \sqrt{\kappa} \quad [\text{mm}] \]

7.5.3 The longitudinal girders are to be examined for sufficient safety against buckling according to Section 3,F.

8. Direct calculation of bottom structures

8.1 General, Definitions

8.1.1 Where deemed necessary, a direct calculation of bottom structures according to Section 23, B.4. may be required. Where it is intended to load the cargo holds unevenly (alternately loaded holds), this direct calculation is to be carried out.

Definitions

\[p_i = \text{load on inner bottom according to Section 4, C.2.} \quad [\text{kN/m}^2] \text{ or Section 4, C.1.3} \quad [\text{kN}], \text{ (where applicable)} \]

Where high density ore cargo is intended to be carried in the holds in a conical shape, in agreement with BKI a corresponding load distribution \(p_0 \) on the inner bottom is to be used for the calculation.

\[p'_s = 10 T + p_i \cdot c_f \quad [\text{kN/m}^2] \quad \text{(hogging condition)} \]

\[= 10 T - p_i \cdot c_f \quad [\text{kN/m}^2] \quad \text{(sagging condition)} \]

\(p_0, c_f \) see Section 4, A.2.2

\[\sigma_L = \text{design hull girder bending stress} \quad [\text{N/mm}^2] \text{ according to Section 5, D.1. (hogging or sagging, whichever condition is examined)} \]

\[\sigma_f = \text{bending stress} \quad [\text{N/mm}^2] \text{ in longitudinal direction, due to the load } p, \text{ in longitudinal girders} \]
\[\sigma_q = \text{bending stress [N/mm}^2\text{]} \text{ in transverse direction, due to the load} \ p, \text{ in transverse girders} \]
\[\tau = \text{shear stress in the longitudinal girders or transverse girders due to the load} \ p \ [\text{N/mm}^2]. \]

8.1.2 For two or more holds arranged one behind the other, the calculation is to be carried out for the hogging as well as for the sagging condition.

8.2 Design loads, permissible stresses

8.2.1 Design loads

\[p = p_1 = p_2 \ [\text{kN/m}^2] \text{ for loaded holds.} \]
\[p_1 = p_2 \ [\text{kN/m}^2] \text{ for empty holds.} \]

Where the grillage system of the double bottom is subjected to single loads caused by containers, the stresses in the bottom structure are to be calculated for these single loads as well as for the bottom load \(p_a \) as per 8.1.1. The permissible stresses specified there in are to be observed.

8.2.2 Permissible stresses

.1 Permissible equivalent stress \(\sigma_v \)

The equivalent stress is not to exceed the following value:

\[\sigma_v = \frac{230}{k} \ [\text{N/mm}^2] \]
\[= \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \cdot \sigma_y + 3\tau^2} \]

\(\sigma_x = \) stress in the ship’s longitudinal direction
\(= \sigma_L + \sigma_t \)
\(= 0 \) for webs of transverse girders

\(\sigma_y = \) stress in the ship’s transverse direction
\(= \sigma_q \)
\(= 0 \) for webs of longitudinal girders

Note

Where grillage computer programs are used the following stress definitions apply:

\[\sigma_v = \sigma_L + \sigma_t + 0.3 \cdot \sigma_q \]
\[\sigma_v = \sigma_q + 0.3 \cdot (\sigma_L + \sigma_t) \]

.2 Permissible max. values for \(\sigma_v, \sigma_q \text{ and } \tau $$

The stresses \(\sigma_v, \sigma_q \text{ and } \tau \) alone are not to exceed the following values:

\[\sigma_v, \sigma_q = \frac{150}{k} \ [\text{N/mm}^2] \]
\[\tau = \frac{100}{k} \ [\text{N/mm}^2] \]

8.3 Buckling strength

The buckling strength of the double bottom structures is to be examined according to Section 3, F. For this purpose the design stresses according to Section 5, D.1. and the stresses due to local loads are to be considered.

9. Testing for tightness

Each compartment or tank of a double bottom is to be tested for tightness as specified in Section 12, H.
C. Bottom Structure in Machinery Spaces in Way of the Main Propulsion Plant

1. Single bottom

1.1 The scantlings of floors are to be determined according to A.1.2.1 for the greatest span measured in the engine room.

1.2 The web depth of the plate floors in way of the engine foundation should be as large as possible. The depth of plate floors connected to web frames shall be similar to the depth of the longitudinal foundation girders. In way of the crank case, the depth shall not be less than 0,5 h.

The web thickness is not to be less than:

\[t = \frac{h}{100} + 4 \] [mm]

h see A.1.2.1.

1.3 The thickness of the longitudinal foundation girders is to be determined according to 3.2.1.

1.4 No centre girder need be fitted in way of longitudinal foundation girders. Intercostal docking profiles are to be fitted instead. The sectional area of the docking profiles is not to be less than:

\[A_w = 10 + 0,2 L \] [cm²].

Docking profiles are not required where a bar keel is fitted. Brackets connecting the plate floors to the bar keel are to be fitted on either side of the floors.

2. Double bottom

2.1 General

2.1.1 Lightening holes in way of the engine foundation are to be kept as small as possible with due regard, however, to accessibility. Where necessary, the edges of lightening holes are to be strengthened by means of face bars or the plate panels are to be stiffened.

2.1.2 Local strengthenings are to be provided beside the following minimum requirements, according to the construction and the local conditions.

2.2 Plate floors

Plate floors are to be fitted at every frame. The floor thickness according to B.6.2 is to be increased as follows:

\[3,6 + \frac{P}{500} \% \]

minimum 5%, maximum 15%.

\[P = \text{single engine output [kW]} \]

The thickness of the plate floors below web frames is to be increased in addition to the above provisions. In this case the thickness of the plate floors is not to be taken less than the web thickness according to Section 9, A.6.2.1.

2.3 Side girders

2.3.1 The thickness of side girders under an engine foundation top plate inserted into the inner bottom is to be similar to the thickness of side girders above the inner bottom according to 3.2.1.

2.3.2 Side girders with the thickness of longitudinal girders according to 3.2 are to be fitted under the foundation girders in full height of the double bottom. Where two side girders are fitted on either side of the engine, one may be a half-height girder under the inner bottom for engines up to 3000 kW.

2.3.3 Side girders under foundation girders are to be extended into the adjacent spaces and to be connected to the bottom structure. This extension abaft and forward of the engine room bulkheads shall be two to four frame spacings if practicable.

2.3.4 No centre girder is required in way of the engine seating (see 1.4).
2.4 Inner bottom

Between the foundation girders, the thickness of the inner bottom plating required according to B.4.1 is to be increased by 2 mm. The strengthened plate is to be extended beyond the engine seating by three to five frame spacings.

3. Engine seating

3.1 General

3.1.1 The following rules apply to low speed engines. Seating for medium and high speed engines as well as for turbines will be specially considered.

3.1.2 The rigidity of the engine seating and the surrounding bottom structure must be adequate to keep the deformations of the system due to the loads within the permissible limits. In special cases, proof of deformations and stresses may be required.

Note:

1. At the draught resulting in the maximum deflection in way of the foundation the deflection of two stroke, cross head engines including foundation ought to be less than 1 mm over the length of the engine. In addition to the deflection of engine and foundation the crank web deflections by which the admissible engine deflection may be limited to values less than 1 mm have to be considered as well. For medium speed and high speed engines not only the deflections of crank webs have to be taken into account but for assuring trouble free bearing conditions of the crank shaft the bending deflection of the engine is to be limited.

2. If in special cases a direct calculation of motor seatings may become necessary, the following is to be observed:

- For seatings of slow speed two-stroke diesel engines and elastically mounted medium speed four-stroke diesel engines the total deformation $\Delta f = f_u + f_o$ shall not be greater than:

$$\Delta f = 0.2 \cdot \ell_m \quad [\text{mm}]$$

$\ell_m = \text{length of motor} \quad [\text{m}]$

$f_u = \text{maximum vertical deformation of the seating downwards within the length } \ell_m \quad [\text{mm}]$

$f_o = \text{maximum vertical deformation of the seating upwards within the length } \ell_m \quad [\text{mm}]$.

The individual deformations f_u and f_o shall not be greater than:

$$f_u_{max} , f_o_{max} = 0.7 \times \Delta f \quad [\text{mm}]$$

For the calculation of the deformations the maximum static and wave induced dynamic internal and external differential loads due to local loads and the longitudinal hull girder bending moments as well as the rigidity of the motor are to be considered.

- For seatings of non-elastically mounted medium speed four-stroke diesel engines the deformation values shall not exceed 50% of the above values.

3.1.3 Due regard is to be paid, at the initial design stage, to a good transmission of forces in transverse and longitudinal direction, see also B.5.2.7.

3.1.4 The foundation bolts for fastening the engine at the seating shall be spaced no more than 3 x d apart from the longitudinal foundation girder. Where the distance of the foundation bolts from the longitudinal foundation girder is greater, proof of equivalence is to be provided.

$d = \text{diameter of the foundation bolts.}$

3.1.5 In the whole speed range of main propulsion installations for continuous service resonance vibrations with inadmissible vibration amplitudes must not occur; if necessary structural variations have to be provided for avoiding resonance frequencies. Otherwise, a barred speed range has to be fixed. Within a range of -10% to + 5% related to the rated speed no barred speed range is permitted. BKI may require a vibration analysis and, if deemed necessary, vibration measurement.

3.2 Longitudinal girders

3.2.1 The thickness of the longitudinal girders above the inner bottom is not to be less than:
3.2.2 Where two longitudinal girders are fitted on either side of the engine, their thickness required according to 3.2.1 may be reduced by 4 mm.

3.2.3 The sizes of the top plate (width and thickness) shall be sufficient to attain efficient attachment and seating of the engine and -depending on seating height and type of engine- adequate transverse rigidity.

The thickness of the top plate shall approximately be equal to the diameter of the fitted-in bolts. The cross sectional area of the top plate is not to be less than:

\[A_T = \left\{ \begin{array}{ll}
\frac{P}{15} & \text{for } P \leq 750 \text{ kW} \\
\frac{P}{750} & \text{for } P > 750 \text{ kW}
\end{array} \right. \]

Where twin engines are fitted, a continuous top plate is to be arranged in general if the engines are coupled to one propeller shaft.

3.2.4 The longitudinal girders of the engine seating are to be supported transversely by means of web frames or wing bulkheads. The scantlings of web frames are to be determined according to Section 9, A.6.

3.2.5 Top plates are preferably to be connected to longitudinal and transverse girders thicker than approx. 15 mm by means of a double bevel butt joint (K butt joint), (see also Section 19, B.3.2).

D. Docking Calculation

For ships exceeding 120 m in length, for ships of special design, particularly in the aft body and for ships with a docking load of more than 700 kN/m a special calculation of the docking forces is required. The maximum permissible cargo load to remain onboard during docking and the load distribution are to be specified. The proof of sufficient strength can be performed either by a simplified docking calculation or by a direct docking calculation. The number and arrangement of the keel blocks shall agree with the submitted docking plan. Direct calculations are required for ships with unusual overhangs at the ends or with inhomogeneous distribution of cargo.

1. Simplified docking calculation

The local forces of the keel blocks acting on the bottom structures can be calculated in a simplified manner using the nominal keel block load \(q_0 \). Based on these forces sufficient strength must be shown for all structural bottom elements which may be influenced by the keel block forces.

The nominal keel block load \(q_0 \) is calculated as follows, see also Figure 8.2:

\[q_0 = \frac{G_s \cdot C}{l_{KB}} \quad [\text{kN/m}] \]
where

- \(G_s \) = total ship weight during docking including cargo, ballast and consumables [kN]
- \(L_{KB} \) = length of the keel block range [m]; i.e. in general the length of the horizontal flat keel
- \(C \) = weighting factor
 - = 1,25 in general
 - = 2,0 in the following areas:
 - within 0,075 \cdot L_{KB} from both ends of the length \(L_{KB} \)
 - below the main engine
 - in way of the transverse bulkheads along a distance of 2 \cdot e
 - in way of gas tank supports of gas tankers
- \(e \) = distance of plate floors adjacent to the transverse bulkheads [m]; for \(e \) no value larger than 1 m needs to be taken.

If a longitudinal framing system is used in the double bottom in combination with a centre line girder in accordance with B.2., it may be assumed that the centre line girder carries 50 % of the force and the two adjacent (see Section 6, B.5.2) keel block longitudinals 25 % each.

2. **Direct docking calculation**

If the docking block forces are determined by direct calculation, e.g. by a finite element calculation, considering the stiffness of the ship's body and the weight distribution, the ship has to be assumed as elastically bedded at the keel blocks. The stiffness of the keel blocks has to be determined including the wood layers.

If a floating dock is used, the stiffness of the floating dock is to be taken into consideration.

Transitory docking conditions need also to be considered.

3. **Permissible stresses**

The permissible equivalent stress \(\sigma_v \) is:

\[
\sigma_v = \frac{R_{sh}}{1.05} \quad [N/mm^2]
\]

4. **Buckling strength**

The bottom structures are to be examined according to Section 3, F. For this purpose a safety factor \(S = 1.05 \) has to be applied.
This page intentionally left blank
Section 9

Framing System

A. Transverse Framing

1. General

1.1 Frame spacing

Forward of the collision bulkhead and aft of the after peak bulkhead, the frame spacing shall in general not exceed 600 mm.

1.2 Definitions

- \(k \): material factor according to Section 2, B.2.
- \(\ell \): unsupported span [m] according to Section 3, C., see also Fig. 9.1
- \(\ell_{\text{min}} \): 2.0 m
- \(\ell_{\text{Ko}}, \ell_{\text{Ku}} \): length of lower/upper bracket connection of main frames within the length \(\ell \) [m], see Fig. 9.1

![Fig. 9.1 - Unsupported span of transverse frames](image)

\[
m_a = 0.204 \frac{a}{\ell} \left[4 - \left(\frac{a}{\ell} \right)^2 \right], \text{ where } \frac{a}{\ell} \leq 1
\]

- \(e \): spacing of web frames [m]
- \(p \): \(p_s \) or \(p_e \) as the case may be
- \(p_s \): load on ship's sides [kN/m²] according to Section 4, B.2.1
- \(p_e \): load on bow structures [kN/m²] according to Section 4, B.2.2 or stern structures according to Section 4, B.2.3 as the case may be
- \(p_L \): 'tween deck load [kN/m²] according to Section 4, C.1.
- \(p_1, p_2 \): pressure [kN/m²] according to Section 4, D.1.
- \(H_u \): depth up to the lowest deck [m]
- \(c_r \): factor for curved frames
A Section 9 - Framing System

9-2/12

\[c_{\text{min}} = 0.75 \]

\[s = \text{max. height of curve.} \]

2. **Main frames**

2.1 **Scantlings**

2.1.1 The section modulus \(W_R \) and shear area \(A_R \) of the main frames including end attachments are not to be less than:

\[W_R = n \cdot c \cdot a \cdot t^2 \cdot p \cdot c_r \cdot k \quad \text{[cm}^3\text{]} \]

Upper end shear area:

\[A_{RU} = (1 - 0.817 \cdot m_a) 0.04 \cdot a \cdot t \cdot p \cdot k \quad \text{[cm}^2\text{]} \]

Lower end shear area:

\[A_{RO} = (1 - 0.817 \cdot m_a) 0.07 \cdot a \cdot t \cdot p \cdot k \quad \text{[cm}^2\text{]} \]

\[n = 0.9 - 0.0035 \cdot L \quad \text{for} \ L < 100 \text{ m} \]

\[= 0.55 \quad \text{for} \ L \geq 100 \text{ m} \]

\[c = 1,0 - \left(\frac{\ell_{\text{ku}}}{\ell} + 0.4 \cdot \frac{\ell_{\text{ke}}}{\ell} \right) \]

\[c_{\text{min}} = 0.6 \]

Within the lower bracket connection the section modulus is not to be less than the value obtained for \(c = 1.0 \).

2.1.2 In ships with more than 3 decks the main frames are to extend at least to the deck above the lowest deck.

2.1.3 The scantlings of the main frames are not to be less than those of the 'tween deck frames above.

2.1.4 Where the scantlings of the main frames are determined by strength calculations, the following permissible stresses are to be observed:

- Bending stress: \(\sigma_b = \frac{150}{k} \quad \text{[N/mm}^2\text{]} \]
- Shear stress: \(\tau = \frac{100}{k} \quad \text{[N/mm}^2\text{]} \]
- Equivalent stress: \(\sigma_v = \sqrt{\sigma_b^2 + 3 \cdot \tau^2} = \frac{180}{k} \quad \text{[N/mm}^2\text{]} \]

2.1.5 Forces due to lashing arrangements acting on frames are to be considered when determining the scantlings of the frames (see also Section 21, H)

2.1.6 For main frames in holds of bulk carriers see also Section 23, B.5.2.

2.2 **Frames in tanks**

The section modulus \(W \) and shear area \(A \) of frames in tanks or in hold spaces for ballast water are not to be less than the greater of the following values:

\[W_1 = n \cdot c \cdot a \cdot t^2 \cdot p_1 \cdot c_r \cdot k \quad \text{[cm}^3\text{]} \]

\[W_2 \quad \text{according to Section 12, B.3.1, and} \]

\[A_1 = (1 - 0.817 \cdot m_a) 0.05 \cdot a \cdot t \cdot p_1 \cdot k \quad \text{[cm}^2\text{]} \]

\[A_2 = (1 - 0.817 \cdot m_a) 0.04 \cdot a \cdot t \cdot p_2 \cdot k \quad \text{[cm}^2\text{]} \]

\(n \) and \(c \) see 2.1.1.
2.3 End attachment

2.3.1 The lower bracket attachment to the bottom structure is to be determined according to Section 3, D.2. on the basis of the main frame section modulus.

2.3.2 The upper bracket attachment to the deck structure and/or to the 'tween deck frames is to be determined according to Section 3, D.2. on the basis of the section modulus of the deck beams or 'tween deck frames whichever is the greater.

2.3.3 Where frames are supported by a longitudinally framed deck, the frames fitted between web frames are to be connected to the adjacent longitudinals by brackets. The scantlings of the brackets are to be determined in accordance with Section 3, D.2. on the basis of the section modulus of the frames.

3. 'Tween deck and superstructure frames

3.1 General

In ships having a speed exceeding \(v_0 = 1.6 \sqrt{L} \) [kn], the forecastle frames forward of 0.1 \(L \) from F.P are to have at least the same scantlings as the frames located between the first and the second deck.

Where further superstructures, or big deckhouses are arranged on the superstructures strengthening of the frames of the space below may be required.

For 'tween deck frames in tanks, the requirements for the section moduli \(W_1 \) and \(W_2 \) according to 2.2 are to be observed.

3.2 Scantlings

The section modulus \(W_t \) and shear area \(A_t \) of the 'tween deck and superstructure frames are not to be less than:

\[
W_t = 0.55 \cdot a \cdot \ell^2 \cdot p \cdot c_t \cdot k \quad [\text{cm}^3]
\]

\[
A_t = (1 - 0.817 \cdot w_a) 0.05 \cdot a \cdot \ell \cdot p \cdot k \quad [\text{cm}^2]
\]

\(p \) is not to be taken less than:

\[
p_{\text{min}} = 0.4 \cdot p_L \cdot \left(\frac{b}{\ell} \right)^2 \quad [\text{kN/m}^2]
\]

\(b \) = unsupported span of the deck beam below the respective 'tween deck frame [m].

For 'tween deck frames connected at their lower ends to the deck transverses, \(p_{\text{min}} \) is to be multiplied by the factor:

\[
f_1 = 0.75 + 0.2 \frac{c}{a} \geq 1.0
\]

3.3 End attachment

'Tween deck and superstructure frames are to be connected to the main frames below, or to the deck. The end attachment may be carried out in accordance with Fig. 9.2.

For 'tween deck and superstructure frames 2.3.3 is to be observed, where applicable.

4. Peak frames and frames in way of the stern

4.1 Peak frames

4.1.1 Section modulus \(W_p \) and shear area \(A_p \) of the peak frames are not to be less than:
4.1.2 Where the length of the forepeak does not exceed 0.06 \(L \), the section modulus required at half forepeak length may be maintained throughout the entire forepeak.

4.1.3 The peak frames are to be connected to the stringer plates to ensure sufficient transmission of shear forces.

4.1.4 Ships not exceeding 30 m in length are to have peak frames having the same section modulus as the main frames.

4.1.5 Where peaks are to be used as tanks, the section modulus of the peak frames is not to be less than required by Section 12, B.3.1 for \(W_2 \).

4.2 Frames in way of the stern

4.2.1 The frames in way of the cruiser stern arranged at changing angles to the transverse direction are to have a spacing not exceeding 600 mm and are to extend up to the deck above peak tank top maintaining the scantlings of the peak frames.

4.2.2 An additional stringer may be required in the after ship outside the afterpeak where frames are inclined considerably and not fitted vertically to the shell.

5. Strengthenings in fore- and aft body

5.1 General

In the fore body, i.e. from the forward end to 0.15 \(L \) behind F.P., flanged brackets have to be used in principle.

As far as practicable and possible, tiers of beams or web frames and stringers are to be fitted in the fore- and after peak.

5.2 Tiers of beams

5.2.1 Forward of the collision bulkhead, tiers of beams (beams at every other frame) generally spaced not more than 2.6 m apart, measured vertically, are to be arranged below the lowest deck within the forepeak. Stringer plates are to be fitted on the tiers of beams which are to be connected by continuous welding to the shell plating and by a bracket to each frame. The scantlings of the stringer plates are to be determined from the following formulae:

\[
\text{width } b = 75 \sqrt{L} \text{ [mm]}
\]

\[
\text{thickness } t = 6.0 + \frac{L}{40} \text{ [mm].}
\]

5.2.2 The cross sectional area of each beam is to be determined according to Section 10, C.2 for a load

\[
P = A \cdot p \text{ [kN]}
\]

\[
A = \text{load area of a beam [m}^2]\]

\[
p = p_s \text{ or } p_e, \text{ whichever is applicable.}
\]

5.2.3 In the after peak, tiers of beams with stringer plates generally spaced 2.6 m apart, measured vertically, are to be arranged as required under 5.2.1, as far as practicable with regard to the ship's shape.

5.2.4 Intermittent welding at the stringers in the afterpeak is to be avoided. Any scalloping at the shell plating is to be restricted to holes required for welding and for limbers.

5.2.5 Where peaks are used as tanks, stringer plates are to be flanged or face bars are to be fitted at their inner edges. Stringers are to be effectively fitted to the collision bulkhead so that the forces can be properly transmitted.

5.2.6 Where perforated decks are fitted instead of tiers of beams, their scantlings are to be determined as for wash bulkheads according to Section 12, G. The requirements regarding cross sectional area stipulated in 5.2.2 are, however, to be complied with.

5.3 Web frames and stringers

5.3.1 Where web frames and supporting stringers are fitted instead of tiers of beams, their scantlings are to be determined
as follows:

.1 Section modulus:

\[W = 0,55 \cdot e \cdot \ell^2 \cdot p_s \cdot n_c \cdot k \quad [\text{cm}^3] \]

.2 Web sectional area at the supports:

\[A_w = 0,05 \cdot e \cdot \ell_1 \cdot p_s \cdot k \quad [\text{cm}^2] \]

\(\ell = \) unsupported span [m], without consideration of cross ties, if any

\(\ell_1 = \) similar to \(\ell \), however, considering cross ties, if any

\(n_c = \) coefficient according to the following Table 9.1.

5.3.2 Vertical transverses are to be interconnected by cross ties the cross sectional area of which is to be determined according to 5.2.2.

5.3.3 Where web frames and stringers in the fore body are dimensioned by strength calculations the stresses shall not exceed the permissible stresses in 2.1.4.

Note

Where a large and long bulbous bow is arranged a dynamic pressure \(p_{sdyn} \) is to be applied unilaterally. The unilateral pressure can be calculated approximately as follows:

\[p_{sdyn} = p_o \cdot c_F \cdot \left(I + \frac{z}{T} \right) \quad [\text{kN/m}^2] \]

\(p_o, c_F, z \) and \(f \) according to Section 4, with \(f = 0,75 \).

For the effective area of \(p_{sdyn} \) the projected area of the z-x-plane from forward to the collision bulkhead may be assumed.

<table>
<thead>
<tr>
<th>Number of cross ties</th>
<th>(n_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,0</td>
</tr>
<tr>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>2</td>
<td>0,3</td>
</tr>
<tr>
<td>(\geq 3)</td>
<td>0,2</td>
</tr>
</tbody>
</table>

5.4 Web frames and stringers in 'tween decks and superstructure decks

Where the speed of the ship exceeds \(v_o = 1,6 \sqrt{L} \) [kn] or in ships with a considerable bow flare respectively, stringers and transverses according to 5.3 are to be fitted within 0,1 \(L \) from forward perpendicular in 'tween deck spaces and superstructures.

The spacing of the stringers and transverses shall be less than 2,8 m. A considerable bow flare exists, if the flare angel exceeds 40°, measured in the ship's transverse direction and related to the vertical plane.

5.5 Tripping brackets

5.5.1 Between the point of greatest breadth of the ship at maximum draft and the collision bulkhead tripping brackets spaced not more than 2,6 m, measured vertically, according to Fig. 9.3 are to be fitted. The thickness of the brackets is to be determined according to 5.2.1. Where proof of safety against tripping is provided tripping brackets may partly or completely be dispensed with.

5.5.2 In the same range, in 'tween deck spaces and superstructures of 3 m and more in height, tripping brackets according to 5.5.1 are to be fitted.
5.5.3 Where peaks or other spaces forward of the collision bulkhead are intended to be used as tanks, tripping brackets according to 5.5.1 are to be fitted between tiers of beams or stringers.

5.5.4 For ice strengthening, see Section 15.

6. Web frames in machinery spaces

6.1 Arrangement

6.1.1 In the engine and boiler room, web frames are to be fitted. Generally, they should extend up to the uppermost continuous deck. They are to be spaced not more than 5 times the frame spacing in the engine room.

6.1.2 For combustion engines, web frames shall generally be fitted at the forward and aft ends of the engine. The web frames are to be evenly distributed along the length of the engine.

6.1.3 Where combustion engines are fitted aft, stringers spaced 2.6 m apart are to be fitted in the engine room, in alignment with the stringers in the after peak, if any. Otherwise the main frames are to be adequately strengthened. The scantlings of the stringers shall be similar to those of the web frames. At least one stringer is required where the depth up to the lowest deck is less than 4 m.

6.1.4 For the bottom structure in machinery spaces, see Section 8, C.

6.2 Scantlings

6.2.1 The section modulus of web frames is not to be less than:

\[W = 0.8 \cdot e \cdot c^2 \cdot p_s \cdot k \] [cm³]

The moment of inertia of web frames is not to be less than:

\[I = \begin{cases} H (4.5 H - 3.5) c_i \cdot 10^2 & \text{[cm}^4]\text{ for } 3 \leq H \leq 10 \\ H (7.25 H - 31) c_i \cdot 10^2 & \text{[cm}^4]\text{ for } H > 10 \\ c_i = 1 + (H_u - 4) \cdot 0.07 \end{cases} \]

The scantlings of the webs are to be calculated as follows:

- depth \(h = 50 \cdot H \) [mm],
- \(h_{min} = 250 \) mm,
- thickness \(t = \frac{h}{32 + 0.03 \cdot h} \) [mm],
- \(t_{min} = 8.0 \) mm.

6.2.2 Ships with a depth of less than 3 m are to have web frames with web scantlings not less than 250 x 8 mm and a minimum face sectional area of 12 cm².
6.2.3 In very wide engine rooms it is recommended to provide side longitudinal bulkheads.

B. Bottom, Side- and Deck Longitudinals, Side Transverses

1. General

1.1 Longitudinals shall preferably be continuous through floor plates and transverses. Attachments of their webs to the webs of floor plates and transverses are to be such that the support forces will be transmitted without exceeding a shear stress of 100/k [N/mm²].

For longitudinal frames and beams sufficient fatigue strength according to Section 20 is to be demonstrated.

Ahead of 0.1 L from F.P. webs of longitudinals are to be connected effectively at both ends. If the flare angle is more than 40° additional heel stiffeners or brackets are to be arranged.

1.2 Where longitudinals abut at transverse bulkheads or webs, brackets are to be fitted. These longitudinals are to be attached to the transverse webs or bulkheads by brackets with the thickness of the stiffeners web thickness, and with a length of weld at the longitudinals equal to 2 x depth of the longitudinals.

1.3 Outside the upper and the lower hull flange, the cross sectional areas stipulated in 1.2 may be reduced by 20%.

1.4 Where longitudinals are sniped at watertight floors and bulkheads, they are to be attached to the floors by brackets of the thickness of plate floors, and with a length of weld at the longitudinals equal to 2 x depth of the bottom longitudinals. (For longitudinal framing systems in double bottoms, see Section 8, B.7.)

1.5 For buckling strength of longitudinals see Section 3, F.2.3 and 3.

2. Definitions

\[k = \text{material factor according to Section 2, B.2.} \]
\[\ell = \text{unsupported span [m], see also Fig.9.4} \]
\[p = \text{load [kN/m²]} \]
\[= p_0 \cdot p_{hl} \quad \text{according to section 4.B.3. for bottom longitudinals.} \]
\[= p_s \cdot p_{sl} \quad \text{or } p_e \quad \text{according to Section 4, B.2.1 for side longitudinals} \]
\[= p_l \quad \text{according to Section 4, D.1.1. for longitudinals at ship's sides, at longitudinal bulkheads and inner bottom in way of tanks.} \]

For bottom longitudinals in way of tanks \(p \) due to tank pressure need not to be taken larger than

\[p_l = \left(10 \cdot T_{\min} - p_0 \cdot c_F \right) \quad [\text{kN/m²}] \]

For side longitudinals below \(T_{\min} \) \(p \) need not to be taken larger than:

\[p_l = \left(10 \cdot T_{\min} - z \right) - p_0 \cdot c_F \left(1 + \frac{z}{T_{\min}} \right) \quad [\text{kN/m²}] \]

For the expression in the squared brackets no value < 0 shall be used.

\[= p_d \quad \text{according to Section 4, D.2. for longitudinals at ship's sides, at deck and at longitudinal bulkheads in tanks intended to be partially filled.} \]
\[= p_D \quad \text{according to Section 4, B.1. for deck longitudinals of the strength deck} \]
\[= p_{DA} \quad \text{according to Section 4, B.5. for exposed decks which are not to be treated as strength deck} \]
\[= p_l \quad \text{according to Section 4, C.2. for inner bottom longitudinals, however, not less than the load corresponding to the distance between inner bottom and deepest load waterline} \]
\[= p_L \quad \text{according to Section 4, C.1. for longitudinals of cargo decks and for inner bottom longitudinals} \]
\[p_h \quad \text{according to Section 4, A.2.2} \]
\[c_F \quad \text{according to Section 4, Table 4.1} \]
T_{\text{min}} = \text{smallest ballast draught}

\sigma_L = \text{Axial stress in the profile considered [N/mm}^2\text{]} \text{ according to Section 5, D.1.}

z = \text{distance of structure [m] above base line.}

x_{l} = \text{distance [mm] from transverse structure at I and J respectively (see Fig.9.4)}

m = \left(m_k^2 - m_a^2 \right); \quad m \geq \frac{m_k^2}{2}

m_a = \text{see A.1.2}

m_k = 1 - \frac{\ell_{KI} + \ell_{KJ}}{10^3 \cdot \ell}

\ell_{KI}; \ell_{KJ} = \text{effective supporting length [mm] due to heel stiffeners and brackets at frame I and J (see Fig. 9.4)}

\ell_k = h_s + 0,3 \cdot h_b + \frac{1}{c_1} \leq (l_b + h_s)

c_1 = \frac{1}{\ell_b - 0,3 \cdot h_b} + \frac{c_2 (l_b - 0,3 \cdot h_b)}{h_b^2} \left[\frac{1}{\text{mm}} \right]

\text{For } \ell_b \leq 0,3 \cdot h_b \quad \frac{1}{c_1} = 0 \text{ is to be taken.}

h_s, \ell_b, h_b, h_s, \ell_s, h_b = \text{dimensions of the brackets [mm]}

c_2 = 3 \text{ in general}

c_2 = 1 \text{ for flanged brackets (see Fig. 9.4 (c))}

h_s = \text{height of bracket [mm] in the distance}

x_I = h_s + 0,3 \cdot h_s \text{ of frame I and J respectively}

If no heel stiffeners or brackets are arranged the respective values are to be taken as (h_s, h_b, \frac{1}{c_1}) = 0 \text{ (see Fig. 9.4 (d))}.
3. Scantlings of longitudinals and longitudinal beams

3.1 The section modulus \(W \) and shear area \(A \) of longitudinals and longitudinal beams of the strength deck is not to be less than:

\[
W = \frac{83.3}{\sigma_{pr}} \cdot m \cdot a \cdot \ell^2 \cdot p \quad [\text{cm}^3]
\]

\[
A = (1 - 0.817 \cdot m_a) \cdot 0.05 \cdot a \cdot \ell \cdot p \cdot k \quad [\text{cm}^2],
\]

The permissible stress \(\sigma_{pr} \) is to be determined according to the following formulae:

\[
\sigma_{pr} = \sigma_{perm} - |\sigma_k| \quad [\text{N/mm}^2]
\]

\[
\sigma_{pr} \leq \frac{150}{k} \quad [\text{N/mm}^2]
\]
\[\sigma_{\text{perm}} = \left(0.8 + \frac{L}{450} \right) \frac{230}{k} \text{ [N/mm}^2\text{]} \]

\[\sigma_{\text{perm max}} = \frac{230}{k} \text{ [N/mm}^2\text{]} \]

For side longitudinals \(W_R \) and \(A_R \) shall not be less than:

\[W_{\text{min}} = \frac{83}{\sigma_{\text{perm max}}} \cdot m \cdot a \cdot t^2 \cdot p_{nl} \text{ [cm}^3\text{]} \]

\[A_{\text{min}} = (1 - 0.817 \cdot m_n) 0.037 \cdot a \cdot t \cdot p_{nl} \cdot k \text{ [cm}^2\text{]} \]

\(p_{nl} \) according to Section 4, B.2.1.1 and 2.1.2 respectively.

For fatigue strength calculations according to Section 20, Table 20.1 bending stresses due to local stiffener bending and longitudinal normal stresses due to global hull girder bending are to be combined. Bending stresses from local stiffener bending due to lateral loads \(p \) can be calculated as follows:

\[\sigma_A = \frac{83 \cdot m \cdot a \cdot t^2 \cdot p}{W_a} + \sigma_h \text{ [N/mm}^2\text{]} \]

\[\sigma_h = \text{ according to Section 3, L.1.} \]

\[m_i = 1 - 4 \cdot c_3 \cdot [1 - 0.75 \cdot c_3] \]

for position B at I

\[c_{ij} = \frac{h_{ki} + t_{ki} - t_{ki}^2}{10^3 \cdot t \cdot m_k} \]

for position B at J

\[c_{ij} = \frac{h_{kj} + t_{kj} - t_{kj}^2}{10^3 \cdot t \cdot m_k} \]

The stresses at point A shall not be less than the stresses in adjacent fields (aft of frame I and forward of frame J respectively).

In way of curved shell plates (e.g. in the bilge area) section modulus \(W_{\text{min}} \), shear area \(A_{\text{min}} \), and stress \(\sigma_h \) can be reduced by the factor \(C_R \).

\[C_R = \frac{1}{1 + \frac{a \cdot t^4 \cdot t}{0.006 \cdot I_a \cdot R^3}} \]

\(t \) = thickness of shell plating [mm]

\(I_a \) = moment of inertia of the longitudinal frame [cm]⁴, including effective width

\(R \) = bending radius of the plate [m]

3.2 In tanks, the section modulus is not to be less than \(W_2 \) according to Section 12, B.3.1.1.

3.3 Where the scantlings of longitudinals are determined by strength calculations, the total stress comprising local bending and normal stresses due to longitudinal hull girder bending is not to exceed the total stress value \(\sigma_{\text{perm}} \) and \(\sigma_{\text{perm max}} \) respectively as defined in 3.1.

3.4 If non symmetrical section are used additional stresses according to Section 3, L. shall be considered.

3.5 Where necessary, for longitudinals between transverse bulkheads and side transverses additional stresses resulting from the deformation of the side transverses are to be taken into account.

If no special verification of stresses due to web frame deformations is carried out, the following minimum values are to be considered for fatigue strength verification of side longitudinals:
\[
\sigma_{DF} = \pm 0.1 \cdot \frac{h_w}{\ell - \sum \ell_b} \left[\frac{\ell_R}{DF} C_p (1 - C_T) \right] \quad [\text{N/mm}^2]
\]

- \(h_w \) = web height of profile i [mm] (see Section 3, Fig. 3.3)
- \(\sum \ell_b \) = \((h_{ih} + \ell_{ih} + h_{ij} + \ell_{ij}) \cdot 10^3 \) [m] (see Fig. 9.4)
- \(\ell_R \) = unsupported web frame length [m] (see Fig. 9.5)
- \(DF \) = height of web frame [m] (see Fig. 9.5)
- \(C_p \) = weighting factor regarding location of the profile:
 \[
 C_p = \left(\frac{z_{Ro}}{1 + 2 \cdot CT} \right)
 \]
- \(z_{Ro} \) = z-coordinate of web frame outset above basis [m] (see Fig. 9.5), \(z_{Ro} \leq T \)
- \(CT \) = correction regarding location of the profile i to the waterline
 \[
 CT = 1,1 - \frac{Z}{T} \quad 0 \leq CT \leq 0,1
 \]

Fig. 9.5 - Definitions

3.6 Where struts are fitted between bottom and inner bottom longitudinals, see Section 8, B.7.2.

3.7 For scantlings of side longitudinals in way of those areas which are to be strengthened against loads due to harbour and tug manoeuvres see Section 6, C.5.

3.8 In the fore body where the flare angle \(\alpha \) is more than 40° and in the aft body where the flare angle \(\alpha \) is more than 75° the unsupported span of the longitudinals located above \(T_{min} - c_o \) shall not be larger than 2.6 m; \(c_o \) see Section 4, A.2. Otherwise tripping brackets according to A.5.5 are to be arranged. \(c_o \) see Section 4, A.2.

3.9 The side shell longitudinals within the range from 0.5 below the minimum draught up to 2.0 m above the maximum draught and a waterline breadth exceeding 0.9 \(B \) are to be examined for sufficient strength against berthing impacts. The force induced by a fender into the side shell may be determined by:

- \(0 < D \leq 2100 \) [t]: \(P_f = 0.08 \cdot D \) [kN]
- \(2100 < D \leq 17000 \) [t]: \(P_f = 170 \) [kN]
- \(D > 17000 \) [t]: \(P_f = D/100 \) [kN]

\(D \) = displacement of the ship [t]
\(D_{max} = 100000 \) t

3.10 In order to withstand the load \(P_f \) the section modulus \(W \ell \) of side shell longitudinals are not to be less than:

\[
W_{\ell} = \frac{k \cdot M_{\ell}}{235} \cdot 10^3 \quad [\text{cm}^3]
\]

- \(k \) = Material factor
- \(M_{\ell} \) = bending moment
4. Side Transverses

4.1 The section modulus W and shear area A_w of side transverses supporting side longitudinals is not to be less than:

$W = 0.55 \cdot e \cdot \ell^2 \cdot p \cdot k \quad [cm^3]$

$A_w = 0.05 \cdot e \cdot \ell \cdot p \cdot k \quad [cm^2]$

4.2 Where the side transverses are designed on the basis of strength calculations the following stresses are not to be exceeded:

$\sigma_b = \frac{150}{k} \quad [N/mm^2]$

$\tau = \frac{100}{k} \quad [N/mm^2]$

$\sigma_v = \sqrt{\frac{\sigma_b^2}{k^2} + 3 \cdot \tau^2} = \frac{180}{k} \quad [N/mm^2]$

Side transverses and their supports (e.g., decks) are to be checked according to Section 3, F. with regard to their buckling strength.

Note:

The web thickness can be dimensioned depending on the size of the unstiffened web field as follows:

$t = \frac{f \cdot b}{1 + b^2 \cdot a^2} \sqrt{\frac{200}{k} \left(2 + \frac{b^2}{a^2}\right)}$

- $a, b =$ length of side of the unstiffened web plate field, $a \geq b$
- $f = 0.75$ in general
- $= 0.9$ in the aft body with extreme flare and in the fore body with flare angles α are less or equal 40°
- $= 1.0$ in the fore body where flare angles α are greater than 40°

In the fore body where flare angles α are larger than 40° the web in way of the deck beam has to be stiffened.

4.3 In tanks the web thickness shall not be less than the minimum thickness according to Section 12, A.7., and the section modulus and the cross sectional area are not to be less than W_2 and A_w2 according to Section 12, B.3.

4.4 The webs of side transverses within the range from 0.5 m below the minimum draught up to 2.0 m above the maximum draught and a waterline breadth exceeding 0.9 are to be examined for sufficient buckling strength against berthing impacts. The force induced by a fender into the web frame may be determined as in 3.9.

4.5 In order to withstand the load P_f on the web frames, the following condition has to be met:

$P_f \leq P_{fu}$

$P_f =$ see 3.9

$P_{fu} = t_c^2 \cdot \sqrt{R_{e\text{ll}}} \cdot [0.27 + C] \quad [kN]$

$C = 0.17$ in general

$C = 0.05$ for web frame cutouts with free edges in way of continuous longitudinal

$t_c =$ web thickness of the side transverse $[mm]$.

$R_{e\text{ll}} =$ minimum nominal upper yield strength $[N/mm^2]$ of the steel used for the webs of side transverses.

5. Strengthenings in the fore and aft body

In the fore and aft peak web frames and stringers or tiers of beams respectively are to be arranged according to A.5.
Section 10

Deck Beams and Supporting Deck Structures

A. General

1. Definitions

 k = material factor according to Section 2, B.2.
 t = unsupported span [m] according to Section 3, C.
 e = width of deck supported, measured from centre to centre of the adjacent unsupported fields [m]
 p = deck load \(p_{D}, p_{DA}, \) or \(p_{L} \) [kN/m²], according to Section 4, B. and C.
 c = 0.55
 = 0.75 for beams, girders and transverses which are simply supported on one or both ends.
 \(P_s \) = pillar load
 = \(P \cdot A + P_i \) [kN]
 A = load area for one pillar [m²]
 \(P_i \) = load from pillars located above the pillar considered [kN]
 \(\lambda_s \) = degree of slenderness of the pillar

\[
\frac{t_s}{i_s \cdot \pi} \sqrt{\frac{R_{\text{eH}}}{E}} \geq 0.2
\]

 \(t_s \) = length of the pillar [cm]
 \(R_{\text{eH}} \) = nominal yield point [N/mm²]
 E = Young’s modulus [N/mm²]
 = 2.06 \times 10^5
 \(i_s \) = radius of gyration of the pillar

\[
\sqrt{\frac{I_s}{A_s}} \quad \text{[cm]}
\]

 = 0.25 \(d_s \) for solid pillars of circular cross section

 = 0.25 \(\sqrt{d_a^2 + d_i^2} \) for tubular pillars

 I_s = moment of inertia of the pillar [cm⁴]
 A_s = sectional area of the pillar [cm²]
 d_s = pillar diameter [cm]
 d_a = outside diameter of pillar [cm]
 d_i = inside diameter of pillar [cm].
 m_a = factor according to Section 9, A.1.2

2. Permissible stresses

Where the scantlings of girders not forming part of the longitudinal hull structure, or of transverses, deck beams, etc. are determined by means of strength calculations the following stresses are not to be exceeded:
3. Buckling strength

The buckling strength of the deck structures is to be examined according to Section 3, F. For this purpose the design stresses according to Section 5, D.1. and the stresses due to local loads are to be considered.

B. Deck Beams and Girders

1. Transverse deck beams and deck longitudinals

The section modulus W_d and shear area A_d of transverse deck beams and of deck longitudinals between $0.25 \, H$ and $0.75 \, H$ above base line is to be determined by the following formula:

$$W_d = c \cdot a \cdot p \cdot \ell^2 \cdot k \quad [\text{cm}^3]$$

$$A_d = (1 - 0.817 \cdot m_a) 0.05 \cdot a \cdot \ell \cdot p \cdot k \quad [\text{cm}^2]$$

2. Deck longitudinals in way of the upper and lower hull flange

The section modulus of deck longitudinals of decks located below $0.25 \, H$ and/or above $0.75 \, H$ from base line is to be calculated according to Section 9, B.

3. Attachment

3.1 Transverse deck beams are to be connected to the frames by brackets according to Section 3, D.2.

3.2 Deck beams crossing longitudinal walls and girders may be attached to the stiffeners of longitudinal walls and the webs of girders respectively by welding without brackets.

3.3 Deck beams may be attached to hatchway coamings and girders by double fillet welds where there is no constraint. The length of weld is not to be less than $0.6 \times$ depth of the section.

3.4 Where deck beams are to be attached to hatchway coamings and girders of considerable rigidity (e.g. box girders), brackets are to be provided.

3.5 Within $0.6 \, L$ amidships, the arm lengths of the beam brackets in single deck ships are to be increased by 20%. The scantlings of the beam brackets need, however, not be taken greater than required for the Rule section modulus of the frames.

3.6 Regarding the connection of deck longitudinals to transverses and bulkheads, Section 9, B.1. is to be observed.

4. Girders and transverses

4.1 The section modulus W and shear area A_w are not to be less than:

$$W = c \cdot e \cdot \ell^2 \cdot p \cdot k \quad [\text{cm}^3].$$

$$A_w = 0.05 \cdot p \cdot e \cdot \ell \cdot k \quad [\text{cm}^2].$$

4.2 The depth of girders is not to be less than $1/25$ of the unsupported span. The web depth of girders scalloped for continuous deck beams is to be at least 1.5 times the depth of the deck beams. Scantlings of girders of tank decks are to be determined according to Section 12, B.3.

4.3 Where a girder does not have the same section modulus throughout all girder fields, the greater scantlings are to
be maintained above the supports and are to be reduced gradually to the smaller scantlings.

4.4 End attachments of girders at bulkheads are to be so dimensioned that the bending moments and shear forces can be transferred. Bulkhead stiffeners under girders are to be sufficiently dimensioned to support the girders.

4.5 Face plates are to be stiffened by tripping brackets according to Section 3, H. 2.5. At girders of symmetrical section, they are to be arranged alternately on both sides of the web.

4.6 For girders in line of the deckhouse sides under the strength deck, see Section 16, A.3.2.

4.7 For girders forming part of the longitudinal hull structure and for hatchway girders see E.

5. Supporting structure of windlasses and chain stoppers

5.1 For the supporting structure under windlasses and chain stoppers, the following permissible stresses are to be observed:

\[
\sigma_b = \frac{200}{k} \quad [\text{N/mm}^2]
\]
\[
\tau = \frac{120}{k} \quad [\text{N/mm}^2]
\]
\[
\sigma_v \leq \sqrt{\sigma_b^2 + 3\tau^2} = \frac{220}{k} \quad [\text{N/mm}^2]
\]

5.2 The acting forces are to be calculated for 80% and 45% respectively of the rated breaking load of the chain cable, i.e.:
- for chain stoppers 80%
- for windlasses 80%, where chain stoppers are not fitted.
- for windlasses 45%, where chain stoppers are fitted.

See also Rules for Machinery Installations, Volume III, Section 14, D. and Rules for Materials, Volume V, Section 13, Table.13.7.

C. Pillars

1. General

1.1 Structural members at heads and heels of pillars as well as substructures are to be constructed according to the forces they are subjected to. The connection is to be so dimensioned that at least 1 cm² cross sectional area is available for 10 kN of load.

Where pillars are affected by tension loads doublings are not permitted.

1.2 Pillars in tanks are to be checked for tension. Tubular pillars are not permitted in tanks for flammable liquids.

1.3 For structural elements of the pillars’ transverse section, sufficient buckling strength according to Section 3, F. has to be verified. The wall thickness of tubular pillars which may be expected to be damaged during loading and unloading operations is not to be less than:

\[
t_w = 4,5 + 0,015 d_a \quad [\text{mm}] \quad \text{for} \quad d_a \leq 300 \quad \text{mm}
\]
\[
t_w = 0,03 d_a \quad [\text{mm}] \quad \text{for} \quad d_a > 300 \quad \text{mm}
\]

\[
d_a = \text{outside diameter of tubular pillar [mm]}
\]

1.4 Pillars also loaded by bending moments have to be specially considered.

2. Scantlings

The sectional area of pillars is not to be less than:
10.4/5

C, D Section 10 - Deck Beams and Supporting Deck Structures

\begin{equation}
A_{s\text{ req}} = 10 \cdot \frac{P}{\sigma_p} \quad [\text{cm}^2]
\end{equation}

\[
\sigma_p = \text{permissible compressive stress} \quad [\text{N/mm}^2]
\]

\[
= \frac{k}{S} \cdot R_{eh}
\]

\[\kappa = \text{reduction factor}\]

\[
= \frac{1}{\phi + \sqrt{\phi^2 - \lambda_s^2}}
\]

\[\phi = 0.5 \left[1 + n_p (\lambda_s - 0.2) + \lambda_s^2 \right]
\]

\[n_p = 0.34 \text{ for tubular and rectangular pillars}
\]

\[= 0.49 \text{ for open sections}\]

\[S = \text{safety factor}\]

\[= 2.00 \text{ in general}
\]

\[= 1.66 \text{ in accommodation area}\]

D. Cantilevers

1. General

1.1 In order to withstand the bending moment arising from the load P, cantilevers for supporting girders, hatchway coamings, engine casings and unsupported parts of decks are to be connected to transverses, web frames, reinforced main frames, or walls.

1.2 When determining the scantlings of the cantilevers and the aforementioned structural elements, it is to be taken into consideration that the cantilever bending moment depends on the load capacity of the cantilever, the load capacity being dependent on the ratio of rigidity of the cantilever to that of the members supported by it.

1.3 Face plates are to be secured against tilting by tripping brackets fitted to the webs at suitable distances (see also Section 3, H.2.).

1.4 Particulars of calculation, together with drawings of the cantilever construction are to be submitted for approval.

2. Permissible stresses

2.1 When determining the cantilever scantlings, the following permissible stresses are to be observed:

.1 Where single cantilevers are fitted at greater distances:

bending stress:

\[
\sigma_b = \frac{125}{k} \quad [\text{N/mm}^2]
\]

shear stress:

\[
\tau = \frac{80}{k} \quad [\text{N/mm}^2]
\]

.2 Where several cantilevers are fitted at smaller distances (e.g. at every frame):

bending stress:

\[
\sigma_b = \frac{150}{k} \quad [\text{N/mm}^2]
\]

shear stress:

\[
\tau = \frac{100}{k} \quad [\text{N/mm}^2]
\]
equivalent stress: \[\sigma_v \leq \sqrt{\sigma_b^2 + 3\tau^2} = \frac{180}{k} \text{ [N/mm}^2]. \]

The stresses in web frames are not to exceed the values specified in .1 and .2 above.

E. Hatchway Girders and Girders Forming Part of the Longitudinal Hull Structure

1. The scantlings of longitudinal and transverse hatchway girders are to be determined on the basis of strength calculations. The calculations are to be based upon the deck loads calculated according to Section 4, B. and C.

2. The hatchway girders are to be so dimensioned that the stress values given in Table 10.1 will not be exceeded.

<table>
<thead>
<tr>
<th>Table 10.1 - Maximum stress values (\sigma_t) for hatchway girders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal coaming and girders of the strength deck</td>
</tr>
<tr>
<td>upper and lower flanges: (\sigma_t = \frac{150}{k} \text{ [N/mm}^2])</td>
</tr>
<tr>
<td>deck level: (\sigma_t = \frac{70}{k} \text{ [N/mm}^2])</td>
</tr>
</tbody>
</table>

3. For continuous longitudinal coamings the combined stress resulting from longitudinal hull girder bending and local bending of the longitudinal coaming is not to exceed the following value:
 \[\sigma_L + \sigma_t \leq \frac{200}{k} \text{ [N/mm}^2] \]
 \(\sigma_t = \) local bending stress in the ship's longitudinal direction
 \(\sigma_L = \) design longitudinal hull girder bending stress according to Section 5, D.1.

4. The equivalent stress is not to exceed the following value:
 \[\sigma_v,\text{all} = \left(0,8 + \frac{L}{450} \right) \frac{230}{k} \text{ [N/mm}^2] \text{ for } L < 90 \text{ m} \]
 \[= \frac{230}{k} \text{ [N/mm}^2] \text{ for } L \geq 90 \text{ m} \]
 \[= \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \cdot \sigma_y + 3\tau^2} \text{ for } L < 90 \text{ m} \]
 \[= \frac{90}{k} \text{ [N/mm}^2]. \]
 The individual stresses \(\sigma_x \) and \(\sigma_y \) are not to exceed \(150/k \text{ [N/mm}^2]. \)

5. The requirements regarding buckling strength according to A.3. are to be observed.

6. Weldings at the top of hatch coamings are subject to special approval.
Section 11

Watertight Bulkheads

A. General

1. Watertight subdivision

1.1 All ships are to have a collision bulkhead, a stern tube bulkhead and one watertight bulkhead at each end of the engine room. In ships with machinery aft, the stern tube bulkhead may substitute the aft engine room bulkhead.

1.2 For ships without longitudinal bulkheads in the cargo hold area the number of watertight transverse bulkheads should, in general, not be less than given in Table 11.1.

<table>
<thead>
<tr>
<th>L [m]</th>
<th>Arrangement of machinery space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aft</td>
</tr>
<tr>
<td>$L \leq 65$</td>
<td>3</td>
</tr>
<tr>
<td>$65 < L \leq 85$</td>
<td>4</td>
</tr>
<tr>
<td>$85 < L \leq 105$</td>
<td>4</td>
</tr>
<tr>
<td>$105 < L \leq 125$</td>
<td>5</td>
</tr>
<tr>
<td>$125 < L \leq 145$</td>
<td>6</td>
</tr>
<tr>
<td>$145 < L \leq 165$</td>
<td>7</td>
</tr>
<tr>
<td>$165 < L \leq 185$</td>
<td>8</td>
</tr>
<tr>
<td>$L > 185$</td>
<td>to be special considered</td>
</tr>
</tbody>
</table>

1.3 One or more of the watertight bulkheads required by 1.2, may be dispensed with where the transverse strength of the ship is adequate. The number of watertight bulkheads will be entered into the Register.

1.4 Number and location of transverse bulkheads fitted in addition to those specified in 1.1 are to be so selected as to ensure sufficient transverse strength of the hull.

1.5 For ships which require proof of survival capability in damaged conditions, the watertight sub-division will be determined by damage stability calculations. For oil tankers see Section 24, A.2., for passenger vessels see Section 29-I, C., for special purpose ships see Section 29-II, C., for cargo ships of more than 100 m in length see Section 36 and for supply vessels see Section 34, A.2. For liquefied gas tankers see Rules for Ships Carrying Liquefied Gases in Bulk, Volume IX, Section 2, for chemical tankers see Rules for Ships Carrying Dangerous Chemicals in Bulk, Volume X, Section 2.

2. Arrangement of watertight bulkheads

2.1 Collision bulkhead

2.1.1 A collision bulkhead shall be located at a distance from the forward perpendicular of not less than $0.05 \, L_c$ or 10 m, whichever is the less, and, except as may be permitted by the Administration, not more than $0.08 \, L_c$ or $0.05 \, L_c + 3$ m, whichever is the greater.

2.1.2 Where any part of the ship below the waterline extends forward of the forward perpendicular, e.g., a bulbous bow, the distance x shall be measured from a point either:

- at the mid-length of such extension, i.e. $x = 0.5 \cdot a$
- at a distance $0.015 \, L_e$ forward of the forward perpendicular, i.e. $x = 0.015 \cdot L_e$, or
- at a distance 3 m forward of the forward perpendicular, i.e. $x = 3.0$ m whichever gives the smallest measurement.
The length L_c and the distance a are to be specified in the approval documents.

2.1.3 If 2.1.2 is applicable, the required distances specified in 2.1.1 are to be measured from a reference point located at a distance x forward of the F.P.

2.1.4 The collision bulkhead shall extend watertight up to the bulkhead deck. The bulkhead may have steps or recesses provided they are within the limits prescribed in 2.1.1.

2.1.5 No doors, manholes, access openings, or ventilation ducts are permitted in the collision bulkhead below the bulkhead deck.

2.1.6 Except as provided in 2.1.7 the collision bulkhead may be pierced below the bulkhead deck by not more than one pipe for dealing with fluid in the forepeak tank, provided that the pipe is fitted with a screwdown valve capable of being operated from above the bulkhead deck, the valve chest being secured inside the forepeak to the collision bulkhead. The Administration may, however, authorize the fitting of this valve on the after side of the collision bulkhead provided that the valve is readily accessible under all service conditions and the space in which it is located is not a cargo space. All valves shall be of steel, bronze or other approved ductile material. Valves of ordinary cast iron or similar material are not acceptable.

2.1.7 If the forepeak is divided to hold two different kinds of liquids the Administration may allow the collision bulkhead to be pierced below the bulkhead deck by two pipes, each of which is fitted as required by 2.1.6, provided the Administration is satisfied that there is no practical alternative to the fitting of such a second pipe and that, having regard to the additional subdivision provided in the forepeak, the safety of the ship is maintained.

2.1.8 Where a long forward superstructure is fitted the collision bulkhead shall be extended weathertight to the deck next above the bulkhead deck. The extension need not be fitted directly above the bulkhead below provided it is located within the limits prescribed in 2.1.1 or 2.1.3 with the exception permitted by 2.1.9 and that the part of the deck which forms the step is made effectively weathertight. The extension shall be so arranged as to preclude the possibility of the bow door causing damage to it in the case of damage to, or detachment of, a bow door.

2.1.9 Where bow doors are fitted and a sloping loading ramp forms part of the extension of the collision bulkhead above the bulkhead deck, the ramp shall be weathertight over its complete length. In cargo ships the part of the ramp which is more than 2.3 m above the bulkhead deck may extend forward of the limits specified in 2.1.1 or 2.1.3. Ramps not meeting the above requirements shall be disregarded as an extension of the collision bulkhead.

2.1.10 The number of openings in the extension of the collision bulkhead above the bulkhead deck shall be restricted to the minimum compatible with the design and normal operation of the ship. All such openings shall be capable of being...
closed weathertight.

2.2 Stern tube and remaining watertight bulkheads

2.2.1 Bulkheads shall be fitted separating the machinery space from cargo and accommodation spaces forward and aft and made watertight up to the bulkhead deck. In passenger ships an afterpeak bulkhead shall also be fitted and made watertight up to the bulkhead deck. The afterpeak bulkhead may, however, be stepped below the bulkhead deck, provided the degree of safety of the ship as regards subdivision is not thereby diminished.

2.2.2 In all cases stern tubes shall be enclosed in watertight spaces of moderate volume. In passenger ships the stern gland shall be situated in a watertight shaft tunnel or other watertight space separate from the stern tube compartment and of such volume that, if flooded by leakage through the stern gland, the bulkhead deck will not be immersed. In cargo ships other measures to minimize the danger of water penetrating into the ship in case of damage to stern tube arrangements may be taken at the discretion of the Administration.

3. Openings in watertight bulkheads

3.1 General

3.1.1 Type and arrangement of doors are to be submitted for approval.

3.1.2 Regarding openings in the collision bulkhead see 2.1.5 and 2.1.10.

3.1.3 In the other watertight bulkheads, watertight doors may be fitted. Watertight doors required to be open at sea are to be of the sliding type and capable of being operated both at the door itself, on both sides, and from an accessible position above the bulkhead deck. Means are to be provided at the latter position to indicate whether the door is open or closed, as well as arrows indicating the direction in which the operating gear is to be operated.

Watertight doors may be of the hinged type if they are always intended to be closed during navigation. Such doors are to be framed and capable of being secured watertight by handle-operated wedges which are suitably spaced and operable at both sides.

3.1.4 On ships for which proof of floatability in damaged condition is to be provided, hinged doors are permitted above the most unfavourable damage waterline for the respective compartment only. Deviating and additional requirements hereto are given in Chapter II-1, Reg. 13-1 of SOLAS (as amended by MSC.216 (82)).

3.1.5 For bulkhead doors in passenger ships, see Section 29-I, C.

3.1.6 Watertight doors are to be sufficiently strong and of an approved design. The thickness of plating is not to be less than the minimum thickness according to B.2.

3.1.7 Openings for watertight doors in the bulkheads are to be effectively framed such as to facilitate proper fitting of the doors and to guarantee perfect watertightness.

3.1.8 Before being fitted, the watertight bulkhead doors, together with their frames, are to be tested by a head of water corresponding to the bulkhead deck height. After having been fitted, the doors are to be hose- or soap-tested for tightness and to be subjected to an operational test. Deviating and additional requirements hereto are given in Chapter II-1 Reg. 16 of SOLAS as amended.

3.2 Hinged doors

Hinged doors are to be provided with rubber sealings and toggles or other approved closing appliances which guarantee a sufficient sealing pressure. The toggles and closing appliances are to be operable from both sides of the bulkhead. Hinges are to have oblong holes. Bolts and bearings are to be of corrosion resistant material. A warning notice requiring the doors to be kept closed at sea is to be fitted at the doors.

3.3 Sliding doors

Sliding doors are to be carefully fitted and are to be properly guided in all positions. Heat sensitive materials are not to be used in systems which penetrate watertight subdivision bulkheads, where deterioration of such systems in the event of fire would impair the watertight integrity of the bulkheads.
The closing mechanism is to be safely operable from each side of the bulkhead and from above the freeboard deck. If closing of the door cannot be observed with certainty, an indicator is to be fitted which shows, if the door is closed or open; the indicator is to be installed at the position from which the closing mechanism is operated.

3.4 Penetrations through watertight bulkheads

Where bulkhead fittings are penetrating watertight bulkheads, care is to be taken to maintain water tightness by observation of Chapter II-1 Reg. 12 of SOLAS as amended. For penetrations through the collision bulkhead, 2.1.6 is to be observed.

B. Scantlings

1. General, Definitions

1.1 Where holds are intended to be filled with ballast water, their bulkheads are to comply with the requirements of Section 12.

1.2 Bulkheads of holds intended to be used for carrying ore are to comply with the requirements of Section 23, as far as their strength is concerned.

1.3 Definitions

\[t_{\text{K}} = \text{corrosion addition according to Section 3, K.} \]
\[a = \text{spacing of stiffeners [m]} \]
\[f = \text{unsupported span [m], according to Section 3, C.} \]
\[p = 9,81 \cdot h \quad [\text{kN/m}^2] \]
\[h = \text{distance from the load centre of the structure to a point 1 m above the bulkhead deck at the ship side, for the collision bulkhead to a point 1 m above the upper edge of the collision bulkhead at the ship side.} \]

For cargo ships with proven damage stability see Section 36, E.2.

For the definition of "load centre" see Section 4. A.2.1.

\[c_p, c_s = \text{coefficients according to Table 11.2} \]
\[f = \frac{235}{R_{\text{eff}}} \]
\[R_{\text{eff}} = \text{minimum nominal upper yield point [N/mm}^2\text{]} \text{according to Section 2, B.2.} \]

Table 11.2 - Coefficients \(c_p \) and \(c_s \)

<table>
<thead>
<tr>
<th>Coefficient (c_p) and (c_s)</th>
<th>Collision bulkhead</th>
<th>Other bulkheads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plating (c_p)</td>
<td>1,1 (\sqrt{F})</td>
<td>0,9 (\sqrt{F})</td>
</tr>
<tr>
<td>Stiffeners, corrugated bulkhead elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c_i): in case of constraint of both ends</td>
<td>0,33 (\cdot f)</td>
<td>0,265 (\cdot f)</td>
</tr>
<tr>
<td>(c_i): in case of simply support of one end and constraint at the other end</td>
<td>0,45 (\cdot f)</td>
<td>0,36 (\cdot f)</td>
</tr>
<tr>
<td>(c_i): both ends simply supported</td>
<td>0,66 (\cdot f)</td>
<td>0,53 (\cdot f)</td>
</tr>
</tbody>
</table>

For the definition of "constraint" and "simply supported", see Section 3. D.1.

2. Bulkhead plating

2.1 The thickness of the bulkhead plating is not to be less than:

\[t = c_p \cdot a \sqrt{p} + t_{\text{K}} \quad [\text{mm}] \]
\[t_{\text{min}} = 6,0 \cdot \sqrt{F} \quad [\text{mm}] \]
For ships with large deck openings according to Section 5, F.1.2, the plate thickness of transverse bulkheads is not to be less than:

\[t = c \cdot \left(\frac{\Delta t}{F_1 \cdot R_{eh}} \cdot \left(\frac{1}{a^2} + \frac{1}{b^2} \right) \right) \cdot \sqrt{\frac{H}{2} \left(\frac{H}{2} - T \right)} + T^2 + t_K \] [mm]

where

- \(\Delta t \) = distance from the mid of hold before to the mid of hold aft of the considered transverse bulkhead or supporting bulkhead [m]
- \(a, b \) = spacing of stiffeners [m]
- \(t_K \) = corrosion addition [mm] according to Section 3, K.
- \(R_{eh} \) = nominal upper yield stress of material [N/mm\(^2\)] according to Section 2, B.2.
- \(F_1 \) = correction factor according to Section 3, F.1.
- \(c \) = 13 in general
 - 15 below \(z = 0.2 \) \(H \) and above 0.8 \(H \) and generally in the fore ship before \(x/L = 0.8 \)

2.2 In small ships, the thickness of the bulkhead plating need not exceed the thickness of the shell plating for a frame spacing corresponding to the stiffener spacing.

2.3 The stern tube bulkhead is to be provided with a strengthened plate in way of the stern tube.

2.4 In areas where concentrated loads due to ship manoeuvres at terminals, may be expected, the buckling, strength of bulkhead plate fields directly attached to the side shell, is to be examined according to Section 9, B.4.4 and 4.5.

2.5 When determining the bulkhead scantlings of tanks, connected by cross-flooding arrangements, the increase in pressure head at the immerged side that may occur at maximum heeling in the damaged condition shall be taken into account.

3. Stiffeners

3.1 The section modulus of bulkhead stiffeners is not to be less than:

\[W = c_s \cdot a \cdot \ell^2 \cdot p \] [cm\(^3\)]

3.2 In horizontal part of bulkheads, the stiffeners are also to comply with the rules for deck beams according to Section 10.

3.3 The scantlings of the brackets are to be determined in dependence of the section modulus of the stiffeners according to Section 3, D.2. If the length of the stiffener is 3.5 m and over, the brackets are to extend to the next beam or the next floor.

3.4 Unbracketed bulkhead stiffeners are to be connected to the decks by welding. The length of weld is to be at least 0.6 x depth of the section.

3.5 If the length of stiffeners between bulkhead deck and the deck below is 3 m and less, no end attachment according to 3.4 is required. In this case the stiffeners are to be extended to about 25 mm from the deck and sniped at the ends. (See also Section 3, C.3.)

3.6 Bulkhead stiffeners cut in way of watertight doors are to be supported by carlings or stiffeners.

4. Corrugated bulkheads

4.1 The plate thickness of corrugated bulkheads is not to be less than required according to 2.1. For the spacing a, the greater one of the values b or s [m] according to 4.3 is to be taken.

4.2 The section modulus of a corrugated bulkhead element is to be determined according to 3.1. For the spacing a, the width of an element c, [m] according to 4.3 is to be taken. For the end attachment see Section 3, D.4.

4.3 The actual section modulus of a corrugated bulkhead element is to be assessed according to the following formulae:
W = t \cdot d \left(b + \frac{s}{3} \right) \text{ } [\text{cm}^3]

where, carling or similar elements can not be fitted in line with the web strips

W = t \cdot d \left(d + t \right) \text{ } [\text{cm}^3]

e = \text{width of element [cm]}

b = \text{breadth of face plate [cm]}

s = \text{breadth of web plate [cm]}

d = \text{distance between face plates [cm]}

t = \text{plate thickness [cm]}

\alpha \geq 45^\circ

Fig. 11.2 Element of corrugated bulkhead

4.4 For watertight bulkheads of corrugated type on ship according to Section 5, G. See Section 23, E.

5. Primary Supporting Members

5.1 General

Primary supporting members are to be dimensioned using direct calculation as to ensure the stress criteria according to 5.3.1 for normal operation and the criteria according to 5.3.2 if any cargo hold is flooded.

Regarding effective breadth and buckling proof in each case Section 3, E. and F. has to be observed.

In areas with cut-outs 2nd-order bending moments shall be taken into account.

5.2 Load assumptions

5.2.1 Loads during operation

Loads during operation are the external water pressure, see Section 4, and the loads due to cargo and filled tanks, see Section 17, B.1.7, Section 21, G. and if relevant depending on the deck opening Section 5, F.

5.2.2 Loads in damaged condition

The loads in case of hold flooding result from 1.3 considering Section 36, D.2.

5.3 Strength criteria

5.3.1 Load case "operation"

With loads according to 5.2.1 the following permissible stresses are to be used:

\[\sigma_c = \sqrt{\frac{\sigma_N^2}{k} + \tau^2} \leq \frac{180}{k} \text{ [N/mm}^2] \]

\[\sigma_N = \text{normal stress, } \sigma_N \leq \frac{150}{k} \text{ [N/mm}^2] \]

\[\tau = \text{shear stress, } \tau \leq \frac{100}{k} \text{ [N/mm}^2] \]

k = material factor according Section 2, B.2.

If necessary Section 5, F.2. shall be observed in addition.
5.3.2 Load case “hold flooding”

The thickness of webs shall not be smaller than:

\[t_w = \frac{1000 \cdot Q}{J_{perm} \cdot h_w} + t_K \quad [\text{mm}] \]

\[J_{perm} = 727 \sqrt{\frac{Q}{b \cdot h_w}} \sqrt{\frac{R_{eli} \left(1 + 0.75 \frac{b^2}{a^2}\right)}{2.08}} \quad [\text{N/mm}^2] \]

\[Q = \text{shear force} \quad [\text{kN}] \]

\[h_w = \text{height of web} \quad [\text{mm}] \]

\[a, b = \text{lengths of stiffeners of the unstiffened web field, where } h_w \geq b \leq a \]

5.3.3 Dimensioning of Primary Supporting Members

For dimensioning of primary supporting members plastic hinges can be taken into account.

This can be done either by a non-linear calculation of the total bulkhead or by a linear girder grillage calculation of the idealized bulkhead.

When a linear girder grillage calculation is done, only those moments and shear forces are taken as boundary conditions at the supports, which can be absorbed by the relevant sections at these locations in full plastic condition.

The plastic moments [kNm] are calculated by:

\[M_p = \frac{W_p \cdot R_{eli}}{c \cdot 1200} \]

\[c = \begin{cases} 1.1 & \text{for the collision bulkhead} \\ 1.0 & \text{for cargo hold bulkheads} \end{cases} \]

The plastic shear forces [kN] are calculated by:

\[Q_p = \frac{A_s \cdot R_{eli}}{c \cdot 2080} \]

For the field moments and shear forces resulting thereof the sections are defined in such a way that the condition

\[\sigma_v \leq R_{eli} \]

is fulfilled.

The plastic section moduli are to be calculated as follows:

\[W_p = \frac{1}{1000} \sum_{[\omega]} n \cdot A_i \cdot e_{pi} \quad [\text{cm}^3] \]

\[e_{pi} = \text{distance [mm] of the centre of the partial area } A_i \text{ from the neutral axis of the yielded section. The neutral axis shall not be taken in a position lower than the lowest point of the web.} \]

\[A_i = \text{effective partial area [mm}^2\text{] considering Section.3, F.2.2.} \]

In this connection the area \(A_s \) of webs transferring shear shall not be taken into account.

That part of the web height related to shear transfer shall not be less than:

\[\Delta h_w = h_w \cdot \frac{t_w}{t_{wa}} \]

\[t_{wa} = \text{as built thickness of the web } \geq t_w \]

Where girders are built up by partial areas \(A_i \) with different yield stress \(R_{eli} \), the plastic moments are calculated by:

\[M_p = \frac{\sum_{[\omega]} A_i \cdot R_{eli} \cdot e_{pi}}{c \cdot 1.2 \cdot 10^6} \quad [\text{kNm}] \]
The plastic shear forces are:

\[Q_p = \frac{\sum_{i=1}^{n} A_{si} \cdot R_{si}}{c \cdot 2080} \quad [\text{kN}] \]

6. Watertight longitudinal structures

The plating and stiffeners of watertight longitudinal structures shall be dimensioned according to Table 11.2, column "Other bulkheads".

C. Shaft Tunnels

1. General

1.1 Shaft and stuffing box are to be accessible. Where one or more compartments are situated between stern tube bulkhead and engine room, a watertight shaft tunnel is to be arranged. The size of the shaft tunnel is to be adequate for service and maintenance purposes.

1.2 The access opening between engine room and shaft tunnel is to be closed by a watertight sliding door complying with the requirements according to A.3.3. For extremely short shaft tunnels watertight doors between tunnel and engine room may be dispensed with subject to special approval.

In this connection see also SOLAS 74, Chapter II-1, Regulation 11/8 as amended.

1.3 Tunnel ventilators and the emergency exit are to be constructed watertight up to the freeboard deck.

2. Scantlings

2.1 The plating of the shaft tunnel is to be dimensioned as for a bulkhead according to B.2.1.

2.2 The plating of the round part of tunnel tops may be 10% less in thickness.

2.3 In the range of hatches, the plating of the tunnel top is to be strengthened by not less than 2 mm unless protected by a ceiling.

On container ships this strengthening can be dispensed with.

2.4 The section modulus of shaft tunnel stiffeners is to be determined according to B.3.1.

2.5 Horizontal parts of the tunnel are to be treated as horizontal parts of bulkheads and as cargo decks respectively.

2.6 Shaft tunnels in tanks are to comply with the requirements of Section 12.
Section 12

Tank Structures

A. General

Note
The arrangement and subdivision of fuel oil tanks has to be in compliance with MARPOL, Annex I, Reg. 12 A "Oil Fuel Tank Protection".

1. Subdivision of tanks

1.1 In tanks extending over the full breadth of the ship intended to be used for partial filling, (e.g. oil fuel and fresh water tanks), at least one longitudinal bulkhead is to be fitted, which may be a swash bulkhead.

1.2 Where the forepeak is intended to be used as tank, at least one complete or partial longitudinal swash bulkhead is to be fitted, if the tank breadth exceeds 0,5 \(B \) or 6 m, whichever is the greater. When the afterpeak is intended to be used as tank, at least one complete or partial longitudinal swash bulkhead is to be fitted. The largest breadth of the liquid surface should not exceed 0,3 \(B \) in the aft peak.

1.3 Peak tanks exceeding 0,06 \(L \) or 6 m in length, whichever is greater, shall be provided with a transverse swash bulkhead.

2. Air, overflow and sounding pipes

Each tank is to be fitted with air pipes, overflow pipes and sounding pipes. The air pipes are to be led to above the exposed deck. The arrangement is to be such as to allow complete filling of the tanks. The height from the deck to the point where the water way have access to be at least 760 mm on the freeboard deck and 450 mm on a superstructure deck. See also Section 21, E.

The sounding pipes are to be led to the bottom of the tanks (see also Rules for Machinery Installations, Volume III, Section 11).

3. Forepeak tank

Oil is not to be carried in a forepeak tank or a tank forward of the collision bulkhead. See also SOLAS 74, Chapter II-2, Reg. 15.6 and MARPOL 73/78, Annex I, Reg. 14.4.

4. Cross references

4.1 Where a tank bulkhead forms part of a watertight bulkhead, its strength is not to be less than required by Section 11.

4.2 For pumping and piping, see also Rules for Machinery Installations, Volume III, Section 11. For Oil fuel tanks see also Rules for Machinery Installations, Volume III, Section 10. For tanks in the double bottom, see Section 8, B.5.

4.3 For cargo oil tanks see Section 24.

4.4 For dry cargo holds which are also intended to be used as ballast water tanks, see C.2.

4.5 For testing of tanks, see H.

4.6 Where tanks are provided with cross flooding arrangements the increase of the pressure head is to be taken into consideration (see also Section 29-I, J. and Section 36, G.).

5. Separation of fuel oil tanks from tanks for other liquids

5.1 Fuel oil tanks are to be separated from tanks for lubricating oil, hydraulic oil, thermal oil, vegetable oil, feedwater,
condensate water and potable water by cofferdams\(^1\).

5.2 Upon special approval on small ships the arrangement of cofferdams between oil fuel and lubricating oil tanks may be dispensed with provided that:

\(0.1\) the common boundary is continuous, i.e. it does not abut at the adjacent tank boundaries, see Fig. 12.1.

Where the common boundary cannot be constructed continuously according to Fig. 12.1, the fillet welds on both sides of the common boundary are to be welded in two layers and the throat thickness is not to be less than \(0.5 \cdot t\) (\(t\) = plate thickness);

\[\text{Fig. 12.1} - \text{Continuous common boundary replacing a cofferdam}\]

\(0.2\) stiffeners or pipes do not penetrate the common boundary;

\(0.3\) the corrosion allowance \(t_k\) for the common boundary is not less than 2,5 mm.

5.3 Fuel oil tanks adjacent to lubricating oil circulation tanks are not permitted.

5.4 For fuel tanks which are heated up to a temperature which is higher than the flash point – 10 °C of the relevant fuel, Rules for Machinery Installations, Volume III, Section.10, B.5. is to be observed specifically.

6. Tanks for heated liquids

6.1 Where heated liquids are intended to be carried in tanks, a calculation of thermal stresses is required, if the carriage temperature of the liquid exceeds the following values:

\[T = \begin{cases} 65^\circ C & \text{in case of longitudinal framing,} \\ 80^\circ C & \text{in case of transverse framing.} \end{cases}\]

6.2 The calculations are to be carried out for both temperatures, the actual carriage temperature and the limit temperature \(T\) according to 6.1.

The calculations are to give the resultant stresses in the hull structure based on a sea water temperature of 0 °C and an air temperature of 5 °C.

Constructional measures and/or strengthenings will be required on the basis of the results of the calculation for both temperatures.

7. Minimum thickness

7.1 The thickness of all tank structures is not to be less than the following minimum value:

\[t_{\text{min}} = 5.5 + 0.02 L \quad [\text{mm}]\]

7.2 For fuel oil, lubrication oil and fresh water tanks \(t_{\text{min}}\) need not be taken greater than 7,5 mm.

7.3 For ballast tanks of dry cargo ships \(t_{\text{min}}\) need not be taken greater than 9,0 mm.

7.4 For oil tankers see Section 24, A.14.

\(1\) For Indonesian flag ship, the cofferdams are also required between accommodation spaces and oil tanks.
8. Plating and stiffeners in the propeller area and in the engine room

8.1 General

From a vibration point of view shell and tank structures in the vicinity of the propeller(s) and the main engine should be designed such that the design criteria defined in 8.3 to 8.5 are fulfilled (see also Section 6, F.1 and Section 8, A.1.2.3).

8.2 Definitions

\[f_{\text{plate}}^{2)} = \text{lowest natural frequency of isotropic plate field under consideration of additional outfitting and hydrodynamic masses \ [Hz]} \]

\[f_{\text{stiff}}^{2)} = \text{lowest natural frequency of stiffener under consideration of additional outfitting and hydrodynamic masses \ [Hz]} \]

\[d_p = \text{propeller diameter \ [m]} \]

\[r = \text{distance of plate field or stiffener to 12 o'clock propeller blade tip position \ [m]} \]

\[d_t = \text{ratio} \]

\[\alpha = \text{flare angle of frame section in propeller plane measured between a vertical line and the tangent to the bottom shell plating} \]

\[n = \text{maximum propeller shaft revolution rate \ [1/min]} \]

\[z = \text{number of propeller blades} \]

\[f_{\text{blade}} = \text{propeller blade passage excitation frequency at } n \ [Hz] \]

\[= \frac{1}{60} \cdot n \cdot z \ [Hz] \]

\[n_e = \text{maximum main engine revolution rate \ [1/min]} \]

\[n_c = \text{number of cylinders of main engine} \]

\[k_{\text{stroke}} = \text{number indicating the type of main engine} \]

\[= 1,0 \quad \text{for 2-stroke (slow-running) main engines} \]

\[= 0,5 \quad \text{for 4-stroke (medium speed) main engines} \]

\[f_{\text{ignition}} = \text{main engine ignition frequency at } n_e \]

\[= \frac{1}{60} \cdot k_{\text{stroke}} \cdot n_e \cdot n_e \ [Hz] \]

8.3 Shell structures in propeller area

Plate fields and stiffeners of shell structures in vicinity of the propeller(s) within \(d_t = 3 \) should fulfill the following frequency criteria:

\[\text{for } \alpha \geq 60^\circ \quad f_{\text{plate}} > \frac{4,6}{d_t} \cdot f_{\text{blade}} \]

\[f_{\text{stiff}} > \frac{4,6}{d_t} \cdot f_{\text{blade}} \]

\[\text{for } \alpha < 60^\circ \quad f_{\text{plate}} > \frac{2,3}{d_t} \cdot f_{\text{blade}} \]

\(d_t \) needs not to be taken less than 1,0.

8.4 Tank structures in propeller area

For vessel with a single propeller, plate fields and stiffeners of tank structures within \(d_t = 5 \) should fulfill the following frequency criteria:

2) The natural frequencies of plate fields and stiffeners can be estimated by approved computer program.

3) The number is valid for in-line engines. The ignition frequency for V-engines depends on the V-angle of the cylinder banks and can be obtained from the engine manufacturer.
for $\alpha \geq 60^\circ$
\[f_{\text{plate}} > \frac{6.3}{d_t} \cdot f_{\text{blade}} \]
\[f_{\text{stiff}} > \frac{6.3}{d_t} \cdot f_{\text{blade}} \]
for $\alpha < 60^\circ$
\[f_{\text{plate}} > \frac{3.15}{d_t} \cdot f_{\text{blade}} \]

d_t needs not to be taken less than 1.3.

8.5 Tank structures in main engine area

For vessels with a single propeller, plate fields and stiffeners of tanks located in the engine room should at all filling states fulfill the frequency criteria as summarized in Table 12.1.

Generally, direct connections between transverse engine top bracings and tank structures shall be avoided. Pipe fittings at tank walls etc. shall be designed in such a way that the same frequency criteria as given for plates are fulfilled.

B. Scantlings

1. Definitions

- k = material factor according to Section 2, B.2.
- a = spacing of stiffeners or load width [m]
- l = unsupported span [m] according to Section 3, C.
- p = load p_1 or p_0 [kN/m²] according to Section 4, D.; the greater load to be taken.

For tank structures of tanks adjacent to the shell the pressure p below T_{min} need not be larger than:

\[p = p_1 - 10 \left(T_{\text{min}} - z - p_0 \cdot c_t \left(1 + \frac{z}{T_{\text{min}}} \right) \right) \] [kN/m²]

- T_{min} = smallest design ballast draught [m]
- z = distance of structural member above base line [m]
- p_2 = load [kN/m²] according to Section 4, D.1.
- t_k = corrosion addition according to Section 3, K.
- h = filling height of tank [m]
- e_t = characteristic tank dimension e_t or b_t [m]
- l_t = tank length [m]
- b_t = tank breadth [m]

\[\sigma_{pf} = \sqrt{\left(\frac{235}{k} \right)^2 - 3 \cdot \tau_{L}^2} - 0.89 \cdot \sigma_{L} \] [N/mm²]

- σ_{L} = membrane stress at the position considered [N/mm²] according to Section 5,D.1
- τ_{L} = shear stress [N/mm²] at the position considered see also Section 5,D.1.
- n_f = 1.0 for transverse stiffening
- 0.83 for longitudinal stiffening

For the terms "constraint" and "simply supported" see Section 3, D.
Table 12.1 - Frequency criteria

<table>
<thead>
<tr>
<th>Engine type</th>
<th>Mounting type</th>
<th>Application area</th>
<th>Frequency criteria</th>
</tr>
</thead>
</table>
| Slow speed | Rigid | Tanks within engine room | $f_{\text{plate}} > 1,2 \cdot f_{\text{ignition}}$
and
$f_{\text{stiff}} > 1,2 \cdot f_{\text{ignition}}$
or
$f_{\text{plate}} < 1,8 \cdot f_{\text{ignition}}$
or
$f_{\text{plate}} > 2,2 \cdot f_{\text{ignition}}$ |
| Medium speed| Rigid or semi-resilient | Tanks within engine room | $f_{\text{plate}} < 0,8 \cdot f_{\text{ignition}}$
or
$f_{\text{plate}} > 1,2 \cdot f_{\text{ignition}}$
and
$f_{\text{stiff}} < 0,8 \cdot f_{\text{ignition}}$
or
$f_{\text{stiff}} > 1,2 \cdot f_{\text{ignition}}$ |
| | Resilient | Tanks within engine length up to next platform deck above inner bottom | $f_{\text{plate}} < 0,9 \cdot f_{\text{ignition}}$
or
$f_{\text{plate}} < 1,1 \cdot f_{\text{ignition}}$ |

2. **Plating**

2.1 The plate thickness is not to be less than:

$$t_1 = 1,1 \cdot a \cdot \sqrt{\frac{p}{\sigma_{pl}} \cdot k} + t_k \quad [\text{mm}]$$

$$t_2 = 0,9 \cdot a \cdot \sqrt{\frac{p_2}{\sigma_{pl}} \cdot k} + t_k \quad [\text{mm}]$$

2.2 Above the requirements specified in 2.1 the thickness of tank boundaries (including deck and inner bottom) carrying also normal and shear stresses due to longitudinal hull girder bending is not to be less than:

$$t = 16,8 \cdot n f \cdot a \sqrt{\frac{p}{\sigma_{pl}}} + t_k \quad [\text{mm}]$$

2.3 Proof of plating of buckling strength of longitudinal and transverse bulkheads is to be carried out according to Section 3, F. For longitudinal bulkheads the design stresses according to Section 5, D.1. and the stresses due to local loads are to be considered.

3. **Stiffeners and girders**

3.1 **Stiffeners and girders, which are not considered as longitudinal strength members**

3.1.1 The section modulus of stiffeners and girders constrained at their ends, is not to be less than:

$$W_1 = 0,55 \cdot a \cdot \ell^2 \cdot p \cdot k \quad [\text{cm}^3]$$

$$W_2 = 0,44 \cdot a \cdot \ell^2 \cdot p_2 \cdot k \quad [\text{cm}^3].$$

Where one or both ends are simply supported, the section moduli are to be increased by 50%.

The shear area of the girder webs is not to be less than:

$$A_{w1} = 0,05 \cdot a \cdot \ell \cdot p \cdot k \quad [\text{cm}^2]$$

$$A_{w2} = 0,04 \cdot a \cdot \ell \cdot p_2 \cdot k \quad [\text{cm}^2].$$

A_{w2} is to be increased by 50 % at the position of constraint for a length of 0,1 ℓ.

The buckling strength of the webs is to be checked according to Section 3, F.

3.1.2 Where the scantlings of stiffeners and girders are determined according to strength calculations, the following permissible stress values apply:
if subjected to load \(p_1 \):
\[
\sigma_b = \frac{150}{k} \quad \text{[N/mm}^2]\]
\[
\tau = \frac{100}{k} \quad \text{[N/mm}^2]\]
\[
\sigma_v = \sqrt{\sigma_b^2 + 3 \tau^2} = \frac{180}{k} \quad \text{[N/mm}^2]\]

if subjected to load \(p_2 \):
\[
\sigma_b = \frac{180}{k} \quad \text{[N/mm}^2]\]
\[
\tau = \frac{115}{k} \quad \text{[N/mm}^2]\]
\[
\sigma_v = \sqrt{\sigma_b^2 + 3 \tau^2} = \frac{200}{k} \quad \text{[N/mm}^2]\]

3.2 Stiffeners and girders, which are to be considered as longitudinal strength members

3.2.1 The section moduli and shear areas of horizontal stiffeners and girders are to be determined according to Section 9, B.3.1 as for longitudinals. In this case for girders supporting transverse stiffeners the factors \(m = 1 \) and \(m_a = 0 \) are to be used.

3.2.2 Regarding buckling strength of girders the requirements of 2.3 are to be observed.

3.3 The scantlings of beams and girders of tank decks are also to comply with the requirements of Section 10.

3.4 For frames in tanks, see Section 9, A.2.2.

3.5 The stiffeners of tank bulkheads are to be attached at their ends by brackets according to Section 3, D.2. The scantlings of the brackets are to be determined according to the section modulus of the stiffeners. Brackets have to be fitted where the length of the stiffeners exceeds 2 m.

The brackets of stiffeners are to extend to the next beam, the next floor, the next frame, or are to be otherwise supported at their ends.

3.6 Where stringers of transverse bulkheads are supported at longitudinal bulkheads or at the side shell, the supporting forces of these stringers are to be considered when determining the shear stress in the longitudinal bulkheads. Likewise, where vertical girders of transverse bulkheads are supported at deck or inner bottom, the supporting forces of these vertical girders are to be considered when determining the shear stresses in the deck or inner bottom respectively.

The shear stress introduced by the stringer into the longitudinal bulkhead or side shell may be determined by the following formulae:
\[
\tau_{St} = \frac{P_{st}}{2 \cdot b_{St} \cdot t} \quad \text{[N/mm}^2]\]

\(P_{st} \) = supporting force of stringer or vertical girder [kN]

\(b_{St} \) = breadth of stringer or depth of vertical girder including end bracket (if any) [m] at the supporting point

\(t \) = see 2.2

The additional shear stress \(\tau_{St} \) is to be added to the shear stress \(\tau_L \) due to longitudinal bending according to Section 5, D.1. in the following area:

- 0,5 m on both sides of the stringer in the ship's longitudinal direction
- 0,25 \(\cdot b_{St} \) above and below the stringer

Thereby the following requirement shall be satisfied:
\[
\frac{110}{k} \geq \frac{P_{st}}{2 \cdot b_{St} \cdot t} + \tau_L
\]
4. Corrugated bulkheads

4.1 The plate thicknesses of corrugated bulkheads as well as the required section moduli of corrugated bulkhead elements are to be determined according to 2. and 3., proceeding analogously to Section 11, B.4.

The plate thickness is not to be less than \(t_{\text{min}} \), according to A.7, or

- if subjected to load \(p \)
 \[t_{\text{crit}} = \frac{b}{905} \sqrt{\sigma_D} + t_K \]
 \[\text{[mm]} \]

- if subjected load \(p_2 \)
 \[t_{\text{crit}} = \frac{b}{960} \sqrt{\sigma_D} + t_K \]
 \[\text{[mm]} \]

\(\sigma_D \) = compressive stress \([\text{N/mm}^2]\)

\(b \) = breadth of face plate strip \([\text{mm}]\)

4.2 For the end attachment Section 3, D.4. is to be observed.

5. Thickness of clad plating

5.1 Where the yield point of the cladding is not less than that of the base material the plate thickness is to be determined according to 2.1.

5.2 Where the yield point of the cladding is less than that of the base material the plate thickness is not to be less than:

\[t_1 = 0.55 \cdot a \sqrt{\frac{p}{A} k + t_K} \]
\[\text{[mm]} \]

\[t_2 = 0.45 \cdot a \sqrt{\frac{p_2}{A} k + t_K} \]
\[\text{[mm]} \]

for one side clad steel:

\[A = 0.25 - \frac{t_p}{2t} \left[1 - r - \frac{t_p}{2t} \left(1 - r^2 \right) \right] \]

for both side clad steel:

\[A = 0.25 - \frac{t_p}{t} \left[1 - r \left(1 - r \right) \right] \]

\(t \) = plate thickness including cladding \([\text{mm}]\)

\(t_p \) = thickness of the cladding \([\text{mm}]\)

\(r \) = \(\frac{R_{\text{cp}}}{R_{\text{eh}}} \)

\(R_{\text{cp}} \) = minimum nominal upper yield point of the cladding \([\text{N/mm}^2]\) at service temperature

\(R_{\text{eh}} \) = minimum nominal upper yield point of the base material \([\text{N/mm}^2]\) according to Section 2, B.2.

5.3 The plate thicknesses determined in accordance with 5.1 and 5.2 respectively may be reduced by 0.5 mm. For chemical tankers however the reductions as per Rules for Ships Carrying Dangerous Chemicals in Bulk, Volume X, Section 4, 4 – 0.1.3 apply.

C. Tanks with Large Lengths or Breadths

1. General

Tanks with lengths \(t_L > 0.1 \) or breadths \(b_B > 0.6 \) (e.g. hold spaces for ballast water) which are intended to be partially filled, are to be investigated to avoid resonance between the liquid motion and the pitch or roll motion of the ship. If necessary,
critical tank filling ratios are to be avoided. The ship's periods of pitch and roll motion as well as the natural periods of the liquid in the tank may be determined by the following formulae:

Natural period of liquid in tank:

\[T_{l,b} = 1.132 \sqrt{\frac{e_l}{f}} \] [s]

\(f = \) hyperbolic function as follows:

\[f = \tanh \left(\frac{\pi \cdot h}{e_l} \right) \]

Period of wave excited maximum pitch motion:

\[T_s = \frac{L}{1.17 \cdot \sqrt{L \cdot 0.15 \cdot v_o}} \] [s]

\(v_o = \) ahead speed of ship [kn] as defined in Section 1, H.5.

Period of roll motion:

\[T_r = \frac{c_r \cdot B}{\sqrt{\text{GM}}} \] [s]

\(c_r = \)

- 0.78 in general
- 0.70 for tankers in ballast

\(\text{GM} = \)

- 0.07 \(\cdot \) \(B \) in general
- 0.12 \(\cdot \) \(B \) for tankers and bulk carriers.

2. Hold spaces for ballast water

In addition to the requirements specified under 1. above for hold spaces of dry cargo ships and bulk carriers, which are intended to be filled with ballast water, the following is to be observed:

.1 For hold spaces only permitted to be completely filled, a relevant notice will be entered into the Certificate.

.2 Adequate venting of the hold spaces and of the hatchway trunks is to be provided.

.3 For frames also Section 9, A.2.2 is to be observed.

D. Vegetable Oil Tanks

1. Further to the regulations stipulated under A. and B. for vegetable oil tanks, the following requirements are to be observed.

2. Tanks carrying vegetable oil or similar liquids, the scantlings of which are determined according to B., are to be either fully loaded or empty. A corresponding note will be entered into the Certificate.

These tanks may be partially filled provided they are subdivided according to A.1.2. Filling ratios between 70 and 90% should be avoided.

3. In tanks carrying vegetable oil or similar liquids sufficient air pipes are to be fitted for pressure equalizing. Expansion trunks of about 1 % of the tank volume are to be provided. Where the tank is subdivided by at least one centre line bulkhead, 3% of the tank may remain empty and be used as expansion space.
E. Detached Tanks

1. General

1.1 Detached tanks are to be adequately secured against forces due to the ship's motions.

1.2 Detached tanks in hold spaces are also to be provided with anti floatation devices. It is to be assumed that the hold spaces are flooded to the load waterline. The stresses in the anti floatation devices caused by the floatation forces are not to exceed the material's yield stress.

1.3 Detached oil fuel tanks should not be installed in cargo holds. Where such an arrangement cannot be avoided, provision is to be made to ensure that the cargo cannot be damaged by leakage oil.

1.4 Fittings and pipings on detached tanks are to be protected by battens, and gutterways are to be fitted on the outside of tanks for draining any leakage oil.

2. Scantlings

2.1 The thickness of plating of detached tanks is to be determined according to B.2.1 using the formulae for t_1 and the pressure p as defined in 2.2.

2.2 The section modulus of stiffeners of detached tanks is not to be less than:

$$W = c \cdot a \cdot t^2 \cdot p \cdot k \quad [cm^3]$$

- $c = 0.36$ if stiffeners are constrained at both ends
- $c = 0.54$ if one or both ends are simply supported
- $p = 9.81 \cdot h \quad [kN/m^2]$ (where h is the head measured from the load centre of plate panel or stiffener respectively to the top of overflow; the height of overflow is not to be taken less than 2.5 m.)

2.3 For minimum thickness the requirements of A.7 apply in general.

F. Potable Water Tanks

1. Potable water tanks shall be separated from tanks containing liquids other than potable water, ballast water, distillate or feed water.

2. In no case sanitary arrangement or corresponding piping are to be fitted directly above the potable water tanks.

3. Manholes arranged in the tank top are to have sills.

4. If pipes carrying liquids other than potable water are to be led through potable water tanks, they are to be fitted in a pipe tunnel.

5. Air and overflow pipes of potable water tanks are to be separated from pipes of other tanks.

G. Swash Bulkheads

1. The total area of perforation shall not be less than 5% and should not exceed 10% of the total bulkhead area.

2. The plate thickness shall, in general, be equal to the minimum thickness according to A.7. Strengthenings may be required for load bearing structural parts. The free lower edge of a wash bulkhead is to be adequately stiffened.

3. The section modulus of the stiffeners and girders is not to be less than W_1 as per B.3., however, in lieu of p the load p_4 according to Section 4, D.2., but disregarding p_v is to be taken.
4. For swash bulkheads in oil tankers see also Section 24, D.

H. Testing for Tightness

1. Testing of oil fuel, ballast, trimming, feed water, fresh water and anti-rolling tanks is to be effected by a combination of a leak test by means of air pressure and an operational test by means of water or the liquid for which the tank is intended to be used. The air pressure is not to exceed 0.2 bar gauge. The increased risk of accident while the tanks are subjected to the air pressure is to be observed.

 Butt welds made by approved automatic or semiautomatic processes on erection welds need not be tested, provided that these welds are carefully visually examined and are free of repairs. The results of the non-destructive examinations made at random to the satisfaction of the Surveyor shall not reveal significant defects. If there is evidence from inspection results that the quality of these welds has been downgraded significantly, the extent of the leak testing may be increased to the Surveyor's discretion.

2. Where one tank boundary is formed by the ship's shell, the leak test is to be carried out before launching. For all other tanks leak testing may be carried out after launching. Erection welds as well as welds of assembly openings are to be coated 4) after the leak test is carried out. This applies also to manual weld connections of bulkheads with the other tank boundaries and of collaring arrangements at intersections of tank boundaries and e.g. frames, beams, girders, pipes etc. If it is ensured that in adjacent tanks the same type of liquid is carried, e.g. in adjacent ballast tanks, the above mentioned weld connections may be coated 3) prior to the leak test.

 All other welded connections in tank boundaries may be coated prior to the leak test if it is ensured by suitable means (e.g. by visual examination of the welded connections) that the connections are completely welded and the surfaces of the welds do not exhibit cracks or pores.

3. Where the tanks are not subjected to the leak test as per 2. but are leak tested with water the bulkheads area in general, to be tested from one side. The testing should be carried out prior to launching or in the dock. Subject to approval by BKI, the test may also be carried out after launching. Water testing may be carried out after application of a coating 3), provided that during the visual inspection as per 2. above deficiencies are not noted. The test head shall correspond to a head of water of 2.5 m above the top of tank or to the top of overflow or air pipe, whichever is the greater.

4. The operational test may be carried out when the ship is afloat or during the trial trip. For all tanks the proper functioning of filling and suction lines and of the valves as well as functioning and tightness of the vent, sounding and overflow pipes is to be tested.

5. For testing of cargo tanks see Section 24, A.16.

4) Shop primers are not regarded as a coating within the scope of these requirements.
Section 13
Stem and Sternframe Structures

A. Definitions

- \(R_{el} \) = minimum nominal upper yield point [N/mm\(^2\)] according to Section 2, B.2.
- \(k \) = material factor according to Section 2, B.2.1, for cast steel \(k = k_r \) according to Section 14, A.4.2
- \(C_R \) = rudder force [N] according to Section 14, B.1.
- \(B_1 \) = support force [N] according to Section 14, C.3.
- \(t_k \) = corrosion addition [mm] according to Section 3.K.
- \(a_B \) = spacing of fore-hooks [m]

B. Stem

1. Bar stem

1.1 The cross sectional area of a bar stem below the load waterline is not to be less than:
 \[A_B = 1.25 \cdot L \text{ [cm}^2\text{]} \]

1.2 Starting from the load waterline, the sectional area of the bar stem may be reduced towards the upper end to 0.75 \(A_B \).

2. Plate stem and bulbous bows

2.1 The thickness is not to be less than:
 \[t = (0.6 + 0.4 \cdot a_B) \cdot (0.08 \cdot L + 6) \cdot \sqrt{k} \text{ [mm]} \]
 \[t_{max} = 25 \cdot \sqrt{k} \text{ [mm]} \]

 The plate thickness shall not be less than the required thickness according to Section 6, C.2.

 The extension \(\ell \) of the stem plate from its trailing edge aftwards shall not be smaller than:
 \[\ell = 70 \cdot \sqrt{L} \text{ [mm]} \]

 Dimensioning of the stiffening has to be done according to Section 9.

2.2 Starting from 600 mm above the load waterline up to \(T + c_{or} \), the thickness may gradually be reduced to 0.8t.

2.3 Plate stems and bulbous bows have to be stiffened by fore-hooks and/or cant frames. In case of large and long bulbous bows, see Section 9, A.5.3.3.

C. Sternframe

1. General

1.1 Propeller post and rudder post are to be led into the hull in their upper parts and connected to it in a suitable and efficient manner. In way of the rudder post the shell is to be strengthened according to Section 6, F. Due regard is to be paid to the design of the aft body, rudder and propeller well in order to minimize the forces excited by the propeller.

1.2 The following value is recommended for the propeller clearance \(d_{0,9} \) related to 0.9 R (see Fig 13.1):
Section 13 - Stem and Sternframe Structures

C

1. **Formula for Propeller Clearance**

\[
d_{0.9} \geq 0.004 \cdot n \cdot d_p^3 \cdot \sqrt{\frac{v_0 \cdot [1 - \sin (0.75 \gamma)] \cdot (0.5 + \frac{z_B}{x_F})}{D}} \quad \text{[m]}
\]

- **R** = propeller radius [m]
- **v_0** = ship's speed, see Section 1, H.5. [knot]
- **n** = number of propeller revolutions per minute
- **D** = maximum displacement of ship [ton]
- **d_p** = propeller diameter [m]
- **\gamma** = skew angle of the propeller [°], see Fig. 13.2
- **z_B** = height of wheelhouse deck above weather deck [m]
- **x_F** = distance of deckhouse front bulkhead from aft edge of stern [m], see Fig. 13.1.

![Propeller clearance](image1)

Fig. 13.1 - Propeller clearance d_{0.9}

- **Fig. 13.2 - Skew angle**

1.3 For single screw ships, the lower part of the stern frame is to be extended forward by at least 3 times the frame spacing from fore edge of the boss, for all other ships by 2 times the frame spacing from after edge of the stern frame.

1.4 The stern tube is to be surrounded by the floor plates or, when the ship's shape is too narrow to be stiffened by internal rings. Where no sole piece is fitted the internal rings may be dispensed with.

1.5 The plate thickness of sterns of welded construction for twin screw vessels shall not be less than:

\[
t = (0.07L + 5.0) \sqrt{k} \quad \text{[mm]}
\]

\[
t_{\text{max}} = 22 \sqrt{k} \quad \text{[mm]}
\]

2. **Propeller post**

2.1 The scantlings of rectangular, solid propeller posts are to be determined according to the following formulae:

\[
\ell = 1.4L + 90 \quad \text{[mm]}
\]

\[
b = 1.6L + 15 \quad \text{[mm]}
\]

Where other sections than rectangular ones are used, their section modulus is not to be less than that resulting from \(\ell\) and \(b\).

2.2 The scantlings of propeller posts of welded construction are to be determined according to the following formulae:

\[
\ell = 50 \sqrt{L} \quad \text{[mm]}
\]

\[
b = 36 \sqrt{L} \quad \text{[mm]}
\]

\[
t = 2.4 \sqrt{L \cdot k} \quad \text{[mm]}
\]

2.3 Where the cross sectional configuration is deviating from Fig. 13.3 and for cast steel propeller posts the section modulus of the cross section related to the longitudinal axis is not to be less than:
Section 13 - Stem and Sternframe Structures

Note

With single-screw ships having in the propeller region above the propeller flaring frames of more than \(\alpha = 75^\circ \) the thickness of the shell should not be less than the thickness of the propeller stem. For \(\alpha \leq 75^\circ \) the thickness may be 0,8 \(\ell \). In no case the thickness shall be less than the thickness of the side shell according to Section 6.

This recommendation applies for that part of the shell which is bounded by an assumed sphere the centre of which is located at the top of a propeller blade in the twelve o’clock position and the radius of which is 0,75 \(\ell \) propeller diameter. Sufficient stiffening should be arranged, e.g. by floors at each frame and by longitudinal girders.

2.4 The wall thickness \(\ell \) of the boss in the propeller post in its finished condition is to be at least 60 % of the breadth \(b \) of the propeller post according to 2.1.

2.5 The wall thickness of the boss in propeller posts of welded construction according to 2.2 shall not be less than 0,9 the wall thickness of the boss according to D.2.

The outer diameter of the sternframe boss, however, shall not be less than the outer diameter of the propeller boss at its forward edge.

3. Rudder post and rudder axle

3.1 The section modulus of the rudder post related to the longitudinal axis of the ship is not to be less than:

\[
W_x = C_R \cdot \ell \cdot k \cdot 10^{-3} \ [\text{cm}^3]
\]

\(\ell = \) unsupported span of the rudder post \([\text{m}]\)

Strength calculations for the rudder post, taking into account the flexibility of the sole piece, may be required where due to its low rigidity in y-direction the sole piece cannot be regarded as an efficient support for the rudder post and, therefore, additional bending stresses may arise at the upper point of constraint. The bending stress \(\sigma_b \) is not to exceed 85 N/mm².

3.2 The diameter of a rudder axle of a balanced rudder is not to be less than:

\[
d = 4,2 \sqrt[3]{\frac{C_R \cdot b (\ell - b) k}{\ell}} \ [\text{mm}]
\]

\(\ell = \) length of rudder axle \([\text{m}]\), see Fig. 13.4

\[
b = \frac{b_1 + b_2}{2} \ [\text{m}]
\]

\(b_1, b_2 \) see Fig. 13.4.

Regarding strength calculations for the rudder axle, respective remarks under 3.1 are to be observed.
4. **Sole piece**

4.1 The section modulus of the sole piece related to the z-axis is not to be less than:

\[W_z = \frac{B_1 \cdot x \cdot k}{80} \quad [\text{cm}^3] \]

\[B_1 = \text{See A.} \]

For rudders with two supports the support force is approximately \(B_1 = \frac{C_R}{2} \), when the elasticity of the sole piece is ignored.

\[x = \text{distance of the respective cross section from the rudder axis [m]} \]

\[x_{\text{min}} = 0.5 \cdot \ell_{50} \]

\[x_{\text{max}} = \ell_{50} \]

\[\ell_{50} = \text{see Fig. 13.5 and Section 14, C.3.2.} \]

4.2 The section modulus \(W_z \) may be reduced by 15% where a rudder post according to 3.1 is fitted.

4.3 The section modulus related to the y-axis is not to be less than:

- where no rudder post or rudder axle is fitted:

\[W_y = \frac{W_z}{2} \]

- where a rudder post or rudder axle is fitted:

\[W_y = \frac{W_z}{3} \]
4.4 The sectional area at the location $x = \ell_{50}$ is not to be less than:

$$A_s = \frac{B_1}{48} \frac{k}{[\text{mm}^2]}.$$

4.5 The equivalent stress taking into account bending and shear stresses at any location within the length ℓ_{50} is not to exceed:

$$\sigma_y = \sqrt{\sigma_b^2 + 3 \tau^2} = \frac{115}{k} \quad [\text{N/mm}^2]$$

$$\sigma_b = \frac{B_1 \cdot x}{W_z} \quad [\text{N/mm}^2]$$

$$\tau = \frac{B_1}{A_s} \quad [\text{N/mm}^2]$$

5. Rudder horn of semi spade rudders

5.1 The distribution of the bending moment, shear force and torsional moment is to be determined according to the following formulae:

- bending moment: $M_b = B_1 \cdot z \quad [\text{Nm}]$
- $M_{b_{\text{max}}} = B_1 \cdot d \quad [\text{Nm}]$
- shear force: $Q = B_1 \quad [\text{N}]$
- torsional moment: $M_T = B_1 \cdot e(z) \quad [\text{Nm}]$

For determining preliminary scantlings the flexibility of the rudder horn may be ignored and the supporting force B_1 be calculated according to the following formulae:

$$B_1 = C_R \frac{b}{c} \quad [\text{N}]$$

$b, c, d, e(z)$ and z see Fig. 13.6 and 13.7

b result from the position of the centre of gravity of the rudder area.

Fig. 13.6 - Arrangement of bearings of a semi spade rudder

Fig. 13.7 - Loads on the rudder horn
5.2 The section modulus of the rudder horn in transverse direction related to the horizontal x-axis is at any location z not to be less than:

\[W_x = \frac{M_b \cdot k}{67} \] [cm³]

5.3 At no cross section of the rudder horn the shear stress due to the shear force Q is to exceed the value:

\[\tau = \frac{48}{k} \] [N/mm²]

The shear stress is to be determined by the following formula:

\[\tau = \frac{B_1}{A_h} \] [N/mm²]

\[A_h = \text{effective shear area of the rudder horn in y-direction [mm²]}. \]

5.4 The equivalent stress at any location (z) of the rudder horn shall not exceed the following value:

\[\sigma_v = \sqrt{\sigma_b^2 + 3 \left(\tau^2 + \frac{\tau_T^2}{A_T} \right)} \leq \frac{120}{k} \] [N/mm²]

\[\sigma_b = \frac{M_b}{W_x} \] [N/mm²]

\[\tau_T = \frac{M_T \cdot 10^3}{2 \cdot A_T \cdot t_h} \] [N/mm²]

\[A_T = \text{sectional area [mm²] enclosed by the rudder horn at the location considered} \]

\[t_h = \text{thickness of the rudder horn plating [mm]}. \]

5.5 When determining the thickness of the rudder horn plating the provisions of 5.2 - 5.4 are to be complied with. The thickness is, however, not to be less than:

\[t_{\text{min}} = 2.4 \sqrt{L \cdot k} \] [mm]

5.6 The rudder horn plating is to be effectively connected to the aft ship structure, e.g. by connecting the plating to longitudinal girders, in order to achieve a proper transmission of forces, see Fig. 13.8.

5.7 Transverse webs of the rudder horn are to be led into the hull up to the next deck in a sufficient number and shall be of adequate thickness.

5.8 Strengthened plate floors are to be fitted in line with the transverse webs in order to achieve a sufficient connection with the hull. The thickness of these plate floors is to be increased by 50% above the Rule values as required by Section 8.

5.9 The centre line bulkhead (wash-plate) in the afterpeak is to be connected to the rudder horn.

Fig. 13.8 - Rudder horn integration into the aft ship structure
5.10 Where the transition between rudder horn and shell is curved, about 50% of the required total section modulus of the rudder horn is to be formed by the webs in a Section A-A located in the centre of the transition zone, i.e. 0.7r above the beginning of the transition zone. See Fig. 13.9

![Fig 13.9 Transition between rudder horn and shell](image)

D. Propeller Brackets

1. The strut axes should intersect in the axis of the propeller shaft as far as practicable. The struts are to be extended through the shell plating and are to be attached in an efficient manner to the frames and plate floors respectively. The construction in way of the shell is to be carried out with special care. In case of welded connection, the struts are to have a weld flange or a thickened part or are to be connected with the shell plating in another suitable manner. For strengthening of the shell in way of struts and shaft bossings, see Section 6, F. The requirements of Section 19, B.4.3 are to be observed.

2. The scantlings of solid struts are to be determined as outlined below depending on shaft diameter d:

- thickness: 0.44 d
- cross-sectional area in propeller bracket: 0.44 d²
- length of boss: see Rules for Machinery Installations, Volume III, Section 4, D.5.2.
- wall thickness of boss: 0.25 d.

3. Propeller brackets and shaft bossings of welded construction are to have the same strength as solid ones according to 2.

4. For single strut propeller bracket a strength analysis according to E.1.2 and a vibration analysis according to E.2. are to be carried out. Due consideration is to be given to fatigue strength aspects.

Single strut propeller bracket may also be determined as follows:

\[
W = 0.068 \, d^3 \\
I = 0.018 \, d^4
\]

where;

- \(W \) = section modulus of strut [\text{mm}^3]
- \(I \) = moment inertia of strut [\text{mm}^4]
- \(d \) = required shaft diameter [\text{mm}]

Above formulae applies for bracket length, measured from the outside perimeter of the strut bracket or boss is not to exceed 10.6 d. Where this length is exceeded the scantling of the strut has to be increased.

E. Elastic Stern Tube

1. Strength analysis

When determining the scantlings of the stern tube in way of the connection with the hull, the following stresses are to be proved:
1.1 Static load:
Bending stresses caused by static weight loads are not to exceed 0.35 \(R_{el} \).

1.2 Dynamic load:
The pulsating load due to loss of one propeller blade is to be determined assuming that the propeller revolutions are equal to 0.75 times the rated speed. The following permissible stresses are to be observed:

\[
\sigma_{perm} = \begin{cases}
0.40 \ R_{el} & \text{for} \ R_{el} = 235 \ \text{N/mm}^2 \\
0.35 \ R_{el} & \text{for} \ R_{el} = 355 \ \text{N/mm}^2.
\end{cases}
\]

The aforementioned permissible stresses are approximate values. Deviations may be permitted in special cases taking into account fatigue strength aspects.

2. Vibration analysis
The bending natural frequency at rated speed of the system comprising stern tube, propeller shaft and propeller is not to be less than 1.5 times the rated propeller revolutions. However, it is not to exceed 0.66 times the exciting frequency of the propeller (number of propeller blades x rated propeller revolutions) and is not to coincide with service conditions, including the damage condition (loss of one propeller blade).
Section 14

Rudder and Manoeuvring Arrangement

A. General

1. Manoeuvring arrangement

1.1 Each ship is to be provided with a manoeuvring arrangement which will guarantee sufficient manoeuvring capability.

1.2 The manoeuvring arrangement includes all parts from the rudder and steering gear to the steering position necessary for steering the ship.

1.3 Rudder stock, rudder coupling, rudder bearings and the rudder body are dealt with in this Section. The steering gear is to comply with Rules for Machinery Installations, Volume III, Section 14.

1.4 The steering gear compartment shall be readily accessible and, as far as practicable, separated from the machinery space. (See also Chapter II-I, Reg. 29.13 of SOLAS 74.)

Note
Concerning the use of non-magnetic material in the wheel house in way of a magnetic compass, the requirements of the National Administration concerned are to be observed.

1.5 For ice-strengthening see Section 15.

2. Structural details

2.1 Effective means are to be provided for supporting the weight of the rudder body without excessive bearing pressure, e.g. by a rudder carrier attached to the upper part of the rudder stock. The hull structure in way of the rudder carrier is to be suitably strengthened.

2.2 Suitable arrangements are to be provided to prevent the rudder from lifting.

Connections of rudder blade structure with solid parts in forged or cast steel, which are used as rudder stock housing, are to be suitably designed to avoid any excessive stress concentration at these areas.

2.3 The rudder stock is to be carried through the hull either enclosed in a watertight trunk, or glands are to be fitted above the deepest load waterline, to prevent water from entering the steering gear compartment and the lubricant from being washed away from the rudder carrier. If the top of the rudder trunk is below the deepest waterline two separate stuffing boxes are to be provided.

Note
The following measures are recommended for preventive measures to avoid or minimize rudder cavitation:

Profile selection:
- Use the appropriate profile shape and thickness.
- Use profiles with a sufficiently small absolute value of pressure coefficient for moderate angles of attack (below 5°). The pressure distribution around the profile should be possibly smooth. The maximum thickness of such profiles is usually located at more than 35 % behind the leading edge.
- Use a large profile nose radius for rudders operating in propeller slips.
- Computational Fluid Dynamic (CFD) analysis for rudder considering the propeller and ship wake can be used.

Rudder sole cavitation:
Round out the leading edge curve at rudder sole.

Propeller hub cavitation:
Fit a nacelle (body of revolution) to the rudder at the level of the propeller hub. This nacelle functions as an extension of
A Section 14 - Rudder and Manoeuvring Arrangement

14-2/21

the propeller hub.

Cavitation at surface irregularities:

- Grind and polish all welds.
- Avoid changes of profile shape. Often rudders are built with local thickenings (bubbles) and dents to ease fitting of the rudder shaft. Maximum changes in profile shape should be kept to less than two percent of profile thickness.

Gap cavitation:

- Round out all edges of the part around the gap.
- Gap size should be as small as possible.
- Place gaps outside of the propeller slipstream.

3. Size of rudder area

In order to achieve sufficient manoeuvring capability the size of the movable rudder area A is recommended to be not less than obtained from the following formula:

\[
A = c_1 \cdot c_2 \cdot c_3 \cdot c_4 \cdot \frac{1,75 \cdot L \cdot T}{100} \quad [m^2]
\]

- \(c_1\) = factor for the ship type:
 - 1,0 in general
 - 0,9 for bulk carriers and tankers having a displacement of more than 50 000 ton
 - 1,7 for tugs and trawlers

- \(c_2\) = factor for the rudder type:
 - 1,0 in general
 - 0,9 for semi-spade rudders
 - 0,7 for high lift rudders

- \(c_3\) = factor for the rudder profile:
 - 1,0 for NACA-profiles and plate rudder
 - 0,8 for hollow profiles and mixed profiles

- \(c_4\) = factor for the rudder arrangement:
 - 1,0 for rudders in the propeller jet
 - 1,5 for rudders outside the propeller jet

For semi-spade rudder 50% of the projected area of the rudder horn may be included into the rudder area A.

Where more than one rudder is arranged the area of each rudder can be reduced by 20%.

Estimating the rudder area A, B.1. is to be observed.

4. Materials

4.1 For materials for rudder stock, pintles, coupling bolts etc. see Rules for Material Volume V. Special material requirements are to be observed for the ice Class Notations ES3 and ES4 as well as for the ice Class Notations PC7 - PC1.

4.2 In general materials having a minimum nominal upper yield point \(R_{yH}\) of less than 200 N/mm² and a minimum tensile strength of less than 400 N/mm² or more than 900 N/mm² shall not be used for rudder stocks, pintles, keys and bolts. The requirements of this Section are based on a material’s minimum nominal upper yield point \(R_{yH}\) of 235 N/mm². If material is used having a \(R_{yH}\) differing from 235 N/mm², the material factor \(k_e\) is to be determined as follows:
Section 14 - Rudder and Manoeuvring Arrangement

4.3 Before significant reductions in rudder stock diameter due to the application of steels with \(R_{eH} \) exceeding 235 N/mm\(^2\) are granted, BKI may require the evaluation of the elastic rudder stock deflections. Large deflections should be avoided in order to avoid excessive edge pressures in way of bearings.

4.4 The permissible stresses given in E.1. are applicable for normal strength hull structural steel. When higher tensile steels are used, higher values may be used which will be fixed in each individual case.

5. Definitions

- \(C_R \) = rudder force [N]
- \(Q_R \) = rudder torque [Nm]
- \(A \) = total movable area of the rudder [m\(^2\)], measured at the mid-plane of the rudder

 For nozzle rudders, \(A \) is not to be taken less than 1.35 times the projected area of the nozzle.

- \(A_t \) = \(A + \) area of a rudder horn, if any, [m\(^2\)]
- \(A_f \) = portion of rudder area located ahead of the rudder stock axis [m\(^2\)]
- \(b \) = mean height of rudder area [m]
- \(c \) = mean breadth of rudder area [m] (see Fig. 14.1a)

\[
k_i = \begin{cases}
\left(\frac{235}{R_{eH}} \right)^{0.75} & \text{for } R_{eH} > 235 \text{ [N/mm}^2\text{]} \\
\frac{235}{R_{eH}} & \text{for } R_{eH} \leq 235 \text{ [N/mm}^2\text{]}
\end{cases}
\]

\(R_{eH} \) = minimum nominal upper yield point of material used [N/mm\(^2\)].

\(R_{eH} \) is not to be taken greater than 0.7 \(R_m \) or 450 N/mm\(^2\), whichever is less. \(R_m \) = tensile strength of the material used.

\(v_0 \) = ahead speed of ship [kn] as defined in Section 1.5.; if this speed is less than 10 kn, \(v_0 \) is to be taken as

\[
v_{\text{min}} = \frac{(v_0 + 20)}{3} \quad \text{[kn]}
\]

\(v_a \) = astern speed of ship [kn]; if the astern speed \(v_a \leq 0.4 \cdot v_0 \) or 6 kn, whichever is less, determination of rudder force and torque for astern condition is not required. For greater astern speeds special evaluation of rudder force and torque as a function of the rudder angle may be required. If no limitations for the rudder angle at

Fig. 14.1a Rudder area geometry

\[
c = \frac{x_1 + x_2}{2} \quad b = \frac{A}{c}
\]
astern condition is stipulated, the factor κ_2 is not to be taken less than given in Table 14.1 for astern condition.

$k =$ material factor according to Section 2, B.2.

For ships strengthened for navigation in ice, Section 15, B.9 and D.3.7 have to be observed.

B. Rudder Force and Torque

1. Rudder force and torque for normal rudders

1.1 The rudder force is to be determined according to the following formula:

$$C_R = 132 \cdot A \cdot v^2 \cdot \kappa_1 \cdot \kappa_2 \cdot \kappa_3 \cdot \kappa_t \ [N]$$

$v =$ v_0 for ahead condition

r_s for astern condition

$\kappa_1 =$ coefficient, depending on the aspect ratio Λ

$= \frac{(\Lambda + 2)}{3}$, where Λ need not be taken greater than 2

$\kappa_2 =$ coefficient, depending on the type of the rudder and the rudder profile according to Table 14.1.

$\kappa_3 =$ coefficient, depending on the location of the rudder

$= 0.8$ for rudders outside the propeller jet

$= 1.0$ elsewhere, including also rudders within the propeller jet

$= 1.15$ for rudders aft of the propeller nozzle

$\kappa_t =$ coefficient depending on the thrust coefficient C_{Th}

$= 0.8$ for rudders outside the propeller jet

$= 1.0$ elsewhere, including also rudders within the propeller jet

$= 1.15$ for rudders aft of the propeller nozzle

$6t =$ coefficient depending on the thrust coefficient C_{Th}

$= 1.0$ normally

In special cases for thrust coefficients $C_{Th} > 1.0$ determination of κ_t according to the following formula may be required:

$$\kappa_t = \frac{C_R (C_{Th})}{C_R (C_{Th} * 1,0)}$$

1.2 The rudder torque is to be determined by the following formula:

$$Q_R = C_R \cdot r \ [Nm]$$

$r =$ $c \cdot (\alpha - k_b) \ [m]$

$\alpha =$ 0.33 for ahead condition

$= 0.66$ for astern condition (general)

$= 0.75$ for astern condition (hollow profiles)

For parts of a rudder behind a fixed structure such as a rudder horn:

$\alpha =$ 0.25 for ahead condition

$= 0.55$ for astern condition.

For high lift rudders α is to be specially considered. If not known, $\alpha = 0.4$ may be used for the ahead condition.

$k_b =$ balance factor as follows:

$$= \frac{A_r}{A}$$

$= 0.08$ for unbalanced rudders

$r_{min} =$ 0.1 $\cdot c \ [m]$ for ahead condition.

1.3 Effects of the provided type of rudder / profile on choice and operation of the steering gear are to be observed.
2. Rudder force and torque for rudder blades with cut-outs (semi-spade rudders)

2.1 The total rudder force C_R is to be calculated according to 1.1. The pressure distribution over the rudder area, upon which the determination of rudder torque and rudder blade strength is to be based, is to be derived as follows:

The rudder area may be divided into two rectangular or trapezoidal parts with areas A_1 and A_2 (see Fig. 14.2).

Table 14.1 - Coefficient k_2

<table>
<thead>
<tr>
<th>Profile Type</th>
<th>k_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ahead Condition</td>
</tr>
<tr>
<td>for Ordinary Rudders</td>
<td></td>
</tr>
<tr>
<td>1 Single plate</td>
<td>1.0</td>
</tr>
<tr>
<td>2 NACA-OO Göttingen</td>
<td>1.1</td>
</tr>
<tr>
<td>3 Flat Side</td>
<td>1.1</td>
</tr>
<tr>
<td>4 Mixed (e.g., HSVA)</td>
<td>1.21</td>
</tr>
<tr>
<td>5 Hollow</td>
<td>1.35</td>
</tr>
<tr>
<td>for High-Lift/Performance Rudders</td>
<td></td>
</tr>
<tr>
<td>6 Fish tail (e.g., Schilling high-lift rudder)</td>
<td>1.4</td>
</tr>
<tr>
<td>7 Flap rudder</td>
<td>1.7</td>
</tr>
<tr>
<td>8 Rudder with steering nozzle</td>
<td>1.9</td>
</tr>
</tbody>
</table>

The resulting force of each part may be taken as:

$$C_{R1} = C_R \frac{A_1}{A} \quad [N]$$
2.2 The resulting torque of each part may be taken as:

\[Q_{R1} = C_{R1} \cdot r_1 \quad [\text{Nm}] \]

\[Q_{R2} = C_{R2} \cdot r_2 \quad [\text{Nm}] \]

The levers \(r_1 \) and \(r_2 \) are to be determined as follows:

\[r_1 = c_1 (\alpha - k_{b1}) \quad [\text{m}] \]

\[r_2 = c_2 (\alpha - k_{b2}) \quad [\text{m}] \]

\[k_{b1} = \frac{A_{1f}}{A_1} \]

\[k_{b2} = \frac{A_{2f}}{A_2} \]

\(A_{1f}, A_{2f} \) see Fig. 14.2

\[c_1 = \frac{A_1}{b_1} \]

\[c_2 = \frac{A_2}{b_2} \]

\(b_1, b_2 \) = mean heights of the partial rudder areas \(A_1 \) and \(A_2 \) (see Fig. 14.2).

2.3 The total rudder torque is to be determined according to the following formulae:

\[Q_R = Q_{R1} + Q_{R2} \quad [\text{Nm}] \quad \text{or} \]

\[Q_{R\text{min}} = C_R \cdot r_{1,2\text{min}} \quad [\text{Nm}] \]

\[r_{1,2\text{min}} = \frac{0.1}{A} (c_1 \cdot A_1 + c_2 \cdot A_2) \quad [\text{m}] \] for ahead condition

The greater value is to be taken.

C. Scantlings of the Rudder Stock

1. Rudder stock diameter

1.1 The diameter of the rudder stock for transmitting the torsional moment is not to be less than:

\[D_t = 4.2 \cdot \sqrt[3]{\frac{Q_R}{k_t}} \quad [\text{mm}] \]
QR see B.1.2 and B.2.2 - 2.3.
The related torsional stress is:
\[\tau_t = \frac{68}{k_t} \quad [N/mm^2] \]
k_t see A.4.2.

1.2 The steering gear is to be determined according to Rules for Machinery Installations, Volume III, Section 14 for the rudder torque QR as required in B.1.2, B.2.2 or B.2.3 and under consideration of the frictional losses at the rudder bearings.

1.3 In case of mechanical steering gear the diameter of the rudder stock in its upper part which is only intended for transmission of the torsional moment from the auxiliary steering gear may be 0,9 \(D_t \). The length of the edge of the quadrangle for the auxiliary tiller shall not be less than 0,77 \(D_t \) and the height not less than 0,8 \(D_t \).

1.4 The rudder stock is to be secured against axial sliding. The degree of the permissible axial clearance depends on the construction of the steering engine and on the bearing.

2. Strengthening of rudder stock

If the rudder is so arranged that additional bending stresses occur in the rudder stock, the stock diameter has to be suitably increased. The increased diameter is, where applicable, decisive for the scantlings of the coupling.

For the increased rudder stock diameter the equivalent stress of bending and torsion is not to exceed the following value:
\[\sigma_v = \sqrt{\frac{\sigma_b^2}{3} + \tau^2} = \frac{118}{k_t} \quad [N/mm^2] \]
Bending stress:
\[\sigma_b = \frac{10,2 \cdot M_b}{D_1^3} \cdot 10^3 \quad [N/mm^2] \]
\[M_b = \] bending moment at the neck bearing [Nm]
Torsional stress:
\[\tau = \frac{5,1 \cdot Q_R}{D_1^3} \cdot 10^3 \quad [N/mm^2] \]
\[D_1 = \] increased rudder stock diameter [mm]
The increased rudder stock diameter may be determined by the following formula:
\[D_1 = D_t \sqrt[6]{1 + \frac{4}{3} \left(\frac{M_b}{Q_R} \right)^2} \quad [mm] \]

Q_R see B.1.2 and B.2.2 - 2.3
D_t see 1.1.

Note
Where a double-piston steering gear is fitted, additional bending moments may be transmitted from the steering gear into the rudder stock. These additional bending moments are to be taken into account for determining the rudder stock diameter.

3. Analysis

3.1 General
The evaluation of bending moments, shear forces and support forces for the system rudder - rudder stock may be carried out for some basic rudder types as shown in Figs. 14.3 - 14.5 as outlined in 3.2. - 3.3.

3.2 Data for the analysis
\[t_{10} - t_{40} = \] lengths of the individual girders of the system [m]
\[l_{10} - l_{40} = \] moments of inertia of these girders [cm^4]
For rudders supported by a sole piece the length l_{20} is the distance between lower edge of rudder body and centre of sole piece, and I_{20} is the moment of inertia of the pintle in the sole piece.

Load on rudder body (general):

$$p_R = \frac{C_R}{l_{10} \cdot 10^3} \text{ [kN/m]}$$

Load on semi-spade rudders:

$$p_{R10} = \frac{C_{R2}}{l_{10} \cdot 10^3} \text{ [kN/m]}$$

$$p_{R20} = \frac{C_{R1}}{l_{20} \cdot 10^3} \text{ [kN/m]}$$

C_R, C_{R1}, C_{R2} see B.1. and B.2.

Z = spring constant of support in the sole piece or rudder horn respectively

for the support in the sole piece (Fig. 14.3):

$$Z = \frac{6,18 \cdot I_{50}}{l_{50}^3} \text{ [kN/m]}$$

for the support in the rudder horn (Fig. 14.4):

$$Z = \frac{1}{f_b + f_i} \text{ [kN/m]}$$

f_b = unit displacement of rudder horn [m] due to a unit force of 1 kN acting in the centre of support

$$f_b = 0,21 \frac{d^3}{I_n} \text{ [m/kN]} \text{ (guidance value for steel)}$$

I_n = moment of inertia of rudder horn around the x-axis at $d/2$ [cm4] (see also Fig. 14.4)

f_i = unit displacement due to torsional moment of the amount $1 \cdot e$ [kNm]

$$f_i = \frac{d \cdot e^2}{G \cdot I_t} = \frac{d \cdot e^2 \cdot \sum u_i / t_i}{3,17 \cdot 10^8 \cdot F_T^2} \text{ [m/kN]} \text{ for steel}$$

G = modulus of rigidity

$$G = 7,92 \cdot 10^7 \text{ [kN/m2]} \text{ for steel}$$

J_t = torsional moment of inertia [m4]

F_T = mean sectional area of rudder horn [m2]

u_i = breadth [mm] of the individual plates forming the mean horn sectional area

t_i = plate thickness within the individual breadth u_i [mm]

e, d = distances [m] according to Fig. 14.4.
Section 14 - Rudder and Manoeuvring Arrangement

Fig. 14.3 Rudder supported by sole piece

Fig. 14.4 Semi-spade rudder
3.3 Moments and forces to be evaluated

3.3.1 The bending moment M_b and the shear force Q_l in the rudder body, the bending moment M_b in the neck bearing and the support forces B_1, B_2, B_3 are to be evaluated.

The so evaluated moments and forces are to be used for the stress analyses required by 2. and E.1. of this Section and by Section 13, C.4. and C.5.

3.3.2 For spade rudders the moments and forces may be determined by the following formulae:

$$M_b = C_R \left(\ell_{20} + \frac{\ell_{10} (2x_1 + x_2)}{3(x_1 + x_2)} \right) \quad [Nm]$$

$$B_3 = \frac{M_b}{\ell_{30}} \quad [N]$$

$$B_2 = C_R + B_3 \quad [N]$$
3.3.3 For spade rudders with rudder trunks (see Fig. 14.6) the moments and forces may be determined by the following formulae:

\[C_{R1} = \text{rudder force over the partial rudder area } A_1 \text{ according to B.2.1} \text{ [N]} \]

\[C_{R2} = \text{rudder force over the partial rudder area } A_2 \text{ according to B.2.1} \text{ [N]} \]

\[M_{CR1} = C_{R1} \cdot \frac{t_{20}}{1 - \frac{2}{3} \frac{x_2 + x_3}{x_2 + x_3}} \text{ [Nm]} \]

\[M_{CR2} = C_{R2} \cdot \frac{t_{10}}{3} \frac{2}{x_1 + x_2} \text{ [Nm]} \]

\[M_{R} = \text{Max} (M_{CR1}, M_{CR2}) \text{ [Nm]} \]

\[M_{b} = M_{CR2} - M_{CR1} \text{ [Nm]} \]

\[B_{3} = \frac{M_{b}}{t_{20} + t_{30}} \text{ [N]} \]

\[B_{2} = C_{R} + B_{3} \text{ [N]} \]

4. Rudder trunk

4.1 In case where the rudder stock is fitted with a rudder trunk welded in such a way the rudder trunk is loaded by the pressure induced on the rudder blade, as given in B.1.1, the bending stress in the rudder trunk, in N/mm², is to be in compliance with the following formula:

\[\sigma \leq \frac{80}{k} \]

where the material factor \(k \) for the rudder trunk is not to be taken less than 0.7.

For the calculation of the bending stress, the span to be considered is the distance between the mid-height of the lower rudder stock bearing and the point where the trunk is clamped into the shell or the bottom of the skeg.

4.2 The weld at the connection between the rudder trunk and the shell or the bottom of the skeg is to be full penetration. The fillet shoulder radius \(r \), in mm, is to be as large as practicable and to comply with the following formulae:

\[r = 60 \text{ when } \sigma \geq \frac{40}{k} \text{ [N/mm²]} \]

\[r = 0.1 D_1 \text{ when } \sigma < \frac{40}{k} \text{ [N/mm²]} \]

without being less than 30, where \(D_1 \) is defined in 2.1.

Note

The radius may be obtained by grinding. If disk grinding is carried out, score marks are to be avoided in the direction of the weld.

The radius is to be checked with a template for accuracy. Four profiles at least are to be checked. A report is to be submitted to the Surveyor.

Before welding is started, a detailed welding procedure specification is to be submitted to BKI covering the weld preparation, welding positions, welding parameters, welding consumables, preheating, post weld heat treatment and inspection procedures. This welding procedure is to be supported by approval tests in accordance with the applicable requirements of materials and welding sections of the rules.

The manufacturer is to maintain records of welding, subsequent heat treatment and inspections traceable to the welds. These records are to be submitted to the Surveyor.

Non destructive tests are to be conducted at least 24 hours after completion of the welding. The welds are to be 100 % magnetic particle tested and 100 % ultrasonic tested.
D. Rudder Couplings

1. General

1.1 The couplings are to be designed in such a way as to enable them to transmit the full torque of the rudder stock.

1.2 The distance of bolt axis from the edges of the flange is not to be less than 1,2 the diameter of the bolt. In horizontal couplings, at least 2 bolts are to be arranged forward of the stock axis.

1.3 The coupling bolts are to be fitted bolts. The bolts and nuts are to be effectively secured against loosening, e.g. according to recognized standards.

1.4 For spade rudders horizontal couplings according to 2. are permissible only where the required thickness of the coupling flanges t_f is less than 50 mm, otherwise cone couplings according to 4. are to be applied. For spade rudders of the high lift type, only cone couplings according to 4. are permitted.

2. Horizontal couplings

2.1 The diameter of coupling bolts is not to be less than:

$$d_b = 0,62 \sqrt[3]{\frac{D^3 \cdot k_b}{k_r \cdot n \cdot e}} \quad [\text{mm}]$$

D = rudder stock diameter according to C. [mm]
n = total number of bolts, which is not to be less than 6
e = mean distance of the bolt axes from the centre of bolt system [mm]
k_r = material factor for the rudder stock as given in A.4.2
k_b = material factor for the bolts analogue to A.4.2.

2.2 The thickness of the coupling flanges is not to be less than determined by the following formulae:

$$t_f = 0,62 \sqrt[3]{\frac{D^3 \cdot k_f}{k_r \cdot n \cdot e}} \quad [\text{mm}]$$

$t_{f\text{min}} = 0,9 \cdot d_b$

k_f = material factor for the coupling flanges analogue to A.4.2.

The thickness of the coupling flanges clear of the bolt holes is not to be less than $0,65 \cdot t_f$.

The width of material outside the bolt holes is not to be less than $0,67 \cdot d_b$.

2.3 The coupling flanges are to be equipped with a fitted key according to DIN 6885 or equivalent standards for relieving the bolts.

The fitted key may be dispensed with if the diameter of the bolts is increased by 10%.

2.4 Horizontal coupling flanges should either be forged together with the rudder stock or be welded to the rudder stock as outlined in Section 19, B.4.4.3.

2.5 For the connection of the coupling flanges with the rudder body see also Section 19, B.4.4.

3. Vertical couplings

3.1 The diameter of the coupling bolts is not to be less than:

$$d_b = \frac{0,81 \cdot D}{\sqrt{n}} \sqrt[3]{k_b \cdot \frac{k_b}{k_r}} \quad [\text{mm}]$$

D, k_b, k_r, n see 2.1, where n is not to be less than 8.
3.2 The first moment of area of the bolts about the centre of the coupling is not to be less than:
\[S = 0.00043 D^3 \text{ [cm}^3]\]

3.3 The thickness of the coupling flanges is not to be less than:
\[t_f = \frac{d_b}{[mm]} \]
The width of material outside the bolt holes is not to be less than \(0.67 \cdot d_b\).

4. Cone couplings

4.1 Cone couplings with key

4.1.1 Cone couplings should have a taper \(c\) on diameter of 1:8 - 1:12.
\[c = \frac{(d_o - d_b)}{\ell} \text{ according Fig. 14.7.} \]
The cone shapes should fit very exact. The nut is to be carefully secured, e.g. by securing plate as shown in Fig. 14.7.

4.1.2 The coupling length \(\ell\) shall, in general, not be less than \(1.5 \cdot d_o\).

4.1.3 For couplings between stock and rudder a key is to be provided, the shear area of which is not to be less than:
\[a_s = \frac{16 \cdot Q_F}{d_k \cdot R_{elHl}} \text{ [cm}^2]\]

\[Q_F = \text{design yield moment of rudder stock [Nm] according to F.} \]
\[d_k = \text{diameter of the conical part of the rudder stock [mm] at the key} \]
\[R_{elHl} = \text{minimum nominal upper yield point of the key material [N/mm}^2\] \]

4.1.4 The effective surface area of the key (without rounded edges) between key and rudder stock or cone coupling, is not to be less than:
\[a_k = \frac{5 \cdot Q_F}{d_k \cdot R_{th2}} \text{ [cm}^2]\]

\[R_{th2} = \text{minimum nominal upper yield point of the key, stock or coupling material [N/mm}^2\], whichever is less. \]

4.1.5 The dimensions of the slugging nut are to be as follows, see Fig. 14.7:

- height:
\[h_n = 0.6 \cdot d_g \]

- outer diameter (the greater value to be taken):
 \[d_n = 1.2 \cdot d_u \quad \text{or} \quad d_n = 1.5 \cdot d_g \]

- external thread diameter:
 \[d_g = 0.65 \cdot d_0 \]

4.1.6 It is to be proved that 50% of the design yield moment will be solely transmitted by friction in the cone couplings. This can be done by calculating the required push-up pressure and push-up length according to 4.2.3 for a torsional moment \(Q_F' = 0.5 \cdot Q_F \).

4.2 Cone couplings with special arrangements for mounting and dismounting the couplings

4.2.1 Where the stock diameter exceeds 200 mm the press fit is recommended to be effected by a hydraulic pressure connection. In such cases the cone should be more slender, \(c = 1:12 \) to \(= 1 : 20 \).

4.2.2 In case of hydraulic pressure connections the nut is to be effectively secured against the rudder stock or the pintle. A securing plate for securing the nut against the rudder body is not to be provided, see Fig. 14.8.

![Cone coupling without key and with securing flat bar](image)

Note

A securing flat bar will be regarded as an effective securing device of the nut, if its shear area is not less than:

\[A_s = \frac{P_s \cdot \sqrt{3}}{R_{eff}} \quad [\text{mm}^2] \]

- \(P_s \) = shear force as follows
 \[= \frac{P_e}{2} \cdot \mu_f \left[\frac{d_f}{d_g} - 0.6 \right] \quad [\text{N}] \]

- \(P_e \) = push-up force according to 4.2.3.2 [N]

- \(\mu_f \) = frictional coefficient between nut and rudder body, normally \(\mu_f = 0.3 \)

- \(d_f \) = mean diameter of the frictional area between nut and rudder body, see Fig. 14.8

- \(d_g \) = thread diameter of the nut

- \(R_{eff} \) = yield point \([\text{N/mm}^2]\) of the securing flat bar material.

4.2.3 For the safe transmission of the torsional moment by the coupling between rudder stock and rudder body the push-up length and the push-up pressure are to be determined by the following formulae.

4.2.3.1 Push-up pressure

The push-up pressure is not to be less than the greater of the two following values:
Section 14 - Rudder and Manoeuvring Arrangement

\[P_{req1} = \frac{2 \cdot Q_F \cdot 10^3}{d_m^2 \cdot \ell \cdot \pi \cdot \mu_0} \quad \text{[N/mm}^2\text{]} \]

\[P_{req2} = \frac{6 \cdot M_b \cdot 10^3}{\ell^2 \cdot d_m} \quad \text{[N/mm}^2\text{]} \]

\[Q_F = \text{design yield moment of rudder stock according to F. [Nm]} \]

\[d_m = \text{mean cone diameter [mm]} \]

\[\ell = \text{cone length [mm]} \]

\[\mu_0 = 0.15 \text{ (frictional coefficient)} \]

\[M_b = \text{bending moment in the cone coupling (e.g. in case of spade rudders) [Nm].} \]

It has to be proved that the push-up pressure does not exceed the permissible surface pressure in the cone. The permissible surface pressure is to be determined by the following formula:

\[p_{perm} = \frac{0.8 \cdot R_{ehl}(1 - \alpha^2)}{\sqrt{3 + \alpha^2}} \quad \text{[N/mm}^2\text{]} \]

\[R_{ehl} = \text{yield point [N/mm}^2\text{]} \text{ of the material of the gudgeon} \]

\[\alpha = d_m/d_a \text{ (see Fig 14.7)} \]

The outer diameter of the gudgeon shall not be less than:

\[d_a = 1.5 \cdot d_m \quad \text{[mm]} \]

4.2.3.2 Push-up length

The push-up length is not to be less than:

\[\Delta l_1 = \frac{P_{req} \cdot d_m}{E \left(1 - \frac{\alpha^2}{2}\right) c} + 0.8 \frac{R_{un}}{c} \quad \text{[mm]} \]

\[R_{un} = \text{mean roughness [mm]} \]

\[c \approx 0.01 \text{ mm} \]

\[E = \text{Young's modulus (2.06 \cdot 10^5 N/mm}^2\text{)} \]

A guidance figure for the minimum push-up length is:

\[\Delta l_{min} = \frac{d_m}{150} \quad \text{[mm]} \]

The push-up length is, however, not to be taken greater than:

\[\Delta l_2 = \frac{1.6 \cdot R_{ehl} \cdot d_m}{\sqrt{3 + \alpha^2} E \cdot c} + 0.8 \frac{R_{un}}{c} \quad \text{[mm]} \]

Note

In case of hydraulic pressure connections the required push-up force \(P_e \) for the cone may be determined by the following formula:

\[P_e = P_{req} \cdot d_m \cdot \ell \left(\frac{c}{2} + 0.02 \right) \quad \text{[N]} \]

The value 0.02 in above formula is a reference value for the friction coefficient using oil pressure. It varies and depends on the mechanical treatment and roughness of the details to be fixed.

Where due to the fitting procedure a partial push-up effect caused by the rudder weight is given, this may be taken into account when fixing the required push-up length, subject to approval by BKI.
4.2.4 The required push-up pressure for pintle bearings is to be determined by the following formula:

\[p_{req} = 0.4 \frac{B_1 \cdot d_0}{d_m^2 \cdot t} \quad [N/mm^2] \]

- \(B_1 \) = supporting force in the pintle bearing \([N]\), see also Fig. 14.4
- \(d_m \), \(t \) = see 4.2.3
- \(d_0 \) = pintle diameter \([mm]\) according to Fig. 14.7.

E. Rudder Body, Rudder Bearings

1. Strength of rudder body

1.1 The rudder body is to be stiffened by horizontal and vertical webs in such a manner that the rudder body will be effective as a beam. The rudder should be additionally stiffened at the aft edge.

1.2 The strength of the rudder body is to be proved by direct calculation according to C.3.

1.3 For rudder bodies without cut-outs the permissible stress are limited to:

- bending stress due to \(M_R \):
 \[\sigma_b = 110 \quad [N/mm^2] \]
- shear stress due to \(Q_1 \):
 \[\tau = 50 \quad [N/mm^2] \]
- equivalent stress due to bending and shear:
 \[\sigma_c = \sqrt{\sigma_b^2 + 3 \tau^2} = 120 \quad [N/mm^2] \]

\(M_R, Q_1 \) see C.3.3 and Fig. 14.3 and 14.4.

In case of openings in the rudder plating for access to cone coupling or pintle nut the permissible stresses according to 1.4 apply. Smaller permissible stress values may be required if the corner radii are less than 0.15 \(h_0 \), where \(h_0 \) = height of opening.

1.4 In rudder bodies with cut-outs (semi-spade rudders) the following stress values are not to be exceeded:

- bending stress due to \(M_R \):
 \[\sigma_b = 90 \quad [N/mm^2] \]
- shear stress due to \(Q_1 \):
 \[\tau = 50 \quad [N/mm^2] \]
- torsional stress due to \(M_t \):
 \[\tau_t = 50 \quad [N/mm^2] \]
- equivalent stress due to bending and shear and equivalent stress due to bending and torsion:
 \[\sigma_{v1} = \sqrt{\sigma_b^2 + 3 \tau^2} = 120 \quad [N/mm^2] \]
 \[\sigma_{v2} = \sqrt{\sigma_b^2 + 3 \tau_t^2} = 100 \quad [N/mm^2] \]
- \(M_R = C_{R2} \cdot f_1 + B_1 \frac{f_2}{2} \quad [Nm] \)
- \(Q_1 = C_{R2} \quad [N] \)

\(f_1, f_2 \) see Fig. 14.9.

The torsional stress may be calculated in a simplified manner as follows:

\[\tau_t = \frac{M_t}{2 \cdot t \cdot h \cdot t} \quad [N/mm^2] \]
Mt = CR2 \cdot e \quad [Nm]

CR2 = partial rudder force [N] of the partial rudder area \(A_2 \) below the cross section under consideration

\(e \) = lever for torsional moment [m]

(horizontal distance between the center of pressure of area \(A_2 \) and the centre line \(a-a \) of the effective cross sectional area under consideration, see Fig. 14.9. The center of pressure is to be assumed at 0.33 of the forward edge of area \(A_2 \), where \(c_2 \) = mean breadth of area \(A_2 \))

\(h, f, t \) [cm], see Fig. 14.9.

Fig. 14.9 Geometry of semi-spade rudder

The distance \(f \) between the vertical webs should not exceed 1.2 \(\cdot h \).

The radii in the rudder plating are not to be less than 4 - 5 times the plate thickness, but in no case less than 50 mm.

Note

It is recommended to keep the natural frequency of the fully immersed rudder and of local structural components at least 10% above the exciting frequency of the propeller (number of revolutions x number of blades) or if relevant, above higher order.

2. Rudder plating

2.1 Double plate rudders

2.1.1 The thickness of the rudder plating is to be determined according to the following formula:

\[
t = 1.74 \cdot a \cdot \sqrt{\frac{PR \cdot k}{10^3 \cdot A}} + 2.5 \quad [\text{mm}]
\]

\(PR = 10 \cdot T + \frac{C_R}{10^3 \cdot A} \quad [\text{kN/m}^2] \)

\(a \) = the smaller unsupported width of a plate panel [m].

The influence of the aspect ratio of the plate panels may be taken into account as given in Section 3, A.3.

The thickness shall, however, not be less than the thickness \(t_{\text{min}} \) according to Section 6, B.3.1.

To avoid resonant vibration of single plate fields the frequency criterion as defined in Section 12, A.8.3 (\(\alpha < 60^\circ \)) for shell structures applies analogously.

Regarding dimensions and welding Section 19, B.4.4.1 has to be observed in addition.

2.1.2 For connecting the side plating of the rudder to the webs tenon welding is not to be used. Where application of fillet welding is not practicable, the side plating is to be connected by means of slot welding to flat bars which are welded to the webs.

2.1.3 The thickness of the webs is not to be less than 70% of the thickness of the rudder plating according to 2.1.1, but not less than:

\[
t_{\text{min}} = 8 \sqrt{k} \quad [\text{mm}]
\]

Webs exposed to seawater must be dimensioned according to 2.1.1.
2.2 Single plate rudders

2.2.1 Main piece diameter
The main piece diameter is calculated according to C.1 and C.2 respectively. For spade rudders the lower third may taper down to 0.75 times stock diameter.

2.2.2 Blade thickness

2.2.2.1 The blade thickness is not to be less than:
\[t_b = 1.5 \cdot a \cdot v_0 + 2.5 \] [mm]

\(a \) = spacing of stiffening arms [m], not to exceed 1 m;
\(v_0 \) = Ahead speed of ship [kn]

2.2.2.2 After edge of rudder plating to be rounded.

2.2.3 Arms
The thickness of the arms "t_a" is not to be less than the blade thickness according to 2.2.2.

The section modulus is to be determined as follow:
\[W_a = 0.5 \cdot a \cdot c_1^2 \cdot v_0^2 \] [cm³]

\(c_1 \) = horizontal distance from the aft edge of the rudder to the centreline of the rudder stock [m].

3. Transmitting of the rudder torque

3.1 For transmitting the rudder torque, the rudder plating according to 2.1.1 and 2.2.2.1 is to be increased by 25% in way of the coupling. A sufficient number of vertical webs is to be fitted in way of the coupling.

3.2 If the torque is transmitted by a prolonged shaft extended into the rudder, the latter shall have the diameter \(D_t \) or \(D_s \), whichever is greater, at the upper 10% of the intersection length. Downwards it may be tapered to 0.6 \(D_t \), in spade rudders to 0.4 times the strengthened diameter, if sufficient support is provided for.

4. Rudder bearings

4.1 In way of bearings liners and bushes are to be fitted. Their minimum thickness is

\[t_{min} = \begin{cases}
8 \text{ mm} & \text{for metallic materials and synthetic material} \\
22 \text{ mm} & \text{for lignum material}
\end{cases} \]

Where in case of small ships bushes are not fitted, the rudder stock is to be suitably increased in diameter in way of bearings enabling the stock to be re-machined later.

4.2 An adequate lubrication is to be provided.

4.3 The bearing forces result from the direct calculation mentioned in C.3. As a first approximation the bearing force may be determined without taking account of the elastic supports. This can be done as follows:

- normal rudder with two supports:

 The rudder force \(C_R \) is to be distributed to the supports according to their vertical distances from the centre of gravity of the rudder area.

- semi-spade rudders:

 support force in the rudder horn:

 \[B_1 = C_R \cdot \frac{b}{c} \] [N]

 support force in the neck bearing:

 \[B_2 = C_R - B_1 \] [N]
For b and c see Section 13, Fig. 13.6.

4.4 The projected bearing surface A_b (bearing height x external diameter of liner) is not to be less than

$$A_b = \frac{B}{q} \quad [\text{mm}^2]$$

B = support force [N]
q = permissible surface pressure according to Table 14.2

Table 14.2 - Permissible surface pressure q

<table>
<thead>
<tr>
<th>Bearing material</th>
<th>q [N/mm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>lignum vitae</td>
<td>2.5</td>
</tr>
<tr>
<td>white metal, oil lubricated</td>
<td>4.5</td>
</tr>
<tr>
<td>synthetic material$^{1)}$</td>
<td>5.5</td>
</tr>
<tr>
<td>steel$^{2)}$, bronze and hot-pressed bronze-graphite materials</td>
<td>7.0</td>
</tr>
</tbody>
</table>

$^{1)}$ Synthetic materials to be of approved type.
Surface pressures exceeding 5.5 N/mm2 may be accepted in accordance with bearing manufacturer's specification and tests, but in no case more than 10 N/mm2.

$^{2)}$ Stainless and wear resistant steel in an approved combination with stock liner. Higher surface pressures than 7 N/mm2 may be accepted if verified by tests.

4.5 Stainless and wear resistant steels, bronze and hot-pressed bronze-graphite materials have a considerable difference in potential to non-alloyed steel. Respective preventive measures are required.

4.6 The bearing height shall be equal to the bearing diameter, however, is not to exceed 1.2 times the bearing diameter. Where the bearing depth is less than the bearing diameter, higher specific surface pressures may be allowed.

4.7 The wall thickness of pintle bearings in sole piece and rudder horn shall be approximately $1\over 4$ of the pintle diameter.

5. **Pintles**

5.1 Pintles are to have scantlings complying with the conditions given in 4.4 and 4.6. The pintle diameter is not to be less than:

$$d = 0.35 \sqrt[3]{\frac{B_1}{k_r}} \quad [\text{mm}]$$

B_1 = support force [N]
k_r = see A.4.2.

5.2 The thickness of any liner or bush shall not be less than:

$$t = 0.01 \sqrt[3]{B_1} \quad [\text{mm}]$$

or the values in 4.1 respectively.

5.3 Where pintles are of conical shape, they are to comply with the following:

- taper on diameter $1:8$ to $1:12$ if keyed by slugging nut,
- taper on diameter $1:12$ to $1:20$ if mounted with oil injection and hydraulic nut.

5.4 The pintles are to be arranged in such a manner as to prevent unintentional loosening and falling out.

For nuts and threads the requirements of D.4.1.5 and 4.2.2 apply accordingly.

6. **Guidance values for bearing clearances**

6.1 For metallic bearing material the bearing clearance shall generally not be less than:
6.2 If non-metallic bearing material is applied, the bearing clearance is to be specially determined considering the material's swelling and thermal expansion properties and to be in accordance with maker recommendation.

6.3 The clearance is not to be taken less than 1.5 mm on diameter. In case of self lubricating bushes going down below this value can be agreed to on the basis of the manufacturer's specification.

F. Design Yield Moment of Rudder Stock

The design yield moment of the rudder stock is to be determined by the following formula:

\[
Q_F = 0.02664 \frac{D_t^3}{k_t} \quad [\text{Nm}]
\]

\[\frac{d_b}{1000} + 1.0\] \quad [\text{mm}]

d_b = \text{inner diameter of bush.}

Where the actual diameter \(D_{ta} \) is greater than the calculated diameter \(D_t \), the diameter \(D_{ta} \) is to be used. However, \(D_{ta} \) need not be taken greater than \(1.145 \cdot D_t \).

G. Stopper, Locking Device

1. Stopper

The motions of quadrants or tillers are to be limited on either side by stoppers. The stoppers and their foundations connected to the ship's hull are to be of strong construction so that the yield point of the applied materials is not exceeded at the design yield moment of the rudder stock.

2. Locking device

Each steering gear is to be provided with a locking device in order to keep the rudder fixed at any position. This device as well as the foundation in the ship's hull are to be of strong construction so that the yield point of the applied materials is not exceeded at the design yield moment of the rudder stock as specified in F. Where the ship's speed exceeds 12 kn, the design yield moment need only be calculated for a stock diameter based on a speed \(v_0 = 12 \) [kn].

3. Regarding stopper and locking device see also Rules for Machinery Installations, Volume III, Section 14.

H. Propeller Nozzles

1. General

1.1 The following requirements are applicable to propeller nozzles having an inner diameter of up to 5 m. Nozzles with larger diameters will be specially considered.

1.2 Special attention is to be given to the support of fixed nozzles at the hull structure.

2. Design pressure

The design pressure for propeller nozzles is to be determined by the following formula:

\[
p_d = c \cdot p_{do} \quad [\text{kN/m}^2]
\]

\[
p_{do} = \frac{e \cdot N}{A_p} \quad [\text{kN/m}^2]
\]

\[N = \text{maximum shaft power [kW]}\]
\[A_p = \text{propeller disc area [m}^2]\]
\[= \frac{\pi}{4} D^2 \]
D = propeller diameter [m]
\(e = \text{factor according to the following formula:} \]
\[e = 0,21 - 2 \cdot 10^{-4} \frac{N}{A_p} \]
\(e_{\text{min}} = 0,10 \)
c = 1,0 in zone 2 (propeller zone),
= 0,5 in zones 1 and 3
= 0,35 in zone 4.

see Fig. 14.10

![Fig. 14.10 Zone 1 to 4 of propeller nozzle](image)

3. Plate thickness

3.1 The thickness of the nozzle shell plating is not to be less than:
\[t = 5 \cdot a \cdot \sqrt{d} + t_k \quad \text{[mm]} \]
\(t_{\text{min}} = 7,5 \quad \text{[mm]} \)
a = spacing of ring stiffeners [m].

3.2 The web thickness of the internal stiffening rings shall not be less than the nozzle plating for zone 3, however, in no case be less than 7,5 mm.

4. Section modulus

The section modulus of the cross section shown in Fig. 14.10 around its neutral axis is not to be less than:
\[W = n \cdot d^2 \cdot b \cdot \sqrt{v_0^2} \quad \text{[cm}^3]\]
d = inner diameter of nozzle [m]
b = length of nozzle [m]
n = 1,0 for rudder nozzles
= 0,7 for fixed nozzles.

5. Welding

The inner and outer nozzle shell plating is to be welded to the internal stiffening rings as far as practicable by double continuous welds. Plug welding is only permissible for the outer nozzle plating.
This page intentionally left blank
Section 15

Strengthening for Navigation in Ice

A. General

1. Ice class notations

1.1 The strengthenings for the various ice class notations are recommended for navigation under the following ice conditions:

<table>
<thead>
<tr>
<th>Ice class notation</th>
<th>Ice conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
<td>Drift ice in mouths of rivers, and coastal regions</td>
</tr>
<tr>
<td>ES1</td>
<td>Ice conditions as in the Northern Baltic</td>
</tr>
<tr>
<td>ES2</td>
<td>Ice conditions as in the Northern Baltic</td>
</tr>
<tr>
<td>ES3</td>
<td>Ice conditions as in the Northern Baltic</td>
</tr>
<tr>
<td>ES4</td>
<td>Ice conditions as in the Northern Baltic</td>
</tr>
</tbody>
</table>

1.2 Ships the ice-strengthening of which complies with the requirements of B. will have the notation ES1, ES2, ES3 or ES4 affixed to their Character of Classification.

1.3 The requirements for the ice class notations ES1 — ES4 embody all necessary conditions to be complied with for assignment of the ice classes IC - IA "Super" according to the "Finnish-Swedish Ice Class Rules 1985, as amended". The ice class notations mentioned under 1.1 are equivalent to the Finnish-Swedish Ice Class in the following way:

- Ice class notation ES1 corresponds to ice class IC.
- Ice class notation ES2 corresponds to ice class IB.
- Ice class notation ES3 corresponds to ice class IA.
- Ice class notation ES4 corresponds to ice class IA "Super".

Note

The Finnish-Swedish Ice Class Rules set the minimum requirements for engine power and ice strengthening for ships navigating the Baltic Sea with the assistance of icebreakers when necessary. Special consideration should be given to ships designed for independent navigation and/or for ships designed for navigation in areas other than the Baltic Sea (e.g. see paragraph 4.1.4 of Guidelines for the Application of the Finnish-Swedish Ice Class Rules).

The Swedish Maritime Administration has provided ice class notations IBV and ICV for vessels navigating Lake Vänern ("Regulations and General Advice of the Swedish Maritime Administration on Swedish Ice Class for Traffic on Lake Vänern", SJÖFS 2003:16). The requirements for ice class notations IBV and ICV are the same as those for ice class notations ES2 and ES1, respectively, except for the calculation of minimum propulsion machinery output, see A.3. When calculating the resistance of the vessel, the thickness of brash ice in mid channel, \(H_{\text{A6}}\) is to be taken as 0.65 m for ice class notation IBV and 0.50 m for ice class notation ICV. For vessels complying with the requirements for ice class notations IBV and ICV, a corresponding entry will be made in the Annex to the Class Certificate.

1.4 The ice class notations ES1-ES4 can only be assigned to self-propelled ships when in addition to the requirements of this Section also the relevant Machinery Construction Rules according to Volume III, Section 13 are complied with. For example, the Character of Classification then reads: \(\text{A 100 } \oplus \text{ ES1; + SM ES1}\). Where the hull only is strengthened for a higher ice class notation, a corresponding entry will be made in the Annex to the Class Certificate.

1.5 Ships the ice strengthening of which complies with the requirements of C. will have the notation ES affixed to their Character of Classification.
Upon request, the Notation ES may be assigned independently for hull or machinery.

1.6 Ships which beyond the requirements for the ice Class Notations ES, ES1 to ES4 or PC7 to PC1 have been specially designed, dimensioned and/or equipped for ice breaking will have affixed the notation ICEBREAKER in addition. Dimensioning of the structure with regard to the foreseen area of operation has to be harmonized with BKI.

1.7 Ships intended for navigation in arctic waters may have the ice Class Notations PC7 - PC1 affixed to their Character of Classification if the requirements given in Guidelines for the Construction of Polar Class Ships are complied with.

1.8 If the scantlings required by this Section are less than those required for ships without ice strengthening, the scantlings required by the other Sections of these Rules are to be maintained.

2. Ice class draught for Ships with Notations ES1-ES4

2.1 The upper ice waterline (UIWL) is to be the highest waterline at which the ship is intended to operate in ice. The lower ice waterline (LIWL) is to be the lowest waterline at which the ship is intended to operate in ice. Both the UIWL and LIWL may be broken lines.

2.2 The maximum and minimum ice class draughts at the forward perpendicular, amidships and at the aft perpendicular are to be determined in accordance with the upper/lower ice waterlines and are to be stated in the drawings submitted for approval. The maximum ice class draught at the forward perpendicular is not to be less than the maximum draught at amidships. The ice class draughts, the minimum propulsion machinery output, P, according to 3., as well as the corresponding ice class, will be stated in the Annex to the Class Certificate.

If the summer load line in fresh water is located at a higher level than the UIWL, the ship's sides are to be provided with a warning triangle and with an ice class draught mark at the maximum permissible ice class draught amidships (see Annex B).

2.3 The draught and trim, limited by the UIWL, shall not be exceeded when the ship is navigating in ice. The salinity of the sea water along the intended route is to be taken into account when loading the ship.

The ship is always to be loaded down at least to the LIWL when navigating in ice. The LIWL is to be agreed upon with the owners. For ships with the ice class notations E1 – E4, any ballast tank adjacent to the side shell and situated above the LIWL, and needed to load the ship down to this waterline, is to be equipped with devices to prevent the water from freezing. In determining the LIWL, regard is to be paid to the need for ensuring a reasonable degree of ice-going capability in ballast. The propeller is to be fully submerged, entirely below the ice, if possible.

2.4 For ships with the ice class notations ES1 - ES4 the minimum draught at the forward perpendicular shall not be less than the smaller of the following values:

\[T_{\text{min}} = h_0 \left(2 + \frac{2.5 \cdot 10^{-4}}{D}\right) \quad [m] \]

or

\[T_{\text{min}} = 4 \cdot h_0 \quad [m] \]

\[D = \text{displacement of the ship [t]} \text{ on the maximum ice class draught according to 2.1} \]

\[h_0 = \text{design ice thickness according to B.2.1.} \]

3. Propulsion machinery output for ships with Notations ES1-ES4

3.1 The propulsion machinery output P in the context of this Section, is the total maximum output the propulsion machinery can continuously deliver to the propeller(s). If the output of the machinery is restricted by technical means or by any regulations applicable to the ship, P is to be taken as the restricted output.

3.2 For ships with the ice class notation ES1 or ES2, the keels of which were laid or which are in a similar stage of construction before September 1st, 2003, the propulsion machinery output is not to be less than:

\[P = f_1 \cdot f_2 \cdot f_3 (f_4 \cdot D + P_0) \quad [kW] \]

\[P_{\text{min}} = 740 \text{ kW} \]

\[f_1 = 1.0 \quad \text{for a fixed pitch propeller} \]
\[f_2 = \frac{\varphi_1}{200} + 0.675, \quad \text{but not more than 1.1} \]
\[f_1 \cdot f_2 \geq 0.85 \]
\[f_3 = 1.2 \frac{B}{\sqrt{D}}, \quad \text{but not less than 1.0} \]
\[f_4 \text{ and } P_0 \text{ are to be taken from Table 15.1 for the respective ice Class Notation and displacement.} \]

Table 15.1 - Factor \(f_4 \) and power \(P_0 \) for the determination of minimum propulsion machinery output for ships of ice classes ES1 and ES2

<table>
<thead>
<tr>
<th>Ice class notation</th>
<th>ES2</th>
<th>ES1</th>
<th>ES2</th>
<th>ES1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D) [t]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 30 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_4)</td>
<td>0.22</td>
<td>0.18</td>
<td>0.13</td>
<td>0.11</td>
</tr>
<tr>
<td>(P_0)</td>
<td>370</td>
<td>0</td>
<td>3070</td>
<td>2100</td>
</tr>
</tbody>
</table>

\(D = \) displacement of the ship [t] as per 2.4.D need not to be taken as greater than 80 000 t.

For ES2, no higher propulsion machinery output, \(P \), than required for ES3 is necessary.

Note

The Finnish Administration may in special cases approve an propulsion machinery output below that required in accordance with 3.2 above.

3.3 For ships with the ice Class Notation ES1 or ES2, the keels of which are laid or which are in a similar stage of construction on or after September 1st, 2003, and for ships with the ice class notation ES3 or ES4, the propulsion machinery output is not to be less than:

\[P = K_c \left(\frac{R_{ch}/1000}{D_p} \right)^{3/2} \text{ [kW]} \]

\(P_{\text{min}} = 2800 \text{ kW} \quad \text{for ice class notation ES4} \)
\(= 1000 \text{ kW} \quad \text{for ice class notation ES1, ES2 and ES3} \)

The required propulsion machinery output \(P \) is to be calculated for ships on both the UIWL and the LIWL. The propulsion machinery output shall not be less than the greater of these two outputs.

\(K_c = \) is be taken from Table 15.2

The values in Table 15.2 apply only to conventional propulsion systems. Other methods may be used for determining the \(K_c \) values for advanced propulsion systems as specified in 3.4.
Table 15.2 Factor K_e for the determination of minimum propulsion machinery output for ships of ice classes ES3 and ES4

<table>
<thead>
<tr>
<th>Propeller type or machinery</th>
<th>K_e CP or electric or hydraulic propulsion machinery</th>
<th>K_e FP propeller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 propeller</td>
<td>2,03</td>
<td>2,26</td>
</tr>
<tr>
<td>2 propellers</td>
<td>1,44</td>
<td>1,60</td>
</tr>
<tr>
<td>3 propellers</td>
<td>1,18</td>
<td>1,31</td>
</tr>
</tbody>
</table>

D_p = diameter of the propeller(s) [m]

R_{CH} = resistance [N] of the ship in a channel with brash ice and a consolidated layer:

$$R_{CH} = C_1 + C_2 + C_3 \cdot C_\mu \left(H_F + H_M \right)^2 \cdot \left(B + C_\psi \cdot H_F \right) + C_4 \cdot L_{PAR} \cdot \frac{H_F^2}{B^2} + C_5 \left(\frac{L_{PP} \cdot T}{B} \right)^3 \frac{A_{wf}}{L_{PP}} \quad [N]$$

C_1 and C_2 take into account a consolidated upper layer of the brash ice and can be taken as zero for ice Class Notations ES1, ES2 and ES3.

For ice class ES4:

$$C_1 = f_1 \frac{B \cdot L_{PAR}}{2 \frac{T}{B} + 1} + (1 + 0,021 \varphi_1) \cdot (f_2 \cdot B + f_3 \cdot L_{BOW} + f_4 \cdot B \cdot L_{BOW})$$

$$C_2 = (1 + 0,063 \varphi_1) (g_1 + g_2 \cdot B) + g_3 \left(1 + 1,2 \frac{T}{B} \right) \frac{B^2}{\sqrt{L_{PP}}}$$

$C_3 = 845 \quad [kg/m^2/s^2]$

$C_4 = 42 \quad [kg/m^2/s^2]$

$C_5 = 825 \quad [kg/s^2]$

$C_\mu = 0,15 \cos \varphi_2 + \sin \psi \cdot \sin \alpha; \quad C_\mu \geq 0,45$

$C_\psi = 0,047 \psi - 2,115; \quad C_\psi = 0 \quad \text{for} \ \psi \leq 45^\circ$

$H_F = \text{thickness of the brash ice layer displaced by the bow [m]}

$$= 0,26 + \sqrt{H_M \cdot B}$$

$H_M = \text{thickness of the brash ice in mid channel [m]}

$$= 1,0 \quad \text{for ice class notations ES3 and ES4}

$$= 0,8 \quad \text{for ice class notations ES2}

$$= 0,6 \quad \text{for ice class notation ES1}$

The ship parameters defined below are to be calculated on the UIWL using a horizontal waterline passing through the maximum ice class draught amidships, as defined in 2.1, and on the LIWL using a horizontal waterline passing through the minimum ice class draught amidships, as defined in 2.3. The ship dimensions L_{PP} and B, however, are always to be calculated on the UIWL. See also Fig. 15.1. The lengths of the bow, L_{BOW}, on the UIWL and LIWL are both to be measured from the fore perpendicular defined on the UIWL. The length of the parallel midship body, L_{PAR}, is to be measured between the aft perpendicular and the flat of side, if the vessel has a full beam between these two points.

$L_{PAR} = \text{length of the parallel midship body [m]}

$L_{PP} = \text{length of the ship between perpendiculars [m]}

$L_{BOW} = \text{length of the bow [m]}

$T = \text{maximum and minimum ice class draughts amidship [m] according to 2.1 and 2.3, respectively}
\[\text{Awf} = \text{area of the waterplane of the bow [m}^2\text{]} \]

\[\varphi_1 = \text{the rake of the stem at the centreline [°]} \]

For a ship with a bulbous bow, \(\varphi_1 \) shall be taken as 90°.

\[\varphi_2 = \text{the rake, of the bow at } B/4 \text{ [°]}, \varphi_{2\text{max}} = 90° \]

\[\alpha = \text{the angle of the waterline at } B/4 \text{ [°]} \]

\[\psi = \arctan \left(\frac{\tan \varphi_2}{\sin \alpha} \right) \]

The quantity

\[\left(\frac{L_{pp} \cdot T}{B^2} \right)^3 \]

is not to be taken less than 5 and not to be taken more than 20.

\[f_1 = 23 \text{ [N/m}^2\text{]}, \quad g_1 = 1530 \text{ [N]} \]

\[f_2 = 45.8 \text{ [N/m]}, \quad g_2 = 170 \text{ [N/m]} \]

\[f_3 = 14.7 \text{ [N/m]}, \quad g_3 = 400 \text{ [N/m}^{1.5}\text{]} \]

\[f_4 = 29 \text{ [N/m}^2\text{]} \]

Ship’s parameters are generally to be within the ranges of validity shown in Table 15.3 if the above formula for \(R_{CH} \) is to be used. Otherwise, alternative methods for determining \(R_{CH} \) are to be used as specified in 3.4. When calculating the parameter \(\frac{D_P}{T} \), \(T \) shall be measured on the UIWL.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) [°]</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td>(\varphi_1) [°]</td>
<td>25</td>
<td>90</td>
</tr>
<tr>
<td>(\varphi_2) [°]</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>(L_{pp}) [m]</td>
<td>65.0</td>
<td>250.0</td>
</tr>
<tr>
<td>(B) [m]</td>
<td>11.0</td>
<td>40.0</td>
</tr>
<tr>
<td>(T) [m]</td>
<td>4.0</td>
<td>15.0</td>
</tr>
<tr>
<td>(L_{BOW}/L_{pp})</td>
<td>0.15</td>
<td>0.40</td>
</tr>
<tr>
<td>(L_{PAR}/L_{pp})</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>(D_p/T)</td>
<td>0.45</td>
<td>0.75</td>
</tr>
<tr>
<td>(\text{Awf}/(L_{pp} \cdot B))</td>
<td>0.09</td>
<td>0.27</td>
</tr>
</tbody>
</table>

3.4 For an individual ship, in lieu of the \(K_s \) or \(R_{CH} \) values defined in 3.3, the use of \(K_s \) values based on more exact calculations or \(R_{CH} \) values based on model tests may be approved (see also paragraph 7.4 of the Guidelines for the Application of the Finnish-Swedish Ice Class Rules). If \(R_{CH} \) is determined using the rule formulae, then \(K_e \) can be determined by using direct calculations or the rule formulae. However, if \(R_{CH} \) is determined using model tests, then propeller thrust should be calculated by direct calculations using the actual propeller data.

Such approvals will be given on the understanding that they can be revoked if warranted by the actual performance of the ship in ice.

The design requirement for ice classes is a minimum speed of 5 kn in the following brash ice channels:

- **ES4** = \(H_M = 1.0 \text{ m} \) and a 0.1 m thick consolidated layer of ice
- **ES3** = \(H_M = 1.0 \text{ m} \)
- **ES2** = \(H_M = 0.8 \text{ m} \)
- **ES1** = \(H_M = 0.6 \text{ m} \)

4. Definitions for ships notations ES1-ES4
4.1 Ice belt

4.1.1 The ice belt is the zone of the shell plating which is to be strengthened. The ice belt is divided into regions as follows, see Fig. 15.2:

1. **Forward region F**
The region from the stem to a line parallel to and at the distance c aft of the borderline between the parallel midship region and the fore ship;

\[c = 0.04 \cdot L, \text{ not exceeding } 6 \text{ m for the ice Class Notation ES3 and ES4, not exceeding } 5 \text{ m for the ice class notations ES1-ES2} \]

\[= 0.02 \cdot L, \text{ not exceeding } 2 \text{ m for the ice class notation ES.} \]

2. **Midship region M**
The region from the aft boundary of the region F, as defined in .1 to a line parallel to and at the distance c aft of the borderline between the parallel midbody region and the aft ship;

3. **Aft region A**
The region from the aft boundary of the region M, as defined in .2 to the stern;

4. **Fore foot FF**
(for ice class notation ES4 only)
The region below the ice belt from the stem to a position five main frame spaces abaft the point where the bow profile departs from the keel line;

5. **Upper forward ice belt FU**
(for ice class notations ES3 and ES4 on ships with a speed \(v_0 \geq 18 \) kn only)
The region from the upper limit of the ice belt to 2 m above it and from the stem to a position 0.2 L abaft the forward perpendicular.

4.1.2 The vertical extension of the regions F, M, and A is to be determined from Table 15.4.

4.1.3 On the shell expansion plan submitted for approval, the location of the UIWL, LIWL and the upper/lower limits of the ice belt, as well as the regions F, M and A (including FF and FU, if applicable), are to be clearly indicated.

Table 15.4 - Vertical extension of the regions F, M and A

<table>
<thead>
<tr>
<th>Ice class notation</th>
<th>Below LIWL [m]</th>
<th>Above UIWL [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES, ES1</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>ES2</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>ES3</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>ES4</td>
<td>0.75</td>
<td>0.6</td>
</tr>
</tbody>
</table>

4.1.4 The following terms are used in the formulae in B:

\[a = \text{ frame spacing } [\text{m}], \text{ longitudinal or transverse, taking into account the intermediate frames, if fitted.} \]
\[R_{\text{eff}} = \text{ minimum nominal upper yield point for hull structural steel according to Section 2, B.2.} \]
\[\ell = \text{ unsupported span } [\text{m}] \text{ of frames, web frames, stringer. See also Section 3, C.3.} \]
\[p = \text{ design ice pressure } [\text{N/mm}^2] \text{ according to B.2.2} \]
\[h = \text{ design height of ice pressure area } [\text{m}] \text{ according to B.2.1.} \]

The frame spacing and spans are normally to be measured in a vertical plane parallel to the centreline of the ship. However, if the ship's side deviates more than 20° from this plane, the frame spacing and spans shall be measured along the side of the ship.
Fig. 15.1 - Rake of the stem φ_1 and rake of the bow φ_2 at B/4 from CL

Fig. 15.2 Ice belt

B. Requirements for the Notations ES1 – ES4

1. General

1.1 A typical ice load distribution is shown in Fig.15.3. Maximum pressures (p_{max}) occur at the frames, minimum pressures occur between frames, due to different flexural stiffness of frames and shell plating.

The formulae for determining the scantlings used in this Section are based on the following design loads:

for frames:

$$p = \frac{1}{2} (p_{\text{max}} + p_{\text{min}}) \quad [\text{N/mm}^2]$$

for shell plating:

$$p_1 = 0.75 p \quad [\text{N/mm}^2]$$

p = design ice pressure as per 2.2.
1.2 The formulae given in this Section may be substituted by direct calculation methods, subject to approval by BKI.

2. Ice loads

2.1 An ice strengthened ship is assumed to operate in open sea conditions corresponding to a level ice thickness not exceeding \(h_0 \). The design height, \(h \), of the area actually under ice pressure is, however, assumed to be less than \(h_0 \). The values for \(h_0 \) and \(h \) are given in Table 15.5.

<table>
<thead>
<tr>
<th>Ice class notation</th>
<th>(h_0) [m]</th>
<th>(h) [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES, ES1</td>
<td>0.4</td>
<td>0.22</td>
</tr>
<tr>
<td>ES2</td>
<td>0.6</td>
<td>0.25</td>
</tr>
<tr>
<td>ES3</td>
<td>0.8</td>
<td>0.30</td>
</tr>
<tr>
<td>ES4</td>
<td>1.0</td>
<td>0.35</td>
</tr>
</tbody>
</table>

2.2 The design ice pressure is to be determined according to the following formula:

\[
p = c_d \cdot c_1 \cdot c_a \cdot p_0 \quad [\text{N/mm}^2]
\]

\[c_d = \frac{a \cdot k + b}{1000}\]

\[k = \frac{\sqrt{D \cdot P}}{1000}\]

\[P_{\text{max}} = 740 \text{ kW} \text{ for the ice class notation ES}\]

\[a, b = \text{coefficients in accordance with Table 15.6}\]

<table>
<thead>
<tr>
<th>Region</th>
<th>(k)</th>
<th>(F)</th>
<th>(M) and (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 12)</td>
<td>> 12</td>
<td>(\leq 12)</td>
<td>> 12</td>
</tr>
<tr>
<td>a</td>
<td>30</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>b</td>
<td>230</td>
<td>518</td>
<td>214</td>
</tr>
</tbody>
</table>

\(D \) see A.2.4

\(P = \text{total maximum output the propulsion machinery can continuously deliver to the propeller(s)} [\text{kW}], \text{see also A.3.1}\)

\(c_1 = \text{coefficient in accordance with Table 15.7}\)

\[c_a = \frac{47 - 5 \cdot \ell_a}{44} \quad \text{max. 1.0, min. 0.6}\]

\(\ell_a = \text{effective length [m]} \text{according to Table 15.8}\)

\(p_0 = 5.6 \text{ N/mm}^2 \text{ (nominal ice pressure)}\).

<table>
<thead>
<tr>
<th>Ice class notation</th>
<th>(\ell_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
<td>0.3</td>
</tr>
<tr>
<td>ES1</td>
<td>1.0</td>
</tr>
<tr>
<td>ES2</td>
<td>1.0</td>
</tr>
<tr>
<td>ES3</td>
<td>1.0</td>
</tr>
<tr>
<td>ES4</td>
<td>1.0</td>
</tr>
</tbody>
</table>
3. Thickness of shell plating in the ice belt

3.1 The thickness of the shell plating is to be determined according to the following formulae:

Transverse framing:

\[
t = 667 \frac{f_1 \cdot p_1}{R_{eh}} + t_c \quad [\text{mm}]
\]

Longitudinal framing:

\[
t = 667 \frac{p_1}{f_2 \cdot R_{eh}} + t_c \quad [\text{mm}]
\]

\[
p_1 \text{ see 1.1}
\]

\[
f_1 = 1,3 - \frac{4,2}{(1,8 + h/a)^2}
\]

\[
f_{1\max} = 1,0
\]

\[
f_2 = 0,6 + \frac{0,4}{h/a}, \text{ where } h/a \leq 1
\]

\[
= 1,4 - \frac{0,4 h}{a}, \text{ where } 1 < h/a \leq 1,8
\]

\[
t_c = \text{allowance for abrasion and corrosion} \quad [\text{mm}]. \text{ Usually } t_c \text{ amounts to 2 mm. If a special coating is applied and maintained, which by experience is shown to be capable to withstand the abrasion of ice, the allowance may be reduced to 1 mm.}
\]

3.2 Where the draught (e.g., in the ballast condition) is smaller than 1,5 m, or where the distance between the lower edge of the ice belt and the keel plate is smaller than 1,5 m, the thickness of the bottom plating in way of the ice belt region F is not to be less than required for the ice belt. In the same area the thickness of the plate floors is to be increased by 10 %.

3.3 Side scuttles are not to be situated in the ice belt. If the weather deck in any part of the ship is situated below the upper limit of the ice belt, see A.4.1.2 (e.g. in way of the well of a raised quarter decker), the bulwark is to have at least the same strength as is required for the shell in the ice belt. Special consideration has to be given to the design of the freeing ports.

3.4 For ships with the ice Class Notation ES4 the region FF according to A.4.1.1.4 shall have at least the thickness of the region M.

3.5 For ships with the ice Class Notation ES3 or ES4 and with a speed \(v_0 \geq 18 \text{ kn} \) the region FU according to A.4.1.1.5 shall have at least the thickness of the region M.

A similar strengthening of the bow region is also advisable for a ship with a lower service speed when it is evident that the ship will have a high bow wave, e.g. on the basis of model tests.

4. Frames, ice stringers, web frames

4.1 General

4.1.1 Within the ice-strengthened area, all frames are to be effectively attached to the supporting structures. Longitudinal frames are generally to be attached to supporting web frames and bulkheads by brackets. Brackets may be
omitted with an appropriate increase in the section modulus of the frame (see 4.3.1) and with the addition of heel stiffeners (heel stiffeners may be omitted on the basis of direct calculations, subject to approval by BKI). Brackets and heel stiffeners are to have at least the same thickness as the web plate of the frame and the free edge has to be appropriately stiffened against buckling. When a transverse frame terminates at a stringer or deck, a bracket or similar construction is to be fitted. When a frame is running through the supporting structure, both sides of the web are to be connected to the structure by direct welding, collar plate or lug.

4.1.2 For the ice Class Notation ES4, for the ice Class Notation ES3 within the regions F and M and for the ice class notations ES2 and ES1 within the region F the following applies:

1. Frames with webs which are not at perpendicular to the shell are to be supported against tripping by brackets, intercostal plates, stringers or similar at a distance not exceeding 1300 mm.

2. The frames are to be attached to the shell by double continuous welds. No scalloping is allowed except when crossing shell plate butt welds.

3. The web thickness of the frames is to be at least one half of the thickness of the shell plating and at least 9 mm. The latter minimum value is independent of the material factor k according to Section 2, B.2.1. However, the web thickness of frames need not exceed one half of the shell plating thickness required for a frame spacing of 0.45 m, assuming a yield stress for the plating not greater than that for the framing.

4. Where there is a deck, tank top, bulkhead, web frame or stringer in lieu of a frame, its plate thickness of this is to be as required in accordance with .3, to a depth corresponding to the height of adjacent frame.

4.1.3 For transverse framing above UIWL and below LIWL, as well as longitudinal framing below LIWL, the vertical extension of the ice strengthened framing b_E is to be determined according to Table 15.9.

Where the vertical extension of ice-strengthened transverse framing b_E would extend beyond a deck or a tank top by not more than 250 mm, it may be terminated at that deck or tank top.

For longitudinal framing above UIWL the vertical extension of the ice-strengthening should be extended up to and including the first frame above the upper edge of the ice belt. Additionally, the spacing between the longitudinal frames directly above and below the edge of the ice belt should be the same as the frame spacing in the ice belt. If the first frame above the ice belt is closer than approximately $a/2$ to the upper edge of the ice belt, then the same frame spacing as in the ice belt should be extended to the second frame above the upper edge of the ice belt.

Table 15.9 Vertical extension b_E of ice strengthened framing

<table>
<thead>
<tr>
<th>Ice class notation</th>
<th>Region</th>
<th>b_E Above UIWL [m]</th>
<th>b_E Below LIWL [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
<td>F, from stem to 0.075 L abaft it</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ES1 ES2 ES3</td>
<td>F, from stem to 0.3 L abaft it</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>F, abaft 0.3 L from stem to aft boundary of region F</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>FU 1)</td>
<td>2.5</td>
<td>1.0</td>
</tr>
<tr>
<td>ES4</td>
<td>F, from stem to 0.3 L abaft it</td>
<td>1.2</td>
<td>To double bottom or below top of floors</td>
</tr>
<tr>
<td></td>
<td>F, abaft 0.3 L from stem to aft boundary of region F</td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>FU 1)</td>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>

1) If required according to A.4.1.1.5.
4.2 Transverse frames

4.2.1 The section modulus of a main, ’tweendeck or intermediate transverse frame is to be determined according to the following formula:

\[
W = \frac{p \cdot a \cdot h \cdot l}{m_t \cdot R_{eff}} \cdot 10^6 \quad [\text{cm}^3]
\]

\[
m_t = \frac{7 \cdot m_0}{7 - 5 \frac{h}{l}}
\]

Where less than 15 % of the span \(l\) is situated within the ice-strengthening zone for frames as defined in 4.1.3, ordinary frame scantlings may be used.

4.2.2 Upper end of transverse framing

4.2.2.1 The upper end of the ice-strengthened part of all frames is to be attached to a deck or an ice stringer as per 4.4.

Table 15.10 - Boundary conditions for transverse frames

<table>
<thead>
<tr>
<th>Boundary Condition</th>
<th>(m_0)</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>Frames in bulk carrier with top wing tanks</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Frames extending from the tank top to a single deck</td>
</tr>
<tr>
<td></td>
<td>5,7</td>
<td>Continuous frames between several decks or stringers</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Frames extending between two decks only</td>
</tr>
</tbody>
</table>

4.2.2.2 Where a frame terminates above a deck or stringer, which is situated at or above the upper limit of the ice belt (see A.4.1.2), the part above the deck or stringer need not be ice-strengthened. In such cases, the upper part of the intermediate frames may be connected to the adjacent main or ’tweendeck frames by a horizontal member of the same scantlings as the main and ’tweendeck frames, respectively. Such intermediate frames may also be extended to the deck above and, if this is situated more than 1,8 m above the ice belt, the intermediate frame need not be attached to that deck, except in the forward region F.
4.2.3 Lower end of transverse framing

4.2.3.1 The lower end of the ice strengthened part of all frames is to be attached to a deck, inner bottom, tanktop or ice stringer as per 4.4.

4.2.3.2 Where an intermediate frame terminates below a deck, tanktop or ice stringer which is situated at or below the lower limit of the ice belt (see A.4.1.2), its lower end may be connected to the adjacent main or 'tweendeck frames by a horizontal member of the same scantlings as the respectively main and 'tweendeck frames, respectively.

4.3 Longitudinal frames

The section modulus and the shear area of the longitudinal frames are to be determined according to the following formulae:

1. section modulus:

\[
W = \frac{f_3 \cdot f_4 \cdot p \cdot h \cdot t^2}{m \cdot R_{\text{eff}}} \times 10^6 \text{ [cm}^3]\]

2. shear area:

\[
A = \frac{\sqrt{3} \cdot f_3 \cdot p \cdot h \cdot t}{2 \cdot R_{\text{eff}}} \times 10^4 \text{ [cm}^2]\]

\(f_3\) = factor which takes account of the load distribution to adjacent frames
\(f_4\) = 1 - 0,2 \(h/a\)
\(m\) = boundary condition factor
\(m = 13,3\) for a continuous beam with double end brackets
\(m = 11,0\) for a continuous beam without double end bracket.

Where the boundary conditions are considerably different from those of a continuous beam, e.g. in an end field, a smaller factor \(m\) may be determined.

4.4 Ice stringers

4.4.1 Ice stringers within the ice belt

The section modulus and the shear area of a stringer situated within the ice belt are to be determined according to the following formulae:

1. section modulus:

\[
W = \frac{f_5 \cdot p \cdot h \cdot t^2}{m \cdot R_{\text{eff}}} \times 10^6 \text{ [cm}^3]\]

2. shear area:

\[
A = \frac{\sqrt{3} \cdot f_5 \cdot p \cdot h \cdot t}{2 \cdot R_{\text{eff}}} \times 10^4 \text{ [cm}^2]\]

\(p \cdot h\) is not to be taken as less than 0,3
\(m\) = see 4.3
\(f_5\) = factor which takes account of the distribution of load to the transverse frames; to be taken as 0,9.

4.4.2 Ice stringers outside the ice belt

The section modulus and the shear area of a stringer situated outside the ice belt, but supporting frames subjected to ice pressure, are to be calculated according to the following formulae:
1. Section modulus:

\[W = \frac{f_0 \cdot p \cdot h \cdot \ell^2}{m \cdot R_{eH}} \left(1 - \frac{h_s}{\ell_s} \right) \cdot 10^6 \quad \text{[cm}^3\text{]} \]

2. Shear area:

\[A = \frac{\sqrt{3} \cdot f_0 \cdot p \cdot h \cdot \ell}{2 \cdot R_{eH}} \left(1 - \frac{h_s}{\ell_s} \right) \cdot 10^4 \quad \text{[cm}^2\text{]} \]

- \(p \cdot h \) is not to be taken as less than 0.3
- \(f_0 \) = factor which takes account of the distribution of load to the transverse frames; to be taken as 0.95
- \(m \) = see 4.3
- \(h_s \) = distance of the stringer to the ice belt [m]
- \(\ell_s \) = distance of the stringer to the adjacent ice stringer or deck or similar structure [m].

4.4.3 Deck strips

4.4.3.1 Narrow deck strips abreast of hatches and serving as ice stringers are to comply with the section modulus and shear area requirements in 4.4.1 and 4.4.2 respectively. In the case of very long hatches, the product \(p \cdot h \) may be taken less than 0.30 but in no case less than 0.20.

4.4.3.2 When designing weatherdeck hatchcovers and their fittings, the deflection of the ship's sides due to ice pressure in way of very long hatch openings is to be considered.

4.5 Web frames

4.5.1 The load transferred to a web frame from a stringer or from longitudinal framing is to be calculated according to the following formula:

\[P = p \cdot h \cdot e \cdot 10^3 \quad \text{[kN]} \]

- \(p \cdot h \) is not to be taken as less than 0.3
- \(e \) = web frame spacing [m].

In case the supported stringer is outside the ice belt, the load \(P \) may be multiplied by

\[\left(1 - \frac{h_s}{\ell_s} \right) \]

where \(h_s \) and \(\ell_s \) shall be taken as defined in 4.4.2.

4.5.2 Shear area and section modulus

For the case of simple support at the upper end and constraint at the lower end according to Fig. 15.4, shear area and section modulus can be calculated by the following formulae:

Shear area:

\[A = \frac{\alpha \cdot Q \cdot \sqrt{3}}{R_{eH}} \cdot 10 \quad \text{[cm}^2\text{]} \]

\[Q = P \cdot k_1 \quad \text{[kN]} \]

\[k_1 = 1 + \frac{1}{2} \left(\frac{t_F}{\ell} \right)^3 - 3 \cdot \frac{1}{2} \left(\frac{t_F}{\ell} \right)^2 \quad \text{or} \]

\[= \frac{3}{2} \left(\frac{t_F}{\ell} \right)^2 - \frac{1}{2} \left(\frac{t_F}{\ell} \right)^3 \]

whichever is greater.
For the lower part of the web frame, the smallest t_F within the ice belt is to be used. For the upper part, the biggest t_F within the ice belt is to be taken.

t, t_F [m] according to Fig. 15.4.

\[\alpha = \text{see Table 15.11} \]
\[P = \text{as in 4.5.1} \]

section modulus:
\[W = \frac{M}{R_{eh}} \left[\frac{1}{1 - \left(\frac{A}{A_a} \right)^2} \right] \cdot 10^3 \text{ [cm}^3\text{]} \]
\[M = P \cdot t \cdot k_2 \text{ [kNm]} \]
\[k_2 = 1 + \frac{1}{2} \left(\frac{t_F}{t} \right)^3 - 3 \frac{t_F}{t} + \left(\frac{t_F}{t} \right)^2 \]
\[A_a = \text{actual shear area} \]
\[A = \text{required shear area as above, but by using} \]
\[k_1 = 1 + \frac{1}{2} \left(\frac{t_F}{t} \right)^3 - 3 \frac{t_F}{t} + \left(\frac{t_F}{t} \right)^2 \]
\[\gamma = \text{see Table 15.11} \]

4.5.3 For web frame configurations and boundary conditions than given in 4.5.2, a direct stress calculation is to be performed. The point of application of the load P is in each case to be chosen in relation to the arrangement of stringers and longitudinal frames so as to obtain the maximum shear and bending moments.

4.5.4 At any position of the web frame the equivalent stress due to bending and shear is to comply with the following condition:
\[\sigma_v = \sqrt{\sigma_b^2 + 3 \tau^2} \leq R_{eh} \]

5. Stem

5.1 The stem may be made of rolled, cast or forged steel or of shaped steel plates. A sharp edged stem (see Fig. 15.5) improves the manoeuvrability of the ship in ice and is particularly recommended for ships less than 150m in length.

5.2 The plate thickness of a shaped plate stem and, in the case of a blunt bow, any part of the shell which forms an angle β (see Fig. 15.5) of 30° or more to the centre line in a horizontal plane, is to be calculated according to the formulae in 3.1 observing that:
\[p_1 = \text{p} \]
\[a = \text{smaller of the two unsupported widths of plate panel [m]} \]
\(t_a \) = spacing of vertical supporting elements [m] (see also Table 15.8)

![Fig. 15.5 Stem](image)

5.3 The stem and the part of a blunt bow defined in 5.2 (if applicable), are to be supported by floors or brackets spaced not more than 0.6 m apart and having a thickness of at least half the plate thickness according to 5.2. The reinforcement of the stem shall extend from the keel to a point 0.75 m above UIWL or, in case an upper forward ice belt is required (see also A.4.1.1) to the upper limit of the region FU.

Table 15.11 - Coefficient \(\alpha \) and \(\gamma \) for the calculation of required shear area and section modulus

<table>
<thead>
<tr>
<th></th>
<th>0.00</th>
<th>0.20</th>
<th>0.40</th>
<th>0.60</th>
<th>0.80</th>
<th>1.00</th>
<th>1.20</th>
<th>1.40</th>
<th>1.60</th>
<th>1.80</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{A_f}{A_w})</td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1.50</td>
<td>1.23</td>
<td>1.16</td>
<td>1.11</td>
<td>1.09</td>
<td>1.07</td>
<td>1.06</td>
<td>1.05</td>
<td>1.05</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.00</td>
<td>0.44</td>
<td>0.62</td>
<td>0.71</td>
<td>0.76</td>
<td>0.80</td>
<td>0.83</td>
<td>0.85</td>
<td>0.87</td>
<td>0.88</td>
<td>0.89</td>
</tr>
</tbody>
</table>

\(A_f \) = cross sectional area of free flange
\(A_w \) = cross sectional area of web plate

6. Arrangements for towing

6.1 A mooring pipe with an opening not less than stated below is to be fitted in the bow bulwark at the centreline.

- size of opening : 250 x 300 [mm]
- length : 150 [mm]
- inner surface radius : 100 [mm]

6.2 A bitt or other means for securing a towline, dimensioned to withstand the breaking force of the towline of the ship, is to be fitted. Alternatively, two fairleads can be fitted symmetrically off the centreline with one bitt each. The bitts shall be aligned with the fairleads allowing the towlines to be fastened straight onto them. The installation of a centreline fairlead is still recommended, since it remains useful for many open water operations as well as some operations in ice.

6.3 On ships with a displacement not exceeding 30,000 t the part of the bow which extends to a height of at least 5 m above the UIWL and at least 3 m aft of the stem, is to be strengthened for the loads caused by fork towing. For this purpose intermediate frames and additional stringers or decks are to be fitted.

Note

Fork towing in ice is often the most efficient way of assisting ships of moderate size (as defined in 6.3). Ships with a bulb protruding more than 2.5 m forward of the forward perpendicular are often difficult to tow in this way. Some national authorities may deny assistance to such ships if the circumstances so warrant.

7. Stern

7.1 An extremely narrow clearance between the propeller blade tip and the stern frame is to be avoided as a small clearance would cause very high loads on the blade tips.

7.2 On twin and triple screw ships the ice strengthening of the shell and framing shall be extended to the double bottom to an extent of 1.5 m forward and aft of the side propellers.
7.3 Shafting and stern tubes of side propellers are normally to be enclosed within plated bossings. If detached struts are used, their design, strength and attachment to the hull are to be duly considered.

7.4 A wide transom stern extending below the UIWL will seriously impede the capability of the ship to back in ice, which is most essential. Therefore, a transom stern is not to extend below the UIWL if this can be avoided. If unavoidable, the part of the transom below the UIWL is to be kept as narrow as possible. The part of a transom stern situated within the ice belt shall be strengthened as for the midship region M.

7.5 Propulsion arrangements with azimuthing thrusters or "podded" propellers, which provide an improved manoeuvrability, result in increased ice loading of the aft region and stern structure. Due consideration is to be given to this increased ice loading in the design and dimensioning of the aft region and stern structure.

8. Bilge keels

To limit damage to the shell when a bilge keel is partly ripped off in ice, it is recommended that bilge keels are divided into several shorter independent lengths.

9. Rudder and steering gear

9.1 When calculating the rudder force and torsional moment according to Section 14, B.1. the ship's speed \(v_0 \) is not to be taken less than given in Table 15.12.

All scantlings dimensioned according to the rudder force and the torsional moment respectively (rudder stock, rudder coupling, rudder horn etc.) as well as the capacity of the steering gear are to be increased accordingly where the speed stated in Table 15.12 exceeds the ship's service speed.

Independent of rudder profile the coefficient \(\kappa_2 \) according to Section 14, B.1.1 need not be taken greater than \(\kappa_2 = 1.1 \) in connection with the speed values given in Table 15.12.

<table>
<thead>
<tr>
<th>Ice class notation</th>
<th>(v_0) [kn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES1</td>
<td>14</td>
</tr>
<tr>
<td>ES2</td>
<td>16</td>
</tr>
<tr>
<td>ES3</td>
<td>18</td>
</tr>
<tr>
<td>ES4</td>
<td>20</td>
</tr>
</tbody>
</table>

The factor \(\kappa_3 \) according to Section 14, B.1.1 need not be taken greater than 1.0 for rudders situated behind a nozzle.

9.2 Within the ice belt (as per A.4.1) the thickness of the rudder plating is to be determined as of the shell plating within the region A. The thickness of webs shall not to be less than half the rudder plating thickness.

9.3 For the ice Class Notations ES3 and ES4, the rudder stock and the upper edge of the rudder are to be protected against ice pressure by an ice knife or equivalent means. Special consideration shall be given to the design of the rudder and the ice knife for vessels with a flap-type rudder.

9.4 For ships with the ice Class Notations ES3 and ES4 due regard is to be paid to the excessive arising when the rudder is forced out of the midship position while backing into an ice ridge. A locking device according to Section 14, G.2. is regarded sufficient to absorb these loads.

Note

For ships sailing in low temperature areas, small gaps between the rudder and ship's hull may cause the rudder to become fixed to the hull through freezing. It is therefore recommended to avoid gaps less than 1/20 of the rudder body width or 50 mm, whichever is less, or to install suitable means such as heating arrangements.
C. Requirements for the Ice Class Notation ES

1. Shell plating within the ice belt

1.1 Within the ice belt the shell plating shall have a strengthened strake extending over the forward region F the thickness of which is to be determined according to B.3.

1.2 The midship thickness of the side shell plating is to be maintained forward of amidships up to the strengthened plating.

2. Frames

2.1 In the forward region F the section modulus of the frames is to comply with the requirements given in B.4.

2.2 Tripping brackets spaces not more than 1,3 m apart are to be fitted within the ice belt in line with the tiers of beams and stringers required in Section 9, A.5. in order to prevent tripping of the frames. The tripping brackets are to be extended over the forward region F.

3. Stem

The thickness of welded plate stems up to 600 mm above UIWL is to be 1,1 times the thickness required according to Section 13, B.2., however, need not exceed 25 mm. The thickness above a point 600 mm above the UIWL may be gradually reduced to the thickness required according to Section 13, B.2.
Section 16
Superstructures and Deckhouses

A. General

1. Definitions

1.1 A superstructure is a decked structure on the freeboard deck extending from side to side of the ship or with the side plating not being inboard of the shell plating more than 0.04 B.

1.2 A deckhouse is a decked structure above the strength deck the side plating being inboard of the shell plating more than 0.04 B.

1.3 A long deckhouse is a deckhouse the length of which within 0.4 L amidships exceeds 0.2 L or 12 m, where the greater value is decisive. The strength of a long deckhouse is to be specially considered.

1.4 A short deckhouse is a deckhouse not covered by the definition given in 1.3.

1.5 Superstructures extending into the range of 0.4 L amidships and the length of which exceeds 0.15 L are defined as effective superstructures. Their side plating is to be treated as shell plating and their deck as strength deck (see Sections 6 and 7).

1.6 All superstructures being located beyond 0.4 L amidships or having a length of less than 0.15 L or less than 12 metres are, for the purpose of this Section, considered as non-effective superstructures.

1.7 For deckhouses of aluminium, Section 2, D. is to be observed. For the use of non-magnetic material in way of the wheel house, see Section 14, A.1.4.

1.8 Scantlings of insulated funnels are to be determined as for deckhouses.

1.9 Throughout this Section the following definitions apply:

\[k = \text{material factor according to Section 2, B.2} \]
\[p_s = \text{load according to Section 4, B 2.1.} \]
\[p_e = \text{load according to Section 4, B 2.2.} \]
\[p_D = \text{load according to Section 4, B.1.} \]
\[p_{DA} = \text{load according to Section 4, B.5.} \]
\[p_L = \text{load according to Section 4, C.1.} \]
\[t_K = \text{corrosion addition according to Section 3, K.} \]

2. Arrangement of superstructure

2.1 According to ICLL, Regulation 39, a minimum bow height is required at the forward perpendicular, which may be obtained by sheer extending for at least 0.15 L, measured from the forward perpendicular or by fitting a forecastle extending from the stem to a point at least 0.07 L abaft the forward perpendicular.

2.2 Ships carrying timber deck cargo and which are to be assigned the respective permissible freeboard, are to have a forecastle of the Rule height and a length of at least 0.07 L. Furthermore, ships the length of which is less than 100 m, are to have a poop of Rule height or a raised quarter deck with a deckhouse.

3. Strengthenings at the ends of superstructures

3.1 At the ends of superstructures one or both end bulkheads of which are located within 0.4 L amidships, the thickness of the sheer strake, the strength deck in a breadth of 0.1 B from the shell, as well as the thickness of the superstructure side plating are to be strengthened as specified in Table 16.1. The strengthenings shall extend over a region from 4 frame spacings abaft the end bulkhead to 4 frame spacings forward of the end bulkhead.

<table>
<thead>
<tr>
<th>Type of superstructure</th>
<th>Strength deck and sheer strake</th>
<th>Side plating of superstructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>effective according to 1.5</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>non effective according to 1.6</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

BKI - Rules for Hull - 2014
3.2 Under strength decks in way of 0.6 \(L \) amidships, girders are to be fitted in alignment with longitudinal walls, which are to extend at least over three frame spacings beyond the end points of the longitudinal walls. The girders are to overlap with the longitudinal walls by at least 2 frame spacings.

4. Transverse structure of superstructures and deckhouses

The transverse structure of superstructures and deckhouses is to be sufficiently dimensioned by a suitable arrangement of end bulkheads, web frames, steel walls of cabins and casings, or by other measures.

5. Openings in closed superstructures

5.1 All access openings in end bulkheads of closed superstructures shall be fitted with weathertight doors permanently attached to the bulkhead, having the same strength as the bulkhead. The doors shall be so arranged that they can be operated from both sides of the bulkhead. The coaming heights of the access opening above the deck are to be determined according to ICLL.

5.2 Any opening in a superstructure deck or in a deckhouse deck directly above the freeboard deck (deckhouse surrounding companionways), is to be protected by efficient weathertight closures.

6. Recommendations regarding deckhouse vibration

6.1 The natural frequencies of the basic global deckhouse vibration modes (longitudinal, transverse, torsional) should not coincide with major excitation frequencies at the nominal revolution rate of the propulsion plant. This should be verified during the design stage by a global vibration analysis.

6.2 The natural frequencies of local deck panel structure components (plates, stiffeners, deck frames, longitudinal girders, deck grillages) should not coincide with major excitation frequencies at the nominal revolution rate of the propulsion plant. This should be verified during the design stage by a local vibration analysis.

6.3 It is recommended to design the local deck structures in such a way that their natural frequencies exceed twice propeller blade rate, and in case of rigidly mounted engines ignition frequency, by at least 20\%. This recommendation is based on the assumption of a propeller with normal cavitation behaviour, i.e. significant decrease of pressure pulses with increasing blade harmonic shall be ensured.

6.4 Cantilever navigation bridge wings should be supported by pillars or brackets extending from the outer wing edge to at least the deck level below. If this is not possible, the attachment points of the pillars/brackets at the deckhouse structure have to be properly supported.

6.5 The base points of the main mast located on the compass deck should be preferably supported by walls or pillars. The natural frequencies of the basic main mast vibration modes (longitudinal, transverse, torsional) should not coincide with major excitation frequencies at the nominal revolution rate of the propulsion plant. This should be verified during the design stage by a mast vibration analysis.

B. Side Plating and Decks of Non-Effective Superstructures

1. Side plating

1.1 The thickness of the side plating above the strength deck is not to be less than the greater of the following values:

\[
t = 1.21 \cdot \sqrt[3]{\frac{\rho}{k}} + t_k \quad [\text{mm}]
\]

or

\[
t = 0.8 \cdot t_{\text{min}} \quad [\text{mm}]
\]

\[\rho = \rho_s \text{ or } \rho_e, \text{ as the case may be}\]

\[t_{\text{min}} = \text{see Section 6, B. 3.1.}\]

1.2 The thickness of the side plating of upper tier superstructures may be reduced if the stress level permits such reduction.

2. Deck plating

2.1 The thickness of deck plating is not to be less than the greater of the following values:

\[
t = C \cdot \sqrt[3]{\frac{\rho}{k}} + t_k \quad [\text{mm}]
\]

\[
t = (5.5 + 0.02L) \sqrt{k} \quad [\text{mm}]
\]

\[\rho = \rho_{DA} \text{ or } \rho_s, \text{ the greater value is to be taken.}\]
C = 1,21, if \(p = p_{DA} \)

= 1,1, if \(p = p_{L} \)

\(L \) need not be taken greater than 200 m.

2.2 Where additional superstructures are arranged on non-effective superstructures located on the strength deck, the thickness required by 2.1 may be reduced by 10 %.

2.3 Where plated decks are protected by sheathing, the thickness of the deck plating according to 2.1 and 2.2 may be reduced by \(t_{K} \), however, it is not to be less than 5 mm.

Where a sheathing other than wood is used, attention is to be paid that the sheathing does not affect the steel. The sheathing is to be effectively fitted to the deck.

3. Deck beams, supporting deck structure, frames

3.1 The scantlings of the deck beams and the supporting deck structure are to be determined in accordance with Section 10.

3.2 The scantlings of superstructure frames are given in Section 9, A.3.

C. Superstructure End Bulkheads and Deckhouse Walls

1. General

The following requirements apply to superstructure end bulkheads and deckhouse walls forming the only protection for openings as per Regulation 18 of ICLL and for accommodations. These requirements also apply to breakwaters, see also F.

2. Definitions

The design load for determining the scantlings is:

\[
p_{A} = n \cdot c (b \cdot f - z) \quad [kN/m^2]
\]

\[
f = c_{L} \cdot c_{0}
\]

\(c_{L}, c_{0} = \text{see Section 4.A.2.2} \)

\(h_{N} = \text{standard superstructure height} \)

\[
h_{N} = 1,05 + 0,01 L \quad [m], \quad 1,8 \leq h_{N} \leq 2,3
\]

\(n = 20 + \frac{L}{12} \)

for the lowest tier of unprotected fronts. The lowest tier is normally that tier which is directly situated above the uppermost continuous deck to which the Rule depth \(H \) is to be measured. However, where the actual distance \(H - T \) exceeds the minimum non-corrected tabular freeboard according to ICLL by at least one standard superstructure height \(h_{N} \), this tier may be defined as the 2nd tier and the tier above as the 3rd tier

\[
= 10 + \frac{L}{12} \quad \text{for 2nd tier unprotected fronts}
\]

\[
= 5 + \frac{L}{15} \quad \text{for 3rd tier and tiers above of unprotected fronts, for sides and protected fronts}
\]

\[
= 7 + \frac{L}{100} - 8 \cdot \frac{x}{L} \quad \text{for aft ends abaft of amidships}
\]

\[
= 5 + \frac{L}{100} - 4 \cdot \frac{x}{L} \quad \text{for aft ends forward of amidships}
\]

\[
= 10 + \frac{L}{20} \quad \text{for breakwaters forward of } \frac{x}{L} \leq 0,85
\]

\(L \) need not be taken greater than 300 m.

\[
b = 1,0 + \left(\frac{x}{L} - 0,45 \right)^{2} \quad \text{for } \frac{x}{L} < 0,45
\]
b = 1,0 + 1,5 \left(\frac{x}{L} - 0,45 \right)^2 \text{ for } \frac{x}{L} \geq 0,45

b = 1,0 + 2,75 \left(\frac{x}{L} - 0,45 \right)^2 \text{ for breakwaters forward of } \frac{x}{L} \geq 0,85

0,60 \leq C_B \leq 0,80; \text{ when determining scantlings of aft ends forward of amidships, } C_B \text{ need not be taken less than 0,8.}

x = \text{ distance [m] between the bulkhead considered or the breakwater and the aft end of the length } L.\text{ When determining sides of a deckhouse, the deckhouse is to be subdivided into parts of approximately equal length, not exceeding 0,15 } L \text{ each, and } x \text{ is to be taken as the distance between aft end of the length } L \text{ and the centre of each part considered.}

z = \text{ vertical distance [m] from the summer load line to the midpoint of stiffener span, or to the middle of the plate field.}

c = 0,3 + 0,7 \frac{b'}{B'} \text{ For exposed parts of machinery casings and breakwaters, } c \text{ is not to be taken less than 1,0.}

b' = \text{ breadth of deckhouse at the position considered}

B' = \text{ actual maximum breadth of ship on the exposed weather deck at the position considered.}

\frac{b'}{B'} \text{ is not to be taken less than 0,25.}

a = \text{ spacing of stiffeners [m]}

\ell = \text{ unsupported span [m]; for superstructure end bulkheads and deckhouse walls, } \ell \text{ is to be taken as the superstructure height or deckhouse height respectively, however, not less than 2,0 m.}

The design load } p_A \text{ up to the third tier inclusive is not to be taken less than the minimum values given in Table 16.2. For breakwaters, the minimum design load is to be the same as for the lowest tier of unprotected fronts.}

Table 16.2 Minimum design load } p_A_{\text{min}}

<table>
<thead>
<tr>
<th>L</th>
<th>p_A_{\text{min}} [kN/m²] for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lowest tier of unprotected fronts and breakwaters</td>
</tr>
<tr>
<td>≤ 50</td>
<td>30</td>
</tr>
<tr>
<td>> 50</td>
<td>25 + \frac{L}{10}</td>
</tr>
<tr>
<td>≤ 250</td>
<td>50</td>
</tr>
<tr>
<td>> 250</td>
<td>50</td>
</tr>
</tbody>
</table>

For the 4th tier and all following ones } p_A_{\text{min}} \text{ is to be taken as 12,5 kN/mm²}

3. Scantlings

3.1 Stiffeners

The section modulus of the stiffeners is to be determined according to the following formula:

\[W = 0,35 \cdot a \cdot c^2 \cdot \sigma_A \cdot k \text{ [cm³]} \]

These requirements assume the webs of lower tier stiffeners to be efficiently welded to the decks. Scantlings for other types of end connections may be specially considered.

The section modulus of house side stiffeners needs not be greater than that of side frames on the deck situated directly below; taking account of spacing } a \text{ and unsupported span } \ell.

3.2 Plate thickness

The thickness of the plating is to be determined according to the greater values of the following formula:

\[t = 0,9 \cdot a \sqrt{\frac{p_A}{k}} + t_x \text{ [mm]} \]

\[t_{\text{min}} = \left(5,0 + \frac{L}{100} \right) \sqrt{k} \text{ [mm]} \]

for the lowest tier and for breakwaters
for the upper tiers, however not less than 5 mm
for tug 4,5 mm
L need not be taken greater than 300 m.

D. Decks of Short Deckhouses

1. Plating
The thickness of deck plating exposed to weather but not protected by sheathing is not to be less than:
\[t = 8 \cdot a \sqrt{k} + t_k \text{ [mm]} \]
For weather decks protected by sheathing and for decks within deckhouses the thickness may be reduced by \(t_k \).
In no case the thickness is to be less than the minimum thickness \(t_{\text{min}} = 5.0 \text{ mm} \).

2. Deck beams
The deck beams and the supporting deck structure are to be determined according to Section 10.

E. Elastic Mounting of Deckhouses

1. General
1.1 The elastic mountings are to be type approved by BKI. The stresses acting in the mountings which have been determined by calculation are to be proved by means of prototype testing on testing machines. Determination of the grade of insulation for transmission of vibrations between hull and deckhouses is not part of this type approval.

1.2 The height of the mounting system is to be such that the space between deck and deckhouse bottom remains accessible for repair, maintenance and inspection purposes. The height of this space shall normally not be less than 600 mm.

1.3 For the fixed part of the deckhouse on the weather deck, a coaming height of 380 mm is to be observed, as required by ICLL for coamings of doors in superstructures which do not have access openings to under deck spaces.

1.4 For pipelines, see Rules for Machinery Installations, Volume III, Section 11.

1.5 Electric cables are to be fitted in bends in order to facilitate the movement. The minimum bending radius prescribed for the respective cable is to be observed. Cable glands are to be watertight. For further details, see Rules for Electrical Installations, Volume IV.

1.6 The following scantling requirements for rails, mountings, securing devices, stoppers and substructures in the hull and the deckhouse bottom apply to ships in unrestricted service. For special ships and for ships intended to operate in restricted service ranges requirements differing from those given below may be applied.

2. Design loads
For scantling purposes the following design loads apply:

2.1 Weight
2.1.1 The weight induced loads result from the weight of the fully equipped deckhouse, considering also the acceleration due to gravity and the acceleration due to the ship's movement in the seaway. The weight induced loads are to be assumed to act in the centre of gravity of the deckhouse.

The individual dimensionless accelerations \(a_x \) (vertically), \(a_y \) (transversely) and \(a_z \) (longitudinally) and the dimensionless resultant acceleration \(a_\beta \), are to be determined according to Section 4, E. for \(k = 1.0 \) and \(f = 1.0 \).

Due to the resultant acceleration \(a_\beta \) the following load is acting:
\[P = G \cdot a_\beta \cdot g \text{ [kN]} \]
\[G = \text{mass of the fully equipped deckhouse [t]} \]
\[g = 9,81 \text{ m/s}^2 \]

2.1.2 The support forces in the vertical and horizontal directions are to be determined for the various angles \(\beta \). The scantlings are to be determined for the respective maximum values (see also Fig. 16.1).
2.2 Water pressure and wind pressure

2.2.1 The water load due to the wash of the sea is assumed to be acting on the front wall in the longitudinal direction only. The design load is:

\[p_{wa} = 0.5 \cdot p_A \] [kN/m²]

\[p_A = \text{see C.2} \]

The water pressure is not to be less than:

\[p_{wa} = 25 \] [kN/m²] at the lower edge of the front wall
\[= 0 \] at the level of the first tier above the deckhouse bottom

\[p_{wa} = p_{wa} \cdot A_f \] [kN]

\[A_f = \text{loaded part of deckhouse front wall [m²]} \]

2.2.2 The design wind load acting on the front wall and on the side walls is:

\[p_{wi} = A_D \cdot p_{wi} \] [kN]

\[A_D = \text{area of wall [m²]} \]

\[p_{wi} = 1.0 \] [kN/m²]

2.3 Load on the deckhouse bottom

The load on the deckhouse bottom is governed by the load acting on the particular deck on which the deckhouse is located. Additionally, the support forces resulting from the loads specified in 2.1 and 2.2 are to be taken into account.

2.4 Load on deck beams and girders

For designing the deck beams and girders of the deck on which the deckhouse is located the following loads are to be taken:

.1 Below the deckhouse: Load \(p_u \) according to the pressure head due to the distance between the supporting deck and the deckhouse bottom [kN/m²].

.2 Outside the deckhouse: Load \(p_D \).

.3 Bearing forces in accordance with the load assumptions 2.1 and 2.2.

3. Load cases

3.1 For design purposes the following load cases are to be investigated separately (see also Fig. 16.2):

Fig. 16.2 Design loads due to wind and water pressure
3.2 Service load cases

Forces due to external loads:

3.2.1 Transverse direction (z-y-plane)

\[P_{z1} = G \cdot a_{(y)} \cdot g + P_{wi} \text{ [kN]} \]

acting in transverse direction

\[P_{z1} = G \cdot a_{(z)} \cdot g \text{ [kN]} \]

acting vertically to the baseline

\[P_{wi} = \text{wind load as per 2.2.2} \]

\[a_{(y)} = \text{horizontal acceleration component of } a_{\beta} \]

\[a_{(z)} = \text{vertical acceleration component of } a_{\beta} \]

3.2.2 Longitudinal direction (z-x-plane)

\[P_{x1} = G \cdot a_{(x)} \cdot g + P_{wa} + P_{wi} \text{ [kN]} \]

acting in longitudinal direction

\[P_{z1} = G \cdot a_{(z)} \cdot g \text{ [kN]} \]

acting vertically to the baseline

\[a_{(x)} = \text{horizontal acceleration component in the longitudinal plane.} \]

3.2.3 For designing the securing devices to prevent the deckhouse from being lifted, the force (in upward direction) is not to be taken less than determined from the following formula:

\[P_{zmin} = 0.5 \cdot g \cdot G \text{ [kN]} \]

3.3 Extraordinary load cases

3.3.1 Collision force in longitudinal direction:

\[P_{x2} = 0.5 \cdot g \cdot G \text{ [kN]} \]

3.3.2 Forces due to static heel of 45°

\[P_{z2} = 0.71 \cdot g \cdot G \text{ [kN]} \]

\[P_{y2} = \text{force acting vertically to the baseline} \]

\[P_{x2} = \text{force acting in transverse direction.} \]

3.3.3 The possible consequences of a fire for the elastic mounting of the deckhouse are to be examined (e.g. failure of rubber elastic mounting elements, melting of glue). Even in this case, the mounting elements between hull and deckhouse bottom shall be capable of withstanding the horizontal force \(P_{x2} \) as per 3.3.2 in transverse direction.

3.3.4 For designing of the securing devices to prevent the deckhouse from being lifted, a force not less than the buoyancy force of the deckhouse resulting from a water level of 2 m above the freeboard deck is to be taken.

4. Scantlings of rails, mounting elements and substructures

4.1 General

4.1.1 The scantlings of those elements are to be determined in accordance with the load cases stipulated under 3. The effect of deflection of main girders need not be considered under the condition that the deflection is so negligible that all elements take over the loads equally.

4.1.2 Strength calculations for the structural elements with information regarding acting forces are to be submitted for approval.

4.2 Permissible stresses

4.2.1 The permissible stresses given in Table 16.3 are not to be exceeded in the rails and the steel structures of mounting elements and in the substructures (deck beams, girders of the deckhouse and the deck, on which the deckhouse is located).

4.2.2 The permissible stresses for designing the elastic mounting elements of various systems will be considered from case to case. Sufficient data are to be submitted for approval.

4.2.3 The stresses in the securing devices to prevent the deckhouse from being lifted are not to exceed the stress values
specified in 4.2.1.

4.2.4 In screwed connections, the permissible stresses given in Table 16.4 are not to be exceeded.

Table 16.3 Permissible stress in the rails and the steel structures at mounting elements and in the substructures [N/mm²]

<table>
<thead>
<tr>
<th>Type of stress</th>
<th>service load cases</th>
<th>extraordinary load cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal stress σ_n</td>
<td>$0.6 \cdot R_{eff}$ or $0.4 \cdot R_m$</td>
<td>$0.75 \cdot R_{eff}$ or $0.5 \cdot R_m$</td>
</tr>
<tr>
<td>shear stress τ</td>
<td>$0.35 \cdot R_{eff}$ or $0.23 \cdot R_m$</td>
<td>$0.43 \cdot R_{eff}$ or $0.3 \cdot R_m$</td>
</tr>
<tr>
<td>equivalent stress $\sigma_v = \sqrt{\sigma_n^2 + 3\tau^2}$</td>
<td>$0.75 \cdot R_{eff}$</td>
<td>$0.9 \cdot R_{eff}$</td>
</tr>
</tbody>
</table>

$R_{eff} =$ minimum nominal upper yield point
$R_m =$ tensile strength

4.2.5 Where turnbuckles in accordance with DIN 82008 are used for securing devices, the load per bolt under load conditions 3.2.3 and 3.3.4 may be equal to the proof load (2 times safe working load).

5. Corrosion Addition

For the deck plating below elastically mounted deckhouse a minimum corrosion addition of $t_c = 3.0$ mm applies.

<table>
<thead>
<tr>
<th>Type of stress</th>
<th>service load cases</th>
<th>extra-ordinary load cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>longitudinal tension σ_n</td>
<td>$0.5 \cdot R_{eff}$</td>
<td>$0.8 \cdot R_{eff}$</td>
</tr>
<tr>
<td>bearing pressure p_i</td>
<td>$1.0 \cdot R_{eff}$</td>
<td>$1.0 \cdot R_{eff}$</td>
</tr>
<tr>
<td>equivalent stress from longitudinal tension σ_n, tension τ_i due to tightening torque and shear τ if applicable $\sigma_v = \sqrt{\sigma_n^2 + 3(\tau^2 + \tau_i^2)}$</td>
<td>$0.6 \cdot R_{eff}$</td>
<td>$1.0 \cdot R_{eff}$</td>
</tr>
</tbody>
</table>

F. Breakwater

1. Arrangement

If cargo is intended to be carried on deck forward of $x/L > 0.85$, a breakwater or an equivalent protecting structure (e.g. whaleback or turtle deck) is to be installed.

2. Dimensions of the breakwater

2.1 The recommended height of the breakwater is

$$h_w = 0.8 (b \cdot c_L \cdot c_o - z) \quad [mm]$$

but shall not be less than

$$h_{wmin} = 0.6 (b \cdot c_L \cdot c_o - z) \quad [mm]$$

where z is to be the vertical distance [m] between the summer load line and the bottom line of the breakwater.

The average height of whalebacks or turtle decks has to be determined analogously.

2.2 The breakwater has to be at least as broad as the width of the area behind the breakwater, intended for carrying deck cargo.
3. **Cutouts**
Cutouts in the webs of primary supporting members of the breakwater are to be reduced to their necessary minimum. Free edges of the cutouts are to be reinforced by stiffeners.

If cutouts in the plating are provided to reduce the load on the breakwater, the area of single cutouts should not exceed 0.2 m² and the sum of the cutout areas not exceed.

4. **Loads**
The loads for dimensioning are to be taken accordingly from C.2.

5. **Plate thickness and stiffeners**
5.1 The plate thickness has to be determined according to C.3.2.
5.2 The section moduli of the stiffeners are to be calculated according to C.3.1. Stiffeners are to be connected on both ends to the structural members supporting them.

6. **Primary supporting members**
For primary supporting members of the structure a stress analysis has to be carried out.
Sufficient supporting structures are to be provided.
The permissible equivalent stress is $\sigma_v = 230/k$ [N/mm²].

7. **Proof of buckling strength**
Structural members' buckling strength has to be proved according to Section 3, F.
Section 17

Hatchways

A. General

1. Hatchways on freeboard and superstructure decks

1.1 The hatchways are classified according to their position as defined in Section 1, H.6.7.

1.2 Hatchways are to have coamings, the minimum height of which above the deck is to be as follows:
 - In position 1: 600 mm.
 - In position 2: 450 mm.

1.3 A deviation from the requirements under 1.2 may only be granted for hatchways on exposed decks which are closed by weathertight, self tightening steel covers. The respective exemption, in accordance with IC LL Regulation 14(1), has to be applied for in advance from the competent flag state authority.

1.4 Where an increased freeboard is assigned, the height of hatchway coamings according to 1.2 and the design load for hatch covers according to Table 17.2 on the actual freeboard deck may be as required for a superstructure deck, provided the summer freeboard is such that the resulting draught will not be greater than that corresponding to the minimum freeboard calculated from an assumed freeboard deck situated at a distance equal to a standard superstructure height below the actual freeboard deck.

1.5 For corrosion protection for all hatch coamings and all hatch covers of bulk carriers, ore carriers and combination carriers, see Section 38, G.

Note
Special requirements of National Administrations regarding hatchways, hatch covers, tightening and securing arrangements are to be observed.

2. Hatchways on lower decks and within superstructures

2.1 Coamings are not required for hatchways below the freeboard deck or within weathertight closed superstructures unless they are required for strength purposes.

2.2 For hatchways according to 2.1 wooden gratings instead of hatch covers may be used; hatch covers may also be dispensed with completely.

2.3 Where within hatch casings no hatch covers are arranged at the deck level, the next covers and their supports below are to be strengthened corresponding to the greater load.

3. Definitions

\[p = \text{design load} \left[\text{kN/m}^2 \right] \text{ for hatch covers of respective load cases A to D according to B.} \]

\[p_v = p_0 \text{ for vertical loading on hatch covers} \]

\[p_h = \text{p}_A \text{ for horizontal loading on edge girders of hatch covers and on coamings} \]

\[p_l = \text{liquid pressure} \ p_v, \ p_h \text{ according to Section 4,D.1.} \]

\[R_{eh} = \text{minimum nominal upper yield point of the steel used} \left[\text{N/mm}^2 \right] \text{ according to Section 2,B.2.} \]

For hatch covers the application of steel which minimum nominal upper yield point exceeds 355 N/mm\(^2\) is not permitted.

\[R_m = \text{tensile strength of the steel used} \left[\text{N/mm}^2 \right] \]

For normal strength hull structural steel:

\[R_m = 400 \text{ N/mm}^2 \text{ with } R_{eh} = 235 \text{ N/mm}^2 \]
For higher strength hull structural steel:

\[
\begin{align*}
R_m &= 440 \text{ N/mm}^2 \quad \text{with } R_{eH} = 315 \text{ N/mm}^2 \\
R_m &= 490 \text{ N/mm}^2 \quad \text{with } R_{eH} = 355 \text{ N/mm}^2
\end{align*}
\]

\[\ell = \text{unsupported span of stiffener [m]}\]
\[a = \text{spacing of hatchway beams or stiffeners [m]}\]
\[t = \text{thickness of structural member [mm]}\]

\[t_{\text{net}} = t_{\text{net}} + t_K\]

\[t_K = \text{corrosion addition according to Table 17.1.}\]

B. Hatch Covers

1. Design loads

Structural assessment of hatch covers and hatch coamings is to be carried out according to the following design loads:

1.1 Load case A:

1.1.1 The vertical design load \(p_{hV}\) for weather deck hatch covers is to be taken from Table 17.2 unless higher design loads are requested by the owner.

1.1.2 The design load for hatch covers of decks the height of which above baseline is \(z > z_{fb} + 2 \cdot h_N\) may be reduced, if the Administration concerned agrees and if it is verified that the load capacity of the hatch cover corresponds at least to that of the deck beside.

\[z_{fb} = \text{required height of the freeboard deck above baseline [m] according to ICLL}\]
\[h_N = \text{superstructure standard height according to ICLL}\]
\[= 1,0 + 0,01 \cdot L \quad [\text{m}] \quad \text{for } 1,8 \leq h_N \leq 2,3\]

1.1.3 The vertical design load \(p_{hV}\) shall in no case be less than the deck design load according to Section 4, B.1. Instead of the deck height \(z\) the height of hatch cover plating above baseline is then to be inserted.

1.1.4 The horizontal design load \(p_{hH}\) for the outer edge girders of weather deck hatch covers and of hatch coamings is to be determined analogously as for superstructure walls in the respective position.

For bulk carriers according to Section 23 the horizontal load shall not be less than:

\[P_{A_{\text{min}}} = \begin{align*}
175 \text{ kN/m}^2 & \quad \text{in general for outer edge girders of hatch covers} \\
220 \text{ kN/m}^2 & \quad \text{in general for hatch coamings} \\
230 \text{ kN/m}^2 & \quad \text{for the forward edge girder of the hatch 1 cover, if no forecastle according to Section 23, D is arranged} \\
290 \text{ kN/m}^2 & \quad \text{for the forward transverse coaming of hatch 1, if no forecastle according to Section 23, D is arranged}
\end{align*}\]

1.2 Load case B:

Where cargo is intended to be carried on hatch covers of decks in pos. 1 and 2 hatch covers, they are to be designed for the loads as given in Section 4, C.1.

If cargo with low stowage height is carried on weather deck hatch covers Section 4, B.13 is to be observed.
Table 17.1 - Corrosion addition for hatch coamings and hatch covers

<table>
<thead>
<tr>
<th>Application</th>
<th>Structure</th>
<th>(t_k) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather deck hatches of container ships, car carriers, paper carriers,</td>
<td>Hatch covers:</td>
<td></td>
</tr>
<tr>
<td>passenger vessels</td>
<td>- Weather exposed plating</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>- Remaining structure</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>Hatch coamings</td>
<td>according to Section 3, K.1.</td>
</tr>
<tr>
<td>Weather deck hatches of all other ship types (e.g. multi-purpose dry cargo</td>
<td>Hatch covers in general:</td>
<td></td>
</tr>
<tr>
<td>ships)</td>
<td>Load Case A,D Load Case B,C,E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- weather exposed plating</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>- remaining structure</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>Double skin hatch covers and closed box girders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weather exposed plating</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>bottom plating</td>
<td>(2,0)²</td>
</tr>
<tr>
<td></td>
<td>inner structures</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>remaining structures</td>
<td>(1,5)²</td>
</tr>
<tr>
<td></td>
<td>Hatch coamings not part of the longitudinal hull structure</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>Hatch coamings part of the longitudinal hull structure</td>
<td>according to Section 3, K.1.</td>
</tr>
<tr>
<td></td>
<td>Coaming stays and stiffeners</td>
<td>1,5</td>
</tr>
<tr>
<td>Hatches within enclosed spaces</td>
<td>Hatch covers:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- top plating</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>- remaining structures</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>Hatch covers and coamings</td>
<td>according to Section 3, K.1. to K.3.</td>
</tr>
</tbody>
</table>

1) The \(t_k \)-values for load case A, B, C and E respectively are to be indicated in the drawings.
2) The \(t_k \)-values in brackets are to be applied to bulk carriers according to the definition of IACS Common Structural Rules (See Section 23, B.1.4)

1.3 Load case C:

Where containers, which are not horizontally supported, are stowed on hatch covers of hatch in pos. 1 and 2 the following loads due to the ship's rolling motion are to be considered, see also Fig. 17.1.

\[
A_z = 9,81 \cdot \frac{M}{2} \left(1 + a_v\right) \left[0,45 \cdot 0,42 \frac{h_m}{b}\right] \text{ [kN]}
\]

\[
B_z = 9,81 \cdot \frac{M}{2} \left(1 + a_v\right) \left[0,45 + 0,42 \frac{h_m}{b}\right] \text{ [kN]}
\]

\[
B_y = 2,4 \cdot M \text{ [kN]}
\]

\(a_v \) = acceleration factor according to section 4.C.1

\(M \) = mass of container stack [t]

\(h_m \) = height of centre of gravity of stack above hatch cover supports [m]

For \(M \) and \(h_m \) those values shall be used, which are calculated using non reduced acceleration values according to Rules for Stowage and Lashing of Containers, Section 3, A.

\(b \) = distance between footpoints [m]

\(A_z, B_z, B_y \) = support forces in y-, z- direction at the stack corners.
Table 17.2 - Design load of weather deck hatches

<table>
<thead>
<tr>
<th>Position</th>
<th>Design load p_{dh} [kN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{X}{L} \leq 0,75$</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>for $L \leq 100$ m</td>
<td>$\frac{9,81}{76} \cdot { 1,5 \cdot L + 116 }$</td>
</tr>
<tr>
<td>for $L > 100$ m</td>
<td>$9,81 \cdot 3,5$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_1 = L$, with $L_{1,\text{max}} = 340$ m</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>for $L \leq 100$ m</td>
<td>$\frac{9,81}{76} \cdot { 1,1 \cdot L + 87,6 }$</td>
</tr>
<tr>
<td>for $L > 100$ m</td>
<td>$9,81 \cdot 2,6$</td>
</tr>
</tbody>
</table>

Fig. 17.1 Forces due to load case C acting on hatch cover

1.3.1 Load cases with partial loading

The load cases B and C are also to be considered for partial loading which may occur in practice, e.g. where specified container stack places are empty.

The design load for other cargo than containers subject to lifting forces is to be determined separately.

1.3.2 In case of container stacks secured to lashing bridges or carried in cell guides the forces acting on the hatch cover are to be considered.

1.4 Load case D:

Hatch covers of hold spaces intended to be filled with liquids are to be designed for the loads specified in Section 4, D.1. and D.2. irrespective of the filling height of hold spaces.
1.5 **Load case E:**

Hatch covers, which in addition to the loads according to 1. are loaded in the ship's transverse direction by forces due to elastic deformations of the ship's hull, are to be so designed that the sum of stresses does not exceed the permissible values given in 2.

1.6 **Load case F:**

Tweendeck hatch covers not subject to cargo loads are to be designed for a uniformly distributed load of 2 kN/m² or for a single load of 3 kN, whichever results in the stronger scantlings.

1.7 **Horizontal mass forces**

For the design of the securing devices against shifting according to 4.7 the horizontal mass forces in ship's longitudinal and transverse direction are to be calculated. For this purpose the following acceleration component are to be used:

\[
\begin{align*}
 a_x &= 0.2 \cdot g \quad [m/s^2] \quad \text{in longitudinal direction} \\
 a_y &= 0.5 \cdot g \quad [m/s^2] \quad \text{in transverse direction}
\end{align*}
\]

2. **Permissible stresses and deflections**

2.1 The equivalent stress \(\sigma_v \) in steel hatch cover structures related to the net thickness shall not exceed 0.8 \(R_{el} \).

\[
\sigma_v = \sqrt{\sigma_b^2 + 3 \tau^2} \quad [N/mm^2]
\]

\(\sigma = \sigma_b + \sigma_n \)

\(\sigma_b = \) bending stress

\(\sigma_n = \) normal stress

\(\tau = \) shear stress

The deflection \(f \) of weather deck hatch covers under the design load \(p_{hl} \) shall not exceed

\[
f = 0.0056 \frac{t_g}{R_g}
\]

\(t_g = \) largest span of girders [m]

Note:

Where hatch covers are arranged for carrying containers and mixed stowage is allowed i.e. a 40'-container on stowages places for two 20'-containers, the deflections of hatch covers have to be particularly observed.

2.2 Where hatch covers are made of aluminium alloys. Section 2, D. is to be observed. For permissible deflections 2.1 applies.

2.3 The permissible stresses specified under 2.1 apply to primary girders of symmetrical cross section. For unsymmetrical cross sections, e.g. \(\square \) - sections, equivalence in regard to strength and safety is to be proved, see also Section 3, L.

3. **Strength calculation for hatch covers**

3.1 **General**

Calculations are to be based on net thickness:

\[
t_{net} = t - t_K
\]

The \(t_K \) values used for calculation have to be indicated in the drawings.

Verifications according to Section 3, F. are to be based on \(t = t_{net} \) and stresses corresponding to \(t_{net} \) applying the safety factor \(S = 1.1 \).

For all structural components of hatch covers for spaces in which liquids are carried, the minimum thickness for tanks according to Section 12, A.7. is to be observed.
3.2 Hatch cover supports

Supports and stoppers of hatch covers are to be so arranged that no constraints due to hull deformations occur in the hatch cover structure and at stoppers respectively, see also load case E.

Deformations due to the design loads according to 1. between coaming and weathertight hatch covers, as well as between coaming and covers for hold spaces in which liquids are carried, shall not lead to leakiness.

If two or more deck panels are arranged on one hatch, clearances in force transmitting elements between panels have generally to be observed.

For bulk carriers according to Section 23 each panel has to be assumed as independently load-bearing.

Stiffness of securing devices, where applicable, and clearances are to be considered.

3.3 Strength calculations for beam and girder grillages

Cross-sectional properties are to be determined considering the effective breadth according to Section 3, E. Cross sectional areas of profiles parallel to the girder web within the effective breadth can be included, see Section 3, F.

The effective width of flange plates under compression with stiffeners perpendicular to the girder web is to be determined according to Section 3, F.2.2.

In way of larger cutouts in girder webs it may be required to consider second order bending moments.

3.4 FEM calculations

For strength calculations of hatch covers by means of finite elements, the cover geometry shall be idealised built as realistically as possible. Element size shall be appropriate to account for effective breadth. In no case element width shall be larger than stiffener spacing. In way of force transfer points and cutouts the mesh has to be refined where applicable.

The ratio of element length to width shall not exceed 2.

The element height of girder webs shall not exceed half the web height.

Stiffeners, supporting plates against lateral loads, have to be included in the idealization.

Buckling stiffeners may be disregarded for the stress calculation.

4. Scantlings

4.1 Hatch cover plating

4.1.1 Top plating

The thickness of the hatch cover top plating is to be obtained from the calculation according to 3. However, the thickness shall not be less than the largest of the following values:

\[
t = t_{set} + t_{K} \quad [\text{mm}]
\]

\[
t = c_{p} \cdot 16,1 \cdot a \cdot \sqrt{\frac{p}{R_{\text{eff}}}} + t_{K} \quad [\text{mm}]
\]

\[
t = 10 \cdot a \quad [\text{mm}]
\]

\[t_{\text{min}} = 6,0 \text{ mm}\]

\[
c_{p} = 1,5 + 2,5 \left(\frac{\sigma_{x}}{R_{\text{eff}}} - 0,64 \right) \geq 1,5 \quad \text{for } p = p_{H}
\]

\[
c_{p} = 1,0 + 2,5 \left(\frac{\sigma_{x}}{R_{\text{eff}}} - 0,64 \right) \geq 1,0 \quad \text{for } p \text{ from } p_{D}, \text{ cargo load or liquid pressure}
\]

\[
\sigma_{x} = \text{bending stress } [\text{N/mm}^2] \text{ of main girder at a distance } a/2 \text{ of the girder web, see Section 3, F.}
\]

For flange plates under compression sufficient buckling strength according to Section 3, F. is to be verified.

For hatch covers subject to wheel loading plate thickness shall not be less than according to Section 7, B.2.
4.1.2 Lower plating of pontoon hatch covers and box girders

The thickness is to be obtained from the calculation according to 3.

The thickness shall not be less than the larger of the following values:

\[t = 8 \cdot a \quad [\text{mm}] \]
\[t_{\text{min}} = 6,0 \quad \text{mm} \]

The lower plating of hatch covers for spaces in which liquids are carried is to be designed for the liquid pressure and the thickness is to be determined according to 4.1.1.

4.2 Main girders

Scantlings of main girders are obtained from the calculation according to 3. under consideration of permissible stresses according to 2.

For all components of main girders sufficient safety against buckling shall be verified. For biaxially compressed flange plates this is to be verified within the effective widths. At intersections of flanges from two girders, notch stresses have to be observed. The thickness of main girder webs shall not be less than:

\[t = 8 \cdot a \quad [\text{mm}] \]
\[t_{\text{min}} = 6,0 \quad \text{mm} \]

For hatch covers of bulk carriers according to Section 23 the ratio of flange width to web height shall not exceed 0.4, if the unsupported length of the flange between two flange supports of main girders is larger than 3.0 m. The ratio of flange outstand to flange thickness shall not exceed 15.

4.3 Edge girders

4.3.1 Scantlings of edge girders are obtained from the calculations according to 3. The thickness of the outer edge girders exposed to wash of sea shall not be less than the largest of the following values:

\[t = t_{\text{net}} + t_{K} \quad [\text{mm}] \]
\[= 16,1 \cdot a \cdot \sqrt{\frac{P A}{R_{\text{eff}}}} + t_{K} \quad [\text{mm}] \]
\[t = 10 \cdot a \quad [\text{mm}] \]
\[t_{\text{min}} = 6,0 \quad \text{mm} \]

4.3.2 The stiffness of edge girders of weather deck hatch covers is to be sufficient to maintain adequate sealing pressure between securing devices. The moment of inertia of edge elements is not to be less than:

\[I = 6 \cdot q \cdot s^{4} \quad [\text{cm}^{4}] \]

\(q = \) packing line pressure [N/mm], minimum 5 N/mm
\(s = \) spacing [m] of securing devices

4.3.3 For hatch covers of spaces in which liquids are carried, the packing line pressure shall also be ensured in case of hatch cover loading due to liquid pressure.

4.4 Hatch cover stiffeners

The section modules \(W_{\text{net}} \) and shear area \(A_{\text{net}} \) of uniformly loaded hatch cover stiffeners constraint at both ends shall not be less than:

\[W_{\text{net}} = \frac{104}{R_{\text{eff}}} \cdot a \cdot \ell^{2} \cdot p \quad [\text{cm}^{3}] \]
\[A_{\text{net}} = \frac{10 \cdot a \cdot \ell \cdot p}{R_{\text{eff}}} \quad [\text{cm}^{2}] \]

Stiffeners parallel to main girder webs and arranged within the effective breadth according to Section 3, E. shall be continuous at transverse girders and may be regarded for calculating the cross sectional properties of main girders. It is to be verified.
that the resulting stress from main girders and hatch cover stiffeners does not exceed the permissible stress according to 2. If hatch cover stiffeners are sniped at the edge girders, W_{net} is to be increased by 50%.

The thickness of hatch cover plating at sniped stiffener ends shall not be less than the thickness according to Section 3, D.3.

For hatch cover stiffeners under compression sufficient safety against lateral and torsional buckling according to Section 3, F. is to be verified.

For hatch covers subject to wheel loading stiffener scantlings are to be determined by direct calculations.

4.5 Hatch cover supports

4.5.1 Hatch covers, which are intended to carry cargo, are to be additionally secured against shifting in the longitudinal and transverse direction due to the acting mass forces specified in 1.7.

For the transmission of the support forces resulting from the load cases specified in 1.1 - 1.7, supports are to be provided which are to be designed such that the nominal surface pressures in general do not exceed the following values:

$$ p_{n_{\text{max}}} = d \cdot p_n \quad \text{[N/mm}^2\text{]} $$

$$ d = 3,75 - 0,015 \cdot L $$

$$ d_{\text{max}} = 3,0 $$

$$ d_{\text{min}} = 1,0 \text{ in general} $$

$$ = 2,0 \text{ for partial loading conditions (see 1.3.1)} $$

$$ p_n = \text{see Table 17.3} $$

Table 17.3 - Permissible nominal surface pressure p_n

<table>
<thead>
<tr>
<th>Support material</th>
<th>p_n [N/mm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical force</td>
</tr>
<tr>
<td>hull structural steels</td>
<td>25</td>
</tr>
<tr>
<td>hardened steels</td>
<td>35</td>
</tr>
<tr>
<td>plastic materials on steel</td>
<td>50</td>
</tr>
</tbody>
</table>

For metallic supporting surfaces not subjected to relative displacements the following applies:

$$ p_{n_{\text{max}}} = 3 \cdot p_n \quad \text{[N/mm}^2\text{]} $$

Where large relative displacements of the supporting surfaces are to be expected, the use of material having low wear and frictional properties is recommended.

4.5.2 Drawings of the supports shall be submitted. In the drawings of the supports the permitted maximum pressure given by the material manufacturer related to long time stress is to be specified.

4.5.3 If necessary, sufficient abrasive strength may be shown by tests demonstrating an abrasion of support surfaces of not more than 0,3 mm per one year in service at a total distance of shifting of 15 000 m/year.

4.5.4 The substructures of the supports have to be of such a design, that a uniform pressure distribution is achieved.

4.5.5 Irrespective of the arrangement of stoppers, the supports shall be able to transmit the following force P_h in the longitudinal and transverse direction:

$$ P_h = \mu \cdot \frac{P_v}{d} \quad \text{[kN]} $$

P_v = vertical supporting force [kN],

μ = frictional coefficient

$= 0,5 \text{ for steel on steel}$
Supports, as well as the adjacent structures and substructures are to be designed such that the permissible stresses according to 2. are not exceeded.

Supports and adjacent constructions of supports subjected to horizontal forces P_h a fatigue strength analysis is to be carried out according to Section 20 by using the stress spectrum B and applying the horizontal force P_h.

4.6 Locking and securing of hatch covers

4.6.1 Securing of weather deck hatch covers

4.6.1.1 Locking devices between cover and coaming and at cross-joints are to be provided to ensure weathertightness. Sufficient packing line pressure is to be maintained. The packing line pressure is to be specified in the drawings.

Securing devices shall be appropriate to bridge displacements between cover and coaming due to hull deformations.

4.6.1.2 Securing devices are to be of reliable construction and effectively attached to the hatchway coamings, decks or covers. Individual securing devices on each cover are to have approximately the same stiffness characteristics.

4.6.1.3 Where rod cleats are fitted, resilient washers or cushions are to be incorporated.

4.6.1.4 Where hydraulic cleating is adopted, a positive means is to be provided to ensure that it remains mechanically locked in the closed position in the event of failure of the hydraulic system.

4.6.1.5 The spacing of securing devices shall generally not exceed 6 m.

4.6.1.6 Securing devices are to be provided at each corner of the hatch cover. This applies also to hatch covers consisting of several parts.

4.6.1.7 The net cross-sectional area of the securing devices is not to be less than:

$$A = 2,8 \cdot \frac{q \cdot s}{k_t} \quad [\text{cm}^2]$$

Where rod cleats are fitted, resilient washers or cushions are to be incorporated.

4.6.1.8 Securing devices of hatch covers for spaces in which liquids are carried shall be designed for the lifting forces according to load case D.

4.6.1.10 Cargo deck hatch covers consisting of several parts have to be secured against accidental lifting.

4.7 Hatch cover stoppers

Hatch covers shall be sufficiently secured against shifting.

Stoppers are to be provided for hatch covers on which cargo is carried as well as for hatch covers, which edge girders have
to be designed for \(p_A > 175 \text{kN/m}^2 \).

Design forces for the stoppers are obtained from the loads according to 1.

The permissible stress in stoppers and their substructures in the cover and of the coamings is to be determined according to 2.

4.8 Cantilevers, load transmitting elements

4.8.1 Cantilevers and load transmitting elements which are transmitting the forces exerted by hydraulic cylinders into the hatchway covers and the hull are to be designed for the forces stated by the manufacturer. The permissible stresses according to 2. are not to be exceeded.

4.8.2 Structural members subjected to compressive stresses are to be examined for sufficient safety against buckling, according to Section 3, F.

4.8.3 Particular attention is to be paid to the structural design in way of locations where loads are introduced into the structure.

4.9 Container seatings on hatch covers

The seatings and their substructures are to be designed for the loads according to load case B and C respectively, applying the permissible stresses according to 2.

5. Weathertightness of hatch covers

For weather deck hatch covers packings are to be provided, exception see 5.2

5.1 Packing material

5.1.1 The packing material is to be suitable for all expected service conditions of the ship and is to be compatible with the cargoes to be transported.

The packing material is to be selected with regard to dimensions and elasticity in such a way that expected deformations can be carried. Forces are to be carried by the steel structure only.

The packings are to be compressed so as to give the necessary tightness effect for all expected operating conditions.

Special consideration shall be given to the packing arrangement in ships with large relative movements between hatch covers and coamings or between hatch cover sections.

5.1.2 If the requirements in 5.2 are fulfilled the weather tightness can be dispensed with.

5.2 Non-weathertightness hatch covers

5.2.1 Upon request and subject to compliance with the following conditions the fitting of weather tight gaskets according to 5.1 may be dispensed with:

5.2.1.1 The hatchway coamings shall be not less than 600 mm in height.

5.2.1.2 The hatch covers are located above a depth \(H(x) \).

\[
H(x) \geq T_{fb} + f_b + h_N + 4,6 \quad [m]
\]

\(T_{fb} \) = draught corresponding to the assigned summer load line

\(f_b \) = freeboard determined in accordance with ICLL, relative to a deck height which is by \(h_N + 4,6 \) m smaller than \(H(x) \)

\(h_N \) = 0 \(\quad \leq \quad 0,75 \quad [m] \)

\(= 2,3 \quad \quad > \quad 0,75 \quad [m] \)

5.2.1.3 Labyrinths are to be fitted proximate to the edges of each panel in way of the coamings. The clear profile of these openings is to be kept as small as possible.
Where a hatch is covered by several hatch cover panels the clear opening of the gap in between the panels shall be not wider than 50 mm.

The labyrinths and gaps between hatch cover panels shall be considered as unprotected openings with respect to the requirements of intact and damage stability calculations.

With regard to drainage of cargo holds and the necessary fire-fighting system reference is made to Rules for Machinery Installations, Volume III, Sections 11 and 12. Furthermore, the requirements for the carriage of dangerous goods are to be complied with.

5.2.2 Securing devices

In the context of paragraph 5.2 an equivalence to 4.6 can be considered subject to:

- the proof that in accordance with 1.3 load case C securing devices are not to be required and additionally
- the transverse cover guides are effective up to a height h_E above the cover supports. The height h_E shall not be less than the greater of the following formulae:

$$h_E = 1.75 \cdot \sqrt{2 \cdot e \cdot s} \quad [\text{mm}]$$

$$h_{E\text{min}} = \text{height of the face plate} \quad [\text{mm}] + 150$$

where

- $e = \text{largest distance of the cover guides from the longitudinal face plate} \quad [\text{mm}]$
- $s = \text{total clearance} \quad [\text{mm}]$

with

$$10 \leq s \leq 40$$

The transverse guides and their substructure are to be dimensioned in accordance with the loads given in 1.7 acting at the position h_E using the equivalent stress level $\sigma_v = R_{el}^H [N/mm^2]$.

5.3 Drainage arrangements

5.3.1 If drain channels are provided inside the line of gasket by means of a gutter bar or vertical extension of the hatch side and end coaming, drain openings are to be provided at appropriate positions of the drain channels.

5.3.2 Drain openings in hatch coamings are to be arranged with sufficient distance to areas of stress concentration (e.g. hatch corners, transitions to crane posts).

5.3.3 Drain openings are to be arranged at the ends of drain channels and are to be provided with non-return valves to prevent ingress of water from the outside. Lengths of fire hoses are not acceptable.

5.3.4 Cross-joints of multi-panel covers are to be provided with efficient drainage arrangements.

5.3.5 If a continuous outer steel contact between cover and ship structure is arranged, drainage from the space between the steel contact and the gasket is also to be provided for.

5.4 Tightness test, trials

5.4.1 The self-tightening steel hatch covers on weather decks and within open superstructures are to be hose tested. The water pressure should not be less than 2 bar and the hose nozzle should be held at a distance of not more than 1.5 m from the hatch cover to be tested. The nozzle diameter should not be less than 12 mm. During frost periods equivalent tightness tests may be carried out to the satisfaction of the Surveyor.

5.4.2 Upon completion of the hatchway cover system trials for proper functioning are to be carried out in presence of the Surveyor.
6. **Wooden hatchway covers & hatchway beams**

6.1 **Hatchway covers**

6.1.1 The thickness of wooden hatch covers is not to be less than 60 mm where the spacing of hatchway beams is 1.5 m. Where the beams spacing is greater or smaller than 1.5 m, the thickness of the covers is modified proportionally; however, it is not to be less than 50 mm.

6.1.2 Where the 'tween deck height exceeds 2.5 m, or the deck load is greater than 1.8 t/m², the thickness of the hatch covers is to be increased at the rate of 12 mm per 1 m greater 'tween deck height, or per 0.72 t/m² increased in deck load.

6.1.3 The grovers for grips are not to be arranged too near to the ends of the hatch covers.

6.1.4 The wood used for the hatch coverings is to be of good quality, free from sap and objectionable defects, and dry.

6.1.5 The ends of wood hatch covers shall be encircled by durable bands, e.g., of galvanized steel.

6.2 **Hatchway beams**

6.2.1 **General**

6.2.1.1 Hatchway beams may be constructed either as sliding beams or as bolted beams. Sliding beams are hatchway beams movable in the longitudinal hatchway direction, whereas bolted beams are fixed to the longitudinal coaming.

6.2.1.2 The scantlings of pontoon hatch covers fitted with tarpaulins and battening devices used in lieu of hatchway beams and wooden hatch covers are to be determined as for hatchway beams.

6.2.1.3 The scantlings of pontoon hatch covers in 'tweendecks may be determined as for steel hatch covers according to 4.1. The same applies to portable beams (herfts) of 'tweendeck hatchways if they are constructed as box girders.

6.2.2 **Scantlings**

6.2.2.1 The section modulus and the moment of inertia of hatchway beams simply supported at both ends are to be determined according to 6.3. For hatchway beams designed by direct calculations, 2.1 is to be observed.

6.2.2.2 The web thickness of hatchway beams is not be less than:

\[t = 6 + \frac{t}{2}, \quad [\text{mm}] \]

\[t_{\text{min}} = 7.5, \quad [\text{mm}] \]

6.2.2.3 In general, the web depth is not to be less than 150 mm.

6.2.2.4 The width of the beam face plate is to be sufficient to provide a minimum bearing surface for the hatch covers of 65 mm.

6.2.2.5 At beams which carry the ends of hatch covers the web plate is to extend 50 mm above the upper edge of the top flange, or flat bars of 50 mm in height are to be welded on the top flanges.

6.2.2.6 The upper face plates are to be extended to the extreme ends of the beams. For sliding beams which are supported on the edge of the coaming, on the deck, or on slide angles, also the lower face plates are to be extended to the ends of the beams.

6.2.2.7 At their ends the face plates are to be connected by continuous fillet welds to the webs at a length equal to 1.5 times the depth of web.

6.2.2.8 At the ends of bolted beams, which are supported by carriers of double angles, strengthened web plates are to be fitted, having a breadth of at least 180 mm.

6.2.2.9 Lightening holes or lifting holes are not to be provided within 0.5 m from either ends.
6.3. **Moments of inertia, section moduli, shear areas**

6.3.1 The section modulus of steel hatchway beams and hatch cover stiffeners which may be regarded as being simply supported at both ends is not to be less than:

\[
W = \frac{125 \cdot C_1 \cdot a \cdot \ell^2 \cdot p}{\sigma_b} \quad [cm^3]
\]

\[
\sigma_b = \text{permissible bending stress} = 0,68 \cdot R_{\text{eff}}
\]

The moment of inertia of steel hatchway beams of hatches in pos. 1 and 2 which may be regarded as being simply supported is not to be less than:

\[
I = C_2 \cdot C_3 \cdot a \cdot \ell^3 \cdot p_{H} \quad [cm^4]
\]

\[
C_1 = 1 + \frac{3,2 \alpha - \gamma - 0,8}{7 \gamma + 0,4}
\]

\[
C_{\text{min}} = 1,0
\]

\[
\alpha = \frac{\ell_1}{\ell}
\]

\[
\gamma = \frac{W_1}{W}
\]

For \(\ell, \ell_1, W, W_1, I, I_1\) see Fig. 17.2.

\[C_2 = 2,82 \text{ for hatchway beams}\]

\[= 2,22 \text{ for hatch cover stiffeners}\]

\[C_3 = 1 + 8\alpha^3 \frac{1 - \beta}{0,2 + 3 \sqrt{\beta}}\]

\[\beta = \frac{I_1}{I}\]

![Fig. 17.2](image)

6.3.2 Within 0,1 \(\ell\) from supports the web sectional area is not to be less than:

\[
A_w = \frac{5 \cdot p \cdot a \cdot \ell}{\tau} \quad [cm^2]
\]

6.4 **Arrangement and securing of hatchway beams**

6.4.1 The beam spacing is to be equal throughout a hatchway. Where the spacings are unequal, the difference is to be such that the shorter hatch covers cannot be used for the greater intervals.

6.4.2 Hatchway beams are to be provided with an efficient device for locking them in their positions. Locking bolts are to have a diameter of at least 22 mm.

6.4.3 The beams are to have a bearing surface of at least 75 mm. The thickness of supporting angles is not to be less than 12 mm. The connection of the support to the coaming is to be in proportion to the hatchway beams.

6.4.4 The ends of the sliding beams are to be so designed that they cannot fall down when being moved along the coaming.
6.4.5 At the side coamings the hatchway beams are to be supported by strong steel carriers or between double angles. The carriers, or one of the two angles, are to be extended from the horizontal stiffener to the deck level, or the coaming is to be suitably strengthened on the outside by a stiffener.

7. Sealing and Securing Arrangements of Wooden and Non Self Tightening Pontoon Hatchway Covering

7.1 Two layers of tarpaulin are to be provided for hatchways in deck according to pos. 1 and 2 and within open structures. The tarpaulins are to be approved type.

7.2 The steel hatch battens are to have a width of at least 60 mm and a thickness of at least 10 mm.

7.3 The cleats are to be spaced not more than 600 mm from centre to centre, the end cleats being arranged 150 mm from the hatchway corners, or, where the hatchway corners have large rounding, close to the rounding.

7.4 The cleats are to have a width of at least 65 mm, and are to be fastened by adequate welding.

7.5 The hatch wedges are to be made of hardwood which does not split when they are driven in. They shall have a taper of not more than 1 : 6 and shall be not less than 13 mm thick at the toes. Strong flat iron or flat channel bars are to be provided across the hatch covers over the tarpaulins; they are to be fastened at each end by screw bolts or similar means.

7.6 Where the length of the hatch covers exceeds 1.5 m, two hatch bars are to be provided for each section of hatch covers. For hatchways with large dimensions, longitudinal and cross bars are to be provided.

C. Hatch Cover Coamings and Girders

1. General

1.1 Hatch coamings which are part of the longitudinal hull structure are to be designed according to Section 5. For structural members welded to coamings and for cutouts in the top of coaming sufficient fatigue strength according to Section 20 is to be verified. In case of transverse coamings of ships with large deck openings Section 5, F. is to be observed.

1.2 Coamings which are 600 mm or more in height are to be stiffened in their upper part by a horizontal stiffener. Where the unsupported height of a coaming exceeds 1.2 m additional stiffeners is to be arranged. Additional stiffeners may be dispensed with if this is justified by the ship's service and if sufficient strength is verified (e.g. in case of container ships).

Longitudinal hatchway coamings are to be adequately supported by stays or brackets. Adequate safety against buckling is to be proved for longitudinal coamings which are part of the longitudinal hull structure.

1.3 Hatch coamings which are exposed to the wash of sea are to be designed for the loads according to B.

1.4 On ships carrying cargo on deck, such as timber, coal or coke, the stays are to be spaced not more than 1.5 m apart. For containers on deck, see also Section 21, G.3.4.

1.5 Coaming plates are to extend to the lower edge of the deck beams; they are to be flanged or fitted with face bars or half-round bars.

1.6 The connection of the coamings to the deck at the hatchway corners is to be carried out with special care. For bulk carriers, see also Section 23, B.9.

For rounding of hatchway corners, see also Section 7, A.3.

1.7 For hatchway coamings which are designed on the basis of strength calculations as well as for hatch girders, cantilevers and pillars, see Section 10.

1.8 Longitudinal hatch coamings with a length exceeding 0.1 \cdot L are to be provided with tapered brackets or equivalent transitions and a corresponding substructure at both ends. At the end of the brackets they are to be connected to the deck by full penetration welds of minimum 300 mm in length.
2. **Scantlings**

2.1 **Plating**

The thickness of weather deck hatch coamings shall not be less than the larger of the following values:

\[t = t_{\text{net}} + t_k \] \(\text{[mm]} \)

\[= 16,1 \cdot a \cdot \sqrt{\frac{P_A}{R_{\text{eff}}}} + t_k \] \(\text{[mm]} \)

\[t_{\text{min}} = 6 + \frac{L}{100} + t_k \] \(\text{[mm]} \)

\(L \) need not be taken greater than 300 m

\[t_{\text{min}} = 9,5 + t_k \] \(\text{[mm]} \) for bulk carrier according to Section 23.

For grab operation see also Section 23, B.9.1.

2.2 **Coaming stays**

2.2.1 Coaming stays are to be designed for the loads and permissible stresses according to B.

2.2.2 The section modulus of coaming stays of coamings, the height of which is \(h_s < 1,6 \) m and which are to be designed for the load \(p_A \), shall not be less than:

\[W_{\text{net}} = \frac{526}{R_{\text{eff}}} \cdot e \cdot h_s^2 \cdot p_A \] \(\text{[cm}^3\text{]} \)

\(e \) = spacing of coaming stays \(\text{[m]} \)

The effective breadth of the coaming plate shall not be larger than the effective plate width according to Section 3, F.2.

Coaming stays are to be supported by appropriate substructures.

Face plates may only be included in the calculation if an appropriate substructure is provided and welding ensures an adequate joint.

2.2.3 Web thickness at the root point shall not be less than:

\[t_w = t_{\text{net}} + t_k \] \(\text{[mm]} \)

\[= \frac{2}{R_{\text{eff}}} \cdot e \cdot h_s \cdot p_A \cdot h_w + t_k \] \(\text{[mm]} \)

\(h_w \) = web height of coaming stay at root point \(\text{[m]} \)

webs are to be connected to the decks by fillet welds on both sides with \(a = 0,44 \cdot t_w \). For toes of stay webs within \(0,15 \cdot h_w \) the throat thickness is to be increased to \(a = 0,7 \cdot t_w \) for \(t_w \leq 10 \) mm. For \(t_w > 10,0 \) mm deep penetration double bevel welds are to be provided in this area.

2.2.4 For coaming stays, which transfer friction forces at hatch cover supports, sufficient fatigue strength according to Section 20 is to be verified.

2.3 **Horizontal stiffeners**

The stiffeners shall be continuous at the coaming stays.

For stiffeners with both ends constraint the elastic section modulus \(W_{\text{net}} \) and shear area \(A_{\text{net}} \), calculated on the basis of net thickness, shall not be less than:

\[W_{\text{net}} = \frac{75 \cdot a \cdot t^2 \cdot p_A}{f_p \cdot R_{\text{eff}}} \] \(\text{[cm}^3\text{]} \)

\[A_{\text{net}} = \frac{10 \cdot a \cdot t \cdot p_A}{R_{\text{eff}}} \] \(\text{[cm}^2\text{]} \)
\[f_p = \text{ratio of plastic and elastic section modulus} \]
\[f_{p_{\text{max}}} = \frac{R_m}{R_{\text{eff}}} \]
\[= 1,16 \text{ in the absence of more precise evaluation} \]

For sniped stiffeners at coaming corners section modulus and shear area at the fixed support have to be increased by 35 %. The thickness of the coaming plate at the sniped stiffener end shall not be less than according to Section 3, D.3.

Horizontal stiffeners on hatch coamings, which are part of the longitudinal hull structure, are to be designed analogously to longitudinal according to Section 9.

D. Smaller Opening and Hatches

1. Miscellaneous openings in freeboard and superstructure decks

1.1 Manholes and small flush deck hatches in decks in pos. 1 and 2 or in open superstructures are to be closed watertight.

1.2 If not bolted watertight, they are to be of substantial steel construction with bayonet joints or screws. The covers are to be hinged or to be permanently attached to the deck by a chain.

1.3 Openings in freeboard decks other than hatchways and machinery space openings, may only be arranged in weathertight closed superstructures or deckhouses or in weathertight closed companionways of the same strength.

1.4 Companionways or access hatches on exposed parts of freeboard decks, on decks of closed superstructures and in special cases on the deck of deckhouses are to be of solid construction. The height of the doorway sills is to be 600 mm above decks in pos. 1 and 450 mm (hatches) and 380 mm (doors) respectively above decks in pos. 2.

1.5 The doors of the companionways are to be capable of being operated and secured from both sides. They are to be closed weathertight by rubber sealings and toggles.

1.6 Access hatchways shall have a clear width of at least 600 x 600 mm.

1.7 For special requirements for strength and securing of small hatchways on the exposed fore deck, see 2.

2. Strength and securing of small hatchways on the exposed fore deck

2.1 General

2.1.1 The strength of, and securing devices for, small hatchways fitted on the exposed fore deck over the forward 0,25 \(L \) are to comply with the following requirements.

2.1.2 Small hatchways in this context are hatchways designed for access to spaces below the deck and are capable to be closed weathertight or watertight, as applicable. Their opening is normally 2,5 square meters or less.

2.1.3 Hatchways designed for emergency escape need not comply with the requirements according methods A and B in 2.4.1, 2.5.3 and 2.6.

2.1.4 Securing devices of hatchways designed for emergency escape are to be of a quick-acting type (e.g. one action wheel handles are provided as central locking devices for latching/unlatching of hatch cover) operable from both sides of the hatch cover.

2.2 Application

For ships that are contracted for construction on or after 1st January 2004\(^1\) on the exposed deck over the forward 0,25 \(L \), applicable to:

- All types of sea going ships, where the height of the exposed deck in way of the hatch is less than 0,1 \(L \) or 22 m

\(^1\) For ships contracted for construction prior to 1st January 2007 refer to IACS UR S26, para.3.
above the summer load waterline, whichever is the lesser.

2.3 **Strength**

2.3.1 For small rectangular steel hatch covers, the plate thickness, stiffener arrangement and scantlings are to be in accordance with Table 17.4 and Fig. 17.3. Stiffeners, where fitted, are to be aligned with the metal-to-metal contact points, required in 2.5.1, see Fig. 17.3. Primary stiffeners are to be continuous. All stiffeners are to be welded to the inner edge stiffener, see Fig. 17.4.

2.3.2 The upper edge of the hatchway coamings is to be suitably reinforced by a horizontal section, normally not more than 170 mm to 190 mm from the upper edge of the coamings.

2.3.3 For small hatch covers of circular or similar shape, the cover plate thickness and reinforcement is to be specially considered.

2.3.4 For small hatch covers constructed of materials other than steel, the required scantlings are to provide equivalent strength.

Table 17.4 - Scantlings for small steel hatch covers on the fore deck

<table>
<thead>
<tr>
<th>Nominal size [mm x mm]</th>
<th>Cover plate thickness [mm]</th>
<th>Primary stiffeners</th>
<th>Secondary stiffeners</th>
</tr>
</thead>
<tbody>
<tr>
<td>630 x 630</td>
<td>8</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>630 x 830</td>
<td>8</td>
<td>100 x 8; 1</td>
<td>--</td>
</tr>
<tr>
<td>830 x 630</td>
<td>8</td>
<td>100 x 8; 1</td>
<td>--</td>
</tr>
<tr>
<td>830 x 830</td>
<td>8</td>
<td>100 x 10; 1</td>
<td>--</td>
</tr>
<tr>
<td>1030 x 1030</td>
<td>8</td>
<td>120 x 12; 1</td>
<td>80 x 8; 2</td>
</tr>
<tr>
<td>1330 x 1330</td>
<td>8</td>
<td>150 x 12; 2</td>
<td>100 x 10; 2</td>
</tr>
</tbody>
</table>

For ships with \(L < 80 \text{ m} \) the cover scantlings may be reduced by the factor:

\[
0,11 \cdot \sqrt{\frac{\text{L}}{0,75}}
\]

2.4 **Primary securing devices**

2.4.1 Small hatches located on exposed fore deck subject to the application according to 2.2 are to be fitted with primary securing devices such that their hatch covers can be secured in place and weathertight by means of a mechanism employing any one of the following methods:

- method A: butterfly nuts tightening onto forks (clamps)
- method B: quick acting cleats
- method C: central locking device

2.4.2 Dogs (twist tightening handles) with wedges are not acceptable.

2.5 **Requirements for primary securing**

2.5.1 The hatch cover is to be fitted with a gasket of elastic material. This is to be designed to allow a metal to metal contact at a designed compression and to prevent over-compression of the gasket by green sea forces that may cause the securing devices to be loosened or dislodged. The metal-to-metal contacts are to be arranged close to each securing device in accordance with Fig. 17.3 and of sufficient capacity to withstand the bearing force.

2.5.2 The primary securing method is to be designed and manufactured such that the designed compression pressure is achieved by one person without the need of any tools.

2.5.3 For a primary securing method using butterfly nuts, the forks (clamps) are to be of robust design. They are to be designed to minimize the risk of butterfly nuts being dislodged while in use; by means of curving the forks upward, a raised surface on the free end, or a similar method. The plate thickness of unstiffened steel forks is not to be less than 16 mm. An example arrangement is shown in Fig. 17.4.
2.5.4 For small hatch covers located on the exposed deck forward of the foremost cargo hatch, the hinges are to be fitted such that the predominant direction of green sea will cause the cover to close, which means that the hinges are normally to be located on the fore edge.

2.5.5 On small hatches located between the main hatches, for example between Nos. 1 and 2, the hinges are to be placed on the fore edge or outboard edge, whichever is practicable for protection from green water in beam sea and bow quartering conditions.

2.6 Secondary securing device

Small hatches on the fore deck are to be fitted with an independent secondary securing device e.g. by means of a sliding bolt, a hasp or a backing bar of slack fit, which is capable of keeping the hatch cover in place, even in the event that the primary securing device became loosened or dislodged. It is to be fitted on the side opposite to the hatch cover hinges. Fall arresters against accidental closing are to be provided.

E. Engine and Boiler Room Hatchways

1. Deck openings

1.1 The openings above engine rooms and boiler rooms should not be larger than necessary. In way of these rooms sufficient transverse strength is to be ensured.

1.2 Engine and boiler room openings are to be well rounded at their corners, and if required, to be provided with strengthenings, unless proper distribution of the longitudinal stresses is ensured by the side walls of superstructures or deckhouses. See also Section 7, A.3.

2. Engine and boiler room casings

2.1 Engine and boiler room openings on weather decks and inside open superstructures are to be protected by casings of sufficient height.

2.2 The height of casings on the weather deck of ships with full scantling draught is to be not less than 1.8 m where \(L \) does not exceed 75 m, and not less than 2.3 m where \(L \) is 125 m or more. Intermediate values are to be determined by interpolation.

2.3 The scantlings of stiffeners, plating and covering of exposed casings are to comply with the requirements for superstructure end bulkheads and for deckhouses according to Section 16, C.

2.4 Inside open superstructures the casings are to be stiffened and plated according to Section 16, C., as for an aft end bulkhead.
2.5 The height of casings on superstructure decks is to be at least 760 mm. The thickness of their plating may be 0.5 mm less than derived from 2.3, and the stiffeners are to have the same thickness and a depth of web of 75 mm, being spaced at 750 mm.

2.6 The plate thickness of engine and boiler room casings below the freeboard deck or inside closed superstructures is to be 5 mm, and 6.5 mm in cargo holds; stiffeners are to have at least 75 mm web depth, and the same thickness as the plating, when being spaced at 750 mm.

2.7 The coaming plates are to be extended to the lower edge of the deck beams.

3. Doors in engine and boiler room casings

3.1 The doors in casings on exposed decks and within open superstructures are to be of steel, well stiffened and hinged, and capable of being closed from both sides and secured weathertight by toggles and rubber sealings.

Note
For ships with reduced freeboard (B-minus) or tanker freeboard (A), Regulation 26 (1) of ICLL is to be observed.

3.2 The doors are to be at least of the same strength as the casing walls in which they are fitted.

3.3 The height of the doorway sills is to be 600 mm above decks in pos. 1 and 380 mm above decks in pos. 2.
Fig. 17.4 - Example of a primary securing method

1: butterfly nut
2: bolt
3: pin
4: center of pin
5: fork (clamp) plate
6: hatch cover
7: gasket
8: hatch coaming
9: bearing pad welded on the bracket of a toggle bolt for metal to metal contact
10: stiffener
11: inner edge stiffener
Section 18

Equipment

A. General

1. The equipment of anchors, chain cables, wires and ropes is to be determined from Table 18.2 in accordance with the equipment numeral \(Z_1 \) or \(Z_2 \), respectively.

Note

The anchoring equipment required by this Section is intended of temporary mooring of a vessel within a harbour or sheltered area when the vessel is awaiting berth, tide, etc.

The equipment is, therefore, not designed to hold a ship off fully exposed coasts in rough weather or to stop a ship which is moving or drifting. In this condition the loads on the anchoring equipment increase to such a degree that its components may be damaged or lost owing to the high energy forces generated, particularly in large ships.

The anchoring equipment required by this Section is designed to hold a ship in good holding ground in conditions such as to avoid dragging of the anchor. In poor holding ground the holding power of the anchors will be significantly reduced.

The equipment numeral formula for anchoring equipment required under this Section is based on an assumed current speed of 2.5 m/sec, wind speed of 25 m/sec and a scope of chain cable between 6 and 10, the scope being the ratio between length of chain paid out and water depth.

It is assumed that under normal circumstances a ship will use only one bow anchor and chain cable at a time.

2. Every ship is to be equipped with at least one anchor windlass. Windlass and chain stopper, if fitted, are to comply with Rules for Machinery Installations, Volume III, Section 14,D.

For the substructures of windlasses and chain stoppers, see Section 10, B.5.

For the location of windlasses on tankers, see Section 24, A.9.

3. For ships having the navigation Notation "L" (Coasting Service) affixed to their Character of Classification, the equipment may be determined as for one numeral range lower than required in accordance with the equipment numeral \(Z_1 \) or \(Z_2 \), respectively.

4. When determining the equipment for ships having the navigation notation "T" (Sheltered Shallow Water Service) affixed to their Character of Classification, the provisions of Section 30, E. are to be observed.

5. When determining the equipment for tugs, Section 27, E. is to be observed. When determining the equipment of barges and pontoons, Section 31, G. is to be observed.

6. Ships built under survey of BKI and which are to have the mark \(\ast \) stated in their Certificate and in the Register Book must be equipped with anchors and chain cables complying with the Rules for Materials, Volume V, and having been tested on approved machines in the presence of Surveyor.

7. For ships having three or more propellers, a reduction of the weight of the bower anchors and the chain cables may be considered.

B. Equipment Numeral

1. The equipment numeral \(Z_1 \) for anchors and chain cables is to be calculated as follows:

\[
Z_1 = D^{2/3} + 2 \ h \ B + \frac{A}{10}
\]

\(D \) = moulded displacement [ton] (in sea water having a density of 1,025 t/m\(^3\)) to the summer load waterline

\(h \) = effective height from the summer load waterline to the top of the uppermost house
B, C Section 18 - Equipment

\[a = \text{distance [m], from the summer load water-line, amidships, to the upper deck at side} \]

\[A = \text{area [m}^2\text{], in profile view of the hull, superstructures and houses, having a breadth greater than B/4, above the summer load waterline within the length L and up to the height h} \]

\[\Sigma h_i = \text{sum of height [m] of superstructures and deckhouses, measured on the centreline of each tier having a breadth greater than B/4. Deck sheer, if any, is to be ignored. For the lowest tier, "h" is to be measured at centreline from the upper deck or from a notional deck line where there is local discontinuity in the upper deck.} \]

Where a deckhouse having a breadth greater than B/4 is located above a deckhouse having a breadth of B/4 or less, the wide house is to be included and the narrow house ignored.

Screens of bulwarks 1.5 m or more in height are to be regarded as parts of houses when determining h and A, e.g. the area shown in Fig. 18.1 as \(A_1 \) is to be included in \(A \). The height of the hatch coamings and that of any deck cargo, such as containers, may be disregarded when determining h and A.

![Fig. 18.1 Effective area A1 of bulwark](image)

2. The equipment numeral \(Z_2 \) for the recommended selection of ropes as well as for the determination of the design load for shipboard towing and mooring equipment and supporting hull structure is to be calculated as follows:

\[Z_2 = D^{2/3} + 2 \cdot h \cdot B + \frac{A}{10} \]

\(D = \text{moulded displacement [t] in sea water having a density of 1,025 t/m}^3\text{ to the summer load waterline} \)

\(h = \text{effective height from the summer load waterline to the top of the uppermost house} \)

\[a = \text{distance [m], from the summer load waterline, amidships, to the upper deck at side} \]

\[\Sigma h_i = \text{sum of height [m] of superstructures and deckhouses on the upper deck, measured on the centreline of each tier. Deck sheer, if any, is to be ignored. For the lowest tier, "h" is to be measured at centreline from the upper deck or from a notional deck line where there is local discontinuity in the upper deck.} \]

\(A = \text{area [m}^2\text{], in profile view of the hull, superstructures and deckhouses above the summer load waterline within the length L.} \)

Screens of bulwarks, hatch coamings and deck equipment, e.g., masts and lifting gear, as well as containers on deck have to be observed for the calculation of \(A \).

C. Anchors

1. The number of bower anchors is to be determined according to column 3 of Table 18.2. The anchors are to be connected to their chain cables and positioned on board ready for use.

It is to be ensured that each anchor can be stowed in the hawse and hawse pipe in such a way that it remains firmly secured in seagoing conditions. Details have to be coordinated with the owner.

Note

National regulations concerning the provision of a spare anchor, stream anchor or a stern anchor may need to be observed.
2. Anchors shall be of approved design. The mass of the heads of patent (ordinary stockless) anchors, including pins and fittings, is not to be less than 60% of the total mass of the anchor.

3. For stock anchors, the total mass of the anchor, including the stock, shall comply with the values in Table 18.2. The mass of the stock shall be 20% of this total mass.

4. The mass of each individual bower anchor may vary by up to 7% above or below the required individual mass provided that the total mass of all the bower anchors is not less than the sum of the required individual masses.

5. Where special anchors approved as "High Holding Power Anchors" are used, the anchor mass may be 75% of the anchor mass as per Table 18.2.

"High Holding Power Anchors" are anchors which are suitable for ship's use at any time and which do not require prior adjustment or special placement on the sea bed.

For approval as a "High Holding Power Anchor", satisfactory tests are to be made on various types of sea bottom and the anchor is to have a holding power at least twice that of a patent anchor ("Admiralty Standard Stockless") of the same mass. The mass of anchors to be tested should be representative of the full range of sizes intended to be manufactured. The tests are to be carried out on at least two sizes of anchors in association with the chain cables appropriate to the weight. The anchors to be tested and the standard stockless anchors should be of approx. the same mass.

The chain length used in the tests should be approx. 6 to 10 times the depth of water.

The tests are normally to be carried out from a tug, however, alternative shore based tests (e.g. with suitable winches) may be accepted.

Three tests are to be carried out for each anchor and type of bottom. The pull shall be measured by means of a dynamometer or recorded by a recording instrument. Measurements of pull based on rpm/bollard pull curve of the tug may be accepted.

Testing by comparison with a previously approved HHP anchor may be accepted as a basis for approval. The maximum mass of an anchor thus approved may be 10 times the mass of the largest size of anchor tested.

The dimensioning of the chain cable and of the windlass is to be based on the undiminished anchor mass according to the Tables.

6. Where stern anchor equipment is fitted, such equipment is to comply in all respects with the rules for anchor equipment. The mass of each stern anchor shall be at least 35% of that of the bower anchors. The diameter of the chain cables and the chain length are to be determined from the Tables in accordance with the anchor mass. Where a stern anchor windlass is fitted the requirements of Rules for Machinery Installations, Volume III, Section 14, are to be observed.

7. Where a steel wire rope is to be used for the stern anchor instead of a chain cable the following has to be observed:

7.1 The steel wire rope shall at least be as long as the required chain cable. The strength of the steel wire rope shall at least be of the value for the required chain of grade K1.

7.2 Between anchor and steel wire rope a shot of 12,5 m in length or of the distance between stowed anchor and windlass shall be provided. The smaller length has to be taken.

7.3 A cable winch must be provided according to the requirements for windlasses in Rules for Machinery Installations, Volume III, Section 14, B.

D. Chain Cables

1. The chain cable diameters given in the Tables apply to chain cables made of chain cable materials specified in the requirements of Rules for Materials, Volume V, for the following grades:

 Grade K 1 (ordinary quality)
 Grade K 2 (special quality)
 Grade K 3 (extra special quality)

2. Grade K 1 material used for chain cables in conjunction with "High Holding Power Anchors" shall have a tensile
strength R_m of not less than 400 N/mm².

3. Grade K 2 and K 3 chain cables shall be post production quenched and tempered and purchased from recognized manufacturers only.

4. The total length of chain given in the Table 18.2 is to be divided in approximately equal parts between the two bower anchors.

5. Either stud link or short link chain cables may be used for stream anchors.

6. For connection of the anchor with the chain cable approved Kenter-type anchor shackles may be chosen in lieu of the common Dee-shackles. A forerunner with swivel is to be fitted between anchor and chain cable. In lieu of a forerunner with swivel an approved swivel shackle may be used. However, swivel shackles are not to be connected to the anchor shank unless specially approved. A sufficient number of suitable spare shackles are to be kept on board to facilitate fitting of the spare anchor at any time. On owner's request the swivel shackle may be dispensed with.

7. The attachment of the inboard ends of the chain cables to the ship's structure is to be provided with a mean suitable to permit, in case of emergency, an easy slipping of the chain cables to sea operable from an accessible position outside the chain locker.

The inboard ends of the chain cables are to be secured to the structures by a fastening able to withstand a force not less than 15% nor more than 30% of the rated breaking load of the chain cable.

E. Chain Locker

1. The chain locker is to be of capacity and depth adequate to provide an easy direct lead of the cables through the chain pipes and self-stowing of the cables.

The minimum required stowage capacity without mud box for the two bow anchor chains is as follows:

$$S = 1,1 \cdot d^2 \cdot \frac{\ell}{10^5} \quad [m^3]$$

$ d $ = chain diameter [mm] according to Table 18.2

$ \ell $ = total length of stud link chain cable according to Table 18.2

The total stowage capacity is to be distributed on two chain lockers of equal size for the port and starboard chain cables. The shape of the base areas shall as far as possible be quadratic with a maximum edge length of 33 d. As an alternative, circular base areas may be selected, the diameter of which shall not exceed 30 – 35 d.

Above the stowage of each chain locker sufficient free depth is to be provided

2. The chain locker boundaries and their access openings are to be watertight to prevent flooding of essential installation or equipment are arranged, in order to not affect the proper operation of the ship after accidental flooding of the chain locker.

2.1 Special requirements to minimize the ingress of water

2.1.1 Spurling pipes and cable lockers are to be watertight up to the weather deck.

2.1.2 Where means of access is provided, it is to be closed by a substantial cover and secured by closely spaced bolts.

2.1.3 Spurling pipes through which anchor cables are led are to be provided with permanently attached closing appliances to minimize water ingress.

3. Adequate drainage facilities of the chain locker are to be provided.

4. Where the chain locker boundaries are also tank boundaries their scantlings of stiffeners and plating are to be determined as for tanks in accordance with Section 12.

Where this is not the case the plate thickness is to be determined as for t_3 and the section modulus as for W_2 in accordance with Section 12, B.2. and B.3. respectively. The distance from the load centre to the top of the chain locker pipe is to be
taken for calculating the load.

5. For the location of chain lockers on tankers Section 24, A.9 is to be observed.

F. Mooring Equipment

1. Ropes

1.1 The following items 1.2 to 1.6 and the Tables 18.1 and 18.2 for tow lines and mooring ropes are recommendations only, a compliance with which is not a condition of Class.

1.2 For tow lines and mooring lines, steel wire ropes as well as fibre ropes made of natural or synthetic fibres or wire ropes consisting of steel wire and fibre cores may be used. The breaking loads 1) specified in Table 18.2 are valid for wire ropes and ropes of natural fibre (Manila) only. Where ropes of synthetic fibre are used, the breaking load is to be increased above the table values. The extent of increase depends on the material quality.

The required diameters of synthetic fibre ropes used in lieu of steel wire ropes may be taken from Table 18.1.

<table>
<thead>
<tr>
<th>Steel wire ropes 1)</th>
<th>Synthetic wire ropes Polyamide 2)</th>
<th>Fibre ropes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Polyamide</td>
</tr>
<tr>
<td>dia. [mm]</td>
<td>dia. [mm]</td>
<td>dia. [mm]</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>16</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td>36</td>
<td>44</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>22</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>24</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>26</td>
<td>56</td>
<td>60</td>
</tr>
<tr>
<td>28</td>
<td>60</td>
<td>64</td>
</tr>
<tr>
<td>32</td>
<td>68</td>
<td>72</td>
</tr>
<tr>
<td>36</td>
<td>72</td>
<td>80</td>
</tr>
<tr>
<td>40</td>
<td>72</td>
<td>88</td>
</tr>
</tbody>
</table>

1) According to DIN 3068 or equivalent
2) Regular laid ropes of refined polyamide monofilaments and filament fibres.

1.3 Where the stream anchor is used in conjunction with a rope, this is to be a steel wire rope.

1.4 Wire ropes shall be of the following type:
 – 6 x 24 wires with 7 fibre cores for breaking loads of up to 500 kN
 type: Standard
 – 6 x 36 wires with 1 fibre core for breaking loads of more than 500 kN
 type: Standard.

Where wire ropes are stored on mooring winch drums, steel cored wire ropes may be used e.g. :
 – 6 x 19 wires with 1 steel core

1) The term "Breaking Load" used throughout this Section means the "Nominal breaking load".
type: Seale
– 6 x 36 wires with 1 steel core
type: Warrington-Seale.

1.5 Regardless of the breaking load, recommended in Table 18.2, the diameter of fibre ropes should not be less than 20 mm.

1.6 The length of the individual mooring ropes may be up to 7% less than that given in the table provided that the total length of all the wires and ropes is not less than the sum of the required individual lengths.

Where mooring winches on large ships are located on one side of the ship, the lengths of mooring ropes should be increased accordingly.

For individual mooring lines with a breaking load above 500 kN the following alternatives may be applied:

.1 The breaking load of the individual mooring lines specified in Table 18.2 may be reduced with corresponding increase of the number of mooring lines, provided that the total breaking load of all lines aboard ship is not less than the rule value as per Table 18.2. No mooring line, however, should have a breaking load of less than 500 kN.

.2 The number of mooring lines may be reduced with corresponding increase of the breaking load of the individual mooring lines, provided that the total breaking load of all lines aboard ship is not less than the rule value specified in Table 18.2, however, the number of lines should not be less than 6.

2. Shipboard fittings (mooring bollards and bitts, fairleads, stand rollers, chocks)

The selection of shipboard fittings is to be made by the shipyard in accordance with an industry standard (e.g. ISO 3913 Shipbuilding Welded Steel Bollards) accepted by BKI. When the shipboard fitting is not selected from an accepted industry standard, the design load used to assess its strength and its attachment to the ship is to be in accordance with 3.

2.1 Arrangement

Shipboard fittings for mooring are to be located on longitudinals, beams and/or girders, which are part of the deck construction so as to facilitate efficient distribution of the mooring load. Other arrangements may be accepted (for Panama chocks, etc.) provided the strength is confirmed adequate for the service.

2.2 Safe working load (SWL_GL)

1) The safe working load for fittings is to be calculated as follows:

\[\text{SWL}_{\text{GL}} = \frac{F_D}{1,875} \]

\[F_D = \text{design load per 3.1.} \]

2) The SWL_GL of each shipboard fitting is to be marked (by weld bead or equivalent) on the deck fittings used for mooring.

3) The above requirements on SWL_GL apply for a single post basis (no more than one turn of one cable).

4) The towing and mooring arrangements plan mentioned in H. is to define the method of use of mooring lines.

3. Supporting hull structure for mooring equipment

Strength calculations for supporting hull structures of mooring equipment are to be based on net thicknesses.

\[t_{\text{net}} = t - t_k \]

\[t_k = \text{corrosion addition according to 4.} \]

3.1 Load considerations

1) Unless greater safe working load (SWL_GL) of shipboard fittings is specified by the applicant, the design load applied to shipboard fittings and supporting hull structures is to be 1,25 times the breaking strength of the mooring line according to Table 18.2 for the equipment numeral Z2.

When ropes with increased breaking strength are used, the design load needs not to be in excess of 1,25 times the breaking strength of the mooring line according to Table 18.2 for the equipment numeral Z2. This is not applicable, if the breaking strength of the ropes is increased in accordance with 1.6.
2) The minimum design load applied to supporting hull structures for winches, etc. is to be the design load acc. to (1). For capstans, the minimum design load is to be 1,25 times the maximum hauling-in force.

3) The design load is to be applied through the mooring line according to the arrangement shown on the towing and mooring arrangements plan, see Fig. 18.2.

4) When a specific SWL_{GL}, that is greater than required in 2.2 (1), is applied for a fitting at the request of the applicant, the fitting and the supporting hull structure have to be designed using the requested SWL_{GL} times 1,875 as design load.

![Fig. 18.2 Application of design loads](image)

5) The acting point of the mooring force on shipboard fittings is to be taken at the attachment point of a mooring line or at a change in its direction. For bollards, the acting point of the design load is to be taken at least equivalent to the diameter of the pipe above deck level. Special designs have to be evaluated individually.

3.2 Allowable stresses

Normal stress: \(\sigma_N \leq R_{eH} \)
Shear stress: \(\tau \leq 0.6 R_{eH} \)
Equivalent stress: \(\sigma_V \leq R_{eH} \)

\(R_{eH} \) = Nominal upper yield point of the material used [N/mm\(^2\)] acc. Section 2, B.2.

4. Corrosion addition

The total corrosion addition, \(t_c \), in mm, for both sides of the hull supporting structure is not to be less than the following values:
- Ships covered by CSR for bulk carriers and CSR for double hull oil tankers: Total corrosion additions defined in these rules
- Other ships: 2.0 mm in general and 1.0 mm in dry spaces

5. Equipment for mooring at single point moorings

5.1 Upon request from the owner, BKI is prepared to certify that the vessel is specially fitted for compliance with Sections 2.1, 4.2 and 6. of the "Standards for equipment employed in the mooring of ships at single point moorings" published by the Oil Companies International Marine Forum (OCIMF), 1978.

5.2 The certificate may be issued if
- plans showing the equipment and the arrangement as well as necessary substructures are submitted for approval;
- the chain stopper, Smith bracket, or other device for securing the chafing chain to the ship and the structure to which it is attached are capable of withstanding a load not less than the breaking strength of the chain corresponding to the size of the ship as given in Section 6 of the standards stipulated in 5.1 above and calculations to demonstrate this capability are submitted;
- the chain bearing surface of the bow fairleads described in 6.1 of the standard stipulated in 3.5.1 above have a diameter at least seven times that of the associated chain;
- the installation on board the ship is surveyed by BKI’s Surveyor.
G. Towing Equipment

1. Shipboard fittings

1.1 Arrangement and strength

Shipboard fittings for towing are to be located on longitudinals, beams and/or girders, which are part of the deck construction so as to facilitate efficient distribution of the towing load. Other arrangements may be accepted (for Panama chocks, etc.) provided the strength is confirmed adequate for the intended service.

The strength of shipboard fittings used for ordinary towing operations (not emergency towing) at bow, sides and stern and their supporting hull structures are to be determined on the basis of 1.1.1 and 1.1.2.

Strength calculations are to be based on net thicknesses
\[t_{\text{net}} = t - t_k \]
\[t_k = \text{corrosion addition, see F.4.} \]

1.1.1 Load considerations

Unless greater safe working load (SWL) of shipboard fittings is specified by the applicant, the minimum design load to be used is the following value of (1) or (2), whichever is applicable:

1) for normal towing operations (e.g., in harbour) using fittings at bow, sides and stern, 1,875 times the intended maximum towing load (e.g. static bollard pull) as indicated on the towing and mooring arrangements plan.

If the intended maximum towing load is not specified by the applicant, the nominal breaking strength of the corresponding mooring lines according to Table 18.2 for the equipment numeral \(Z_2 \) is to be applied.

2) for other towing service using the forward main towing fittings, in general arranged on forecastle deck at the vessel's centreline, the nominal breaking strength of the tow line according to Table 18.2 for the equipment numeral \(Z_2 \).

3) The design load is to be applied through the tow line according to the arrangement shown on the towing and mooring arrangements plan, see Fig. 18.2.

For bollards, the acting point of the design load is to be taken at least equivalent to the diameter of the pipe above deck level. Special designs have to be evaluated individually.

4) When a specific SWL_{\text{GL}}, that is greater than required in 1.2, is applied for a fitting at the request of the applicant, the fitting and the supporting hull structure have to be designed using the requested SWL_{\text{GL}} times 1,875 as design load.

1.1.2 Allowable stresses

Normal stress: \[\sigma_N < R_{\text{eff}} \]
Shear stress: \[\tau < 0.6 R_{\text{eff}} \]
Equivalent stress: \[\sigma_V < R_{\text{eff}} \]
\[R_{\text{eff}} = \text{Nominal upper yield point of the material used \[N/mm^2\] acc. Section 2, B.2.} \]

1.2 Safe working load (SWL)

1) The safe working load for a shipboard fitting used for normal towing operations is not to exceed the following value:
\[\text{SWL}_{\text{GL}} = \frac{F_D}{1,875} \]
\[F_D = \text{design load per 1.1.1(1)} \]

2) The safe working load for a shipboard fitting used for other towing service (i.e., for the main towing fittings) is not to exceed the following value:
\[\text{SWL}_{\text{GL}} = \frac{F_D}{1,5} \]
\[F_D = \text{design load per 1.1.1(2).} \]

3) For chocks and bollards of which the strength shall comply with Panama Canal Regulations, the safe working load is not to exceed the following value:
Section 18 - Equipment G, H

\[\text{SWL}_{\text{GL}} = \frac{F_D}{1,875} \]

\[F_D = \text{design load according to Panama Canal Regulations.} \]

4) The SWL_{GL} of each shipboard fitting is to be marked (by weld bead or equivalent) on the deck fittings used for towing. For fittings, which are used for different mooring or towing operations, the greater of the safe working loads SWL_{GL} is to be marked.

5) The above requirements on SWL_{GL} apply for a single post basis (no more than one turn of one cable).

6) The towing and mooring arrangements plan mentioned in H. is to define the method of use of towing lines.

H. Towing and Mooring Arrangements Plan

The SWL_{GL} for the intended use for each shipboard fitting is to be noted in the towing and mooring arrangements plan available on board for the guidance of the Master.

Information provided on the plan is to include in respect of each shipboard fitting:
- location on the ship
- fitting type
- SWL_{GL}
- purpose (mooring / normal towing operations / other towing services); and
- manner of applying towing or mooring line load including limiting fleet angles.

This information is to be incorporated into the pilot card in order to provide the pilot proper information on harbour/escorting operations.
18-10/10

H

Section 18 - Equipment

Table 18.2 - Anchor, Chain Cables and Ropes
Stockless anchor
No. for
Reg.

1
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

Equipment
numeral
Z1 or Z2

2
up to
50 70 90 110 130 150 175 205 240 280 320 360 400 450 500 550 600 660 720 780 840 910 980 1060 1140 1220 1300 1390 1480 1570 1670 1790 1930 2080 2230 2380 2530 2700 2870 3040 3210 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5500 5800 6100 6500 6900 7400 7900 8400 8900 9400 10000 10700 11500 12400 13400 14600 -

Number 1)
3

50
70
90
110
130
150
175
205
240
280
320
360
400
450
500
550
600
660
720
780
840
910
980
1060
1140
1220
1300
1390
1480
1570
1670
1790
1930
2080
2230
2380
2530
2700
2870
3040
3210
3400
3600
3800
4000
4200
4400
4600
4800
5000
5200
5500
5800
6100
6500
6900
7400
7900
8400
8900
9400
10000
10700
11500
12400
13400
14600
16000

Stream
anchor

Bower anchor

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

Mass
per anchor

Total
length

[kg]

[m]
6

4

5

120
180
240
300
360
420
480
570
660
780
900
1020
1140
1290
1440
1590
1740
1920
2100
2280
2460
2640
2850
3060
3300
3540
3780
4050
4320
4590
4890
5250
5610
6000
6450
6900
7350
7800
8300
8700
9300
9900
10500
11100
11700
12300
12900
13500
14100
14700
15400
16100
16900
17800
18800
20000
21500
23000
24500
26000
27500
29000
31000
33000
35500
38500
42000
46000

d1 = Chain diameter Grade K 1
d2 = Chain diameter Grade K 2
d3 = Chain diameter Grade K 3

40
60
80
100
120
140
165
190

165
220
220
247,5
247,5
275
275
302,5
302,5
330
357,5
357,5
385
385
412,5
412,5
440
440
440
467,5
467,5
467,5
495
495
495
522,5
522,5
522,5
550
550
550
577,5
577,5
577,5
605
605
605
632,5
632,5
632,5
660
660
660
687,5
687,5
687,5
715
715
715
742,5
742,5
742,5
742,5
742,5
742,5
770
770
770
770
770
770
770
770
770
770
770
770
770

Stud link chain cables
Recommended ropes
Stream wire or
Bower anchors
chain for stream
Towline
Mooring ropes
anchor
Diameter
Br.
Br.
NumBr.
Length
Length
Length
load2)
load2)
ber
load2)
d1
d2
d3
[mm]
7

[mm]
8

[mm]
9

12,5
14
16
17,5
19
20,5
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
73
76
78
81
84
87
90
92
95
97
100
102
105
107
111
114
117
120
122
124
127
130
132

12,5
12,5
14
16
17,5
17,5
19
20,5
22
24
26
28
30
32
34
34
36
38
40
42
44
46
48
50
50
52
54
56
58
60
62
64
66
68
70
73
76
78
81
84
84
87
90
92
95
97
100
102
105
107
111
111
114
117
120
124
127
132
137
142
147
152

12,5
12,5
14
16
17,5
17,5
19
20,5
20,5
22
24
24
26
28
30
30
32
34
36
36
38
40
42
44
46
46
48
50
50
52
54
56
58
60
62
64
66
68
70
73
76
78
78
81
84
87
87
90
92
95
97
97
100
102
107
111
114
117
122
127
132
132
137
142
147
152
157
162

(Ordinary quality)
(Special quality)
(Extra special quality)

[m]
10

[kN]
11

[m]
12

[kN]
13

14

80
80
85
85
90
90
90
90

65
65
75
80
90
100
110
120

180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
190
190
190
190
190
190
190
190
200
200
200
200
200
200
220
220
220
220
220
240
240
240
260
260
260
280
280
280
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300

100
100
100
100
100
100
100
110
130
150
175
200
225
250
275
305
340
370
405
440
480
520
560
600
645
690
740
785
835
890
940
1025
1110
1170
1260
1355
1455
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470

3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
7
7
7
7
7
8
8
8
9
9
9
10
11
11
12
13
14
15
16
17
18
19
21

1)

See also D

BKI - Rules for Hull - 2014

2)

see C.1.
see F.1.2

[m]
15
80
80
100
110
110
120
120
120
120
120
140
140
140
140
140
160
160
160
160
170
170
170
170
180
180
180
180
180
180
190
190
190
190
190
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200

[kN]
16
35
35
40
40
45
50
55
60
65
70
80
85
95
100
110
120
130
145
160
170
185
200
215
230
250
270
285
305
325
325
335
350
375
400
425
450
480
480
490
500
520
555
590
620
650
650
660
670
680
685
685
695
705
705
715
725
725
725
735
735
735
735
735
735
735
735
735
735


Preface

The content of this Section is to a large extent identical to that of Rules for Welding Volume VI, Section 12, G. Because of the reissues of Section 12, G. referred to and this Section at different times, some temporary divergences may arise and in such circumstances the more recent Rules shall take precedence.

A. General

1. Information contained in manufacturing documents

1.1 The shapes and dimensions of welds and, where proof by calculation is supplied, the requirements applicable to welded joints (the weld quality grade, detail category) are to be stated in drawings and other manufacturing documents (parts lists, welding and inspection schedules). In special cases, e.g. where special materials are concerned, the documents shall also state the welding method, the welding consumables used, heat input and control, the weld build-up and any post-weld treatment which may be required.

1.2 Symbols and signs used to identify welded joints shall be explained if they depart from the symbols and definitions contained in the relevant standards (e.g. DIN standards). Where the weld preparation (together with approved methods of welding) conforms both to normal shipbuilding practice and to these Rules and recognized standards, where applicable, no special description is needed.

2. Materials, weldability

2.1 Only base materials of proven weldability (see Section 2) may be used for welded structures. Any approval conditions of the steel or of the procedure qualification tests and the steelmaker's recommendations are to be observed.

2.2 For normal strength hull structural steels grades A, B, D and E which have been tested by BKI, weldability normally is considered to have been proven. The suitability of these base materials for high efficiency welding processes with high heat input shall be verified.

2.3 Higher strength hull structural steels grade AH/DH/EH/FH which have been approved by BKI in accordance with the relevant requirements of Rules for Materials, Volume V, have had their weldability examined and, provided their handling is in accordance with normal shipbuilding practice, may be considered to be proven. The suitability of these base materials for high efficiency welding processes with high heat input shall be verified.

2.4 High strength (quenched and tempered) fine grain structural steels, low temperature steels, stainless and other (alloyed) structural steels require special approval by BKI. Proof of weldability of the respective steel is to be presented in connection with the welding procedure and welding consumables.

2.5 Cast steel and forged parts require testing by BKI. For castings intended to be used for welded shipbuilding structures the maximum permissible values of the chemical composition according to Rules for Material Vol. V, Section 7, B.4 and Table 7.1 have to be observed.

2.6 Aluminium alloys require testing by BKI. Proof of their weldability shall be presented in connection with the welding procedure and welding consumables.

2.7 Welding consumables used are to be suitable for the parent metal to be welded and are to be approved by BKI.

3. Manufacture and testing

3.1 The manufacture of welded structural components may only be carried out in workshops or plants that have been approved. The requirements that have to be observed in connection with the fabrication of welded joints are laid down in the Rules for Welding, Volume VI.
The weld quality grade of welded joints without proof by calculation (see 1.1) depends on the significance of the welded joint for the total structure and on its location in the structural element (location to the main stress direction) and on its stressing. For details concerning the type, scope and manner of testing, see Rules for Welding, Volume VI, Section 12, I. Where proof of fatigue strength is required, in addition the requirements of Section 20 apply.

B. Design

1. General design principles

1.1 During the design stage welded joints are to be planned such as to be accessible during fabrication, to be located in the best possible position for welding and to permit the proper welding sequence to be followed.

1.2 Both the welded joints and the sequence of welding involved are to be so planned as to enable residual welding stresses to be kept to a minimum in order that no excessive deformation occurs. Welded joints should not be over dimensioned, see also 3.3.3.

1.3 When planning welded joints, it shall first be established that the type and grade of weld envisaged, such as full root weld penetration in the case of HV or DHV (K) weld seams, can in fact be perfectly executed under the conditions set by the limitations of the manufacturing process involved. If this is not the case, a simpler type of weld seam shall be selected and its possibly lower load bearing capacity taken into account when dimensioning the component.

1.4 Highly stressed welded joints which, therefore, are generally subject to examination are to be so designed that the most suitable method of testing for faults can be used (radiography, ultrasonic, surface crack testing methods) in order that a reliable examination may be carried out.

1.5 Special characteristics peculiar to the material, such as the lower strength values of rolled material in the thickness direction (see 2.5.1) or the softening of cold worked aluminium alloys as a result of welding, are factors which have to be taken into account when designing welded joints. Clad plates where the efficiency of the bond between the base and the clad material is proved may generally be treated as solid plates (up to medium plate thicknesses where mainly fillet weld connections are used).

1.6 In cases where different types of material are paired and operate in sea water or any other electrolytic medium, for example welded joints made between unalloyed carbon steels and stainless steels in the wear-resistant cladding in rudder nozzles or in the cladding of rudder shafts, the resulting differences in potential greatly increase the susceptibility to corrosion and shall therefore be given special attention. Where possible, such welds are to be positioned in locations less subject to the risk of corrosion (such as on the outside of tanks) or special protective counter-measures are to be taken (such as the provision of a protective coating or cathodic protection).

2. Design details

2.1 Stress flow, transitions

2.1.1 All welded joints on primary supporting members shall be designed to provide as smooth a stress profile as possible with no major internal or external notches, no discontinuities in rigidity and no obstructions to strains, see Section 3, H.

2.1.2 This applies in analogous manner to the welding of subordinate components on to primary supporting members whose exposed plate or flange edges should, as far as possible, be kept free from notch effects due to welded attachments. Regarding the inadmissibility of weldments to the upper edge of the sheer strake, see Section 6, C.3.4. This applies similarly to weldments to the upper edge of continuous hatchway side coamings.

2.1.3 Butt joints in long or extensive continuous structures such as bilge keels, fenders, crane rails, slop coamings, etc. attached to primary structural members are therefore to be welded over their entire cross-section.

2.1.4 Wherever possible, joints (especially site joints) in girders and sections shall not be located in areas of high bending stress. Joints at the knuckle of flanges are to be avoided.

2.1.5 The transition between differing component dimensions shall be smooth and gradual. Where the depth of web of girders or sections differs, the flanges or bulbs are to be bevelled and the web slit and expanded or pressed together to equalize the depths of the members. The length of the transition should be at least equal twice the difference in depth.
2.1.6 Where the plate thickness differs at joints perpendicularly to the direction of the main stress, differences in thickness greater than 3 mm shall be accommodated by bevelling the proud edge in the manner shown in Fig. 19.1 at a ratio of at least 1 : 3 or according to the notch category. Differences in thickness of 3 mm or less may be accommodated within the weld.

2.1.7 For the welding on of plates or other relatively thin-walled elements, steel castings and forgings should be appropriately tapered or provided with integrally cast or forged welding flanges in accordance with Fig. 19.2.

![Fig. 19.1 Accommodation of differences of thickness](image1)

![Fig. 19.2 Welding flanges on steel castings or forgings](image2)

2.1.8 For the connection of shaft brackets to the boss and shell plating, see 4.3 and Section 13, D.2.; for the connection of horizontal coupling flanges to the rudder body, see 4.4. For the required thickened rudderstock collar required with build-up welds and for the connection of the coupling flange, see 2.7 and Section 14, D.2.4. The joint between the rudder-stock and the coupling flange are to be connected by full penetration weld.

2.2 Local clustering of welds, minimum spacing

2.2.1 The local clustering of welds and short distances between welds are to be avoided. Adjacent butt welds should be separated from each other by a distance of at least:

\[50 \text{ mm} + 4 \times \text{plate thickness}. \]

Fillet welds should be separated from each other and from butt welds by a distance of at least:

\[30 \text{ mm} + 2 \times \text{plate thickness}. \]

The width of replaced or inserted plates (strips) should, however, be at least 300 mm or ten times the plate thickness, whichever is the greater.

2.2.2 Reinforcing plates, welding flanges, mountings and similar components socket-welded into plating should be of the following minimum size:

\[D_{\text{min}} = 170 + 3(t - 10) \geq 170 \text{ mm} \]

\[D = \text{diameter of round or length of side of angular weldments [mm]} \]

\[t = \text{plating thickness [mm]}. \]

The corner radii of angular socket weldments should be 5t [mm] but at least 50 mm. Alternatively the "longitudinal seams" are to extend beyond the "transverse seams". Socket weldments are to be fully welded to the surrounding plating. Regarding the increase of stress due to different thickness of plates see also Section 20, B.1.3.

2.3 Welding cut-outs

2.3.1 Welding cut-outs for the (later) execution of butt or fillet welds following the positioning of transverse members should be rounded (minimum radius 25 mm or twice the plate thickness, whichever is the greater) and should be shaped to provide a smooth transition on the adjoining surface as shown in Fig. 19.3 (especially necessary where the loading is mainly dynamic).

2.3.2 Where the welds are completed prior to the positioning of the crossing members, no welding cut-outs are needed. Any weld reinforcements present are to be machined off prior to the location of the crossing members or these members are to have suitable cut-outs.

2.4 Local reinforcements, doubling plates

2.4.1 Where plating (including girder plates and tube walls) are subjected locally to increased stresses, thicker plates should be used wherever possible in preference to doubling plates. Bearing bushes, hubs etc. shall invariably take the form of thicker
sections welded into the plating, see 2.2.2.

2.4.2 Where doublings cannot be avoided, the thickness of the doubling plates should not exceed twice the plating thickness. Doubling plates whose width is greater than approximately 30 times their thickness shall be slot welded to the underlying plating in accordance with 3.3.11 at intervals not exceeding 30 times the thickness of the doubling plate.

2.4.3 Along their (longitudinal) edges, doubling plates shall be continuously fillet welded with a throat thickness "a" of 0.3 x the doubling plate thickness. At the ends of doubling plates, the throat thickness "a" at the end faces shall be increased to 0.5 x the doubling plate thickness but shall not exceed the plating thickness, see Fig. 19.4.

The welded transition at the end faces of the doubling plates to the plating should form with the latter an angle of 45° or less.

2.4.4 Where proof of fatigue strength is required (see Section 20), the configuration of the end of the doubling plate shall conform to the selected detail category.

2.4.5 Doubling plates are not permitted in tanks for flammable liquids.

2.5 Intersecting members, stress in the thickness direction

2.5.1 Where, in the case of intersecting members, plates or other rolled products are stressed in the thickness direction by shrinking stresses due to the welding and/or applied loads, suitable measures shall be taken in the design and fabrication of the structures to prevent lamellar tearing (stratified fractures) due to the anisotropy of the rolled products.

2.5.2 Such measures include the use of suitable weld shapes with a minimum weld volume and a welding sequence designed to reduce transverse shrinkage. Other measures are the distribution of the stresses over a larger area of the plate surface by using a build-up weld or the joining together of several "fibres" of members stressed in the thickness direction as exemplified by the deck stringer/sheer strake joint shown in Fig. 19.12.

2.5.3 In case of very severe stresses in the thickness direction due, for example, to the aggregate effect of the shrinkage stresses of bulky single or double-bevel butt welds plus high applied loads, plates with guaranteed through thickness properties (extra high-purity material and guaranteed minimum reductions in area of tensile test specimens taken in thickness direction) are to be used.

2.6 Welding of cold formed sections, bending radii

2.6.1 Wherever possible, welding should be avoided at the cold formed sections with more than 5% permanent elongation and in the adjacent areas of structural steels with a tendency towards strain ageing.

2) Elongation ε in the outer tensile-stressed zone

$$\varepsilon = \frac{100}{1 + \frac{2 \cdot r}{t}} \text{ [%]}$$

r = inner bending radius [mm]

t = plate thickness [mm]
2.6.2 Welding may be performed at the cold formed sections and adjacent areas of hull structural steels and comparable structural steels (e.g. those in quality groups S...J... and S...K... to DIN EN 10025) provided that the minimum bending radii are not less than those specified in Table 19.1.

<table>
<thead>
<tr>
<th>Plate thickness</th>
<th>Minimum inner bending radius r</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 4 mm</td>
<td>1,0 × t</td>
</tr>
<tr>
<td>up to 8 mm</td>
<td>1,5 × t</td>
</tr>
<tr>
<td>up to 12 mm</td>
<td>2,0 × t</td>
</tr>
<tr>
<td>up to 24 mm</td>
<td>3,0 × t</td>
</tr>
<tr>
<td>over 24 mm</td>
<td>5,0 × t</td>
</tr>
</tbody>
</table>

Note:
The bending capacity of the material may necessitate a larger bending radius.

2.6.3 For other steels and other materials, where applicable, the necessary minimum bending radius shall, in case of doubt, be established by test. Proof of adequate toughness after welding may be stipulated for steels with minimum nominal upper yield point of more than 355 N/mm² and plate thicknesses of 30 mm and above which have undergone cold forming resulting in 2% or more permanent elongation.

2.7 Build-up welds on rudderstocks and pintles

2.7.1 Wear resistance and/or corrosion resistant build-up welds on the bearing surfaces of rudderstocks, pintles etc. shall be applied to a thickened collar exceeding by at least 20 mm the diameter of the adjoining part of the shaft.

2.7.2 Where a thickened collar is impossible for design reasons, the build-up weld may be applied to the smooth shaft provided that relief-turning in accordance with 2.7.3 is possible (leaving an adequate residual diameter).

2.7.3 After welding, the transition areas between the welded and non-welded portions of the shaft shall be relief-turned with large radii, as shown in Fig. 19.5, to remove any base material whose structure close to the concave groove has been altered by the welding operation and in order to effect the physical separation of geometrical and metallurgical "notches".

Fig. 19.5 Build-up welds applied to rudderstocks and Pintles

3. Weld shapes and dimensions

3.1 Butt joints

3.1.1 Depending on the plate thickness, the welding method and the welding position, butt joints shall be of the square, V or double-V shape conforming to the relevant standards (e.g. EN 22553/ISO 2533, ISO 9692-1, -2, -3 or -4). Where other weld shapes are applied, these are to be specially described in the drawings. Weld shapes for special welding processes such as single-side or electrogas welding shall have been tested and approved in the context of a welding procedure test.

3.1.2 As a matter of principle, the rear sides of butt joints shall be grooved and welded with at least one capping pass. Exceptions to this rule, as in the case of submerged-arc welding or the welding processes mentioned in 3.1.1, require to be tested and approved in connection with a welding procedure test. The effective weld thickness shall be deemed to be the plate thickness, or, where the plate thicknesses differ, the lesser plate thickness. Where proof of fatigue strength is required (see Section 20), the detail category depends on the execution (quality) of the weld.

3.1.3 Where the aforementioned conditions cannot be met, e.g. where the welds are accessible from one side only, the joints
shall be executed as lesser bevelled welds with an open root and an attached or an integrally machined or cast, permanent weld pool support (backing) as shown in Fig. 19.6.

![Fig. 19.6 Single-side welds with permanent weld pool support (backings)](image)

3.1.4 The weld shapes illustrated in Fig. 19.7 shall be used for clad plates. These weld shapes shall be used in analogous manner for joining clad plates to (unalloyed and low alloyed) hull structural steels.

![Fig. 19.7 Weld shapes for welding of clad plates](image)

3.2 Corner, T and double-T (cruciform) joints

3.2.1 Corner, T and double-T (cruciform) joints with complete union of the abutting plates shall be made as single or double-bevel welds with a minimum root face and adequate air gap, as shown in Fig. 19.8, and with grooving of the root and capping from the opposite side.

The effective weld thickness shall be assumed as the thickness of the abutting plate. Where proof of fatigue strength is required (see Section 20), the detail category depends on the execution (quality) of the weld.

3) On special consideration, different combination of welding angle and gap may be approved.
3.2.2 Corner, T and double-T (cruciform) joints with a defined incomplete root penetration, as shown in Fig. 19.9, shall be made as single or double-bevel welds, as described in 3.2.1, with a back-up weld but without grooving of the root.

The effective weld thickness may be assumed as the thickness of the abutting plate t, where f is the incomplete root penetration of 0.2 t with a maximum of 3 mm, which is to be balanced by equally sized double fillet welds on each side. Where proof of fatigue strength is required (see Section 20), these welds are to be assigned to type D1.

3.2.3 Corner, T and double-T (cruciform) joints with both an unwelded root face c and a defined incomplete root penetration f shall be made in accordance with Fig. 19.10.

The effective weld thickness shall be assumed as the thickness of the abutting plate t minus (c + f), where f is to be assigned a value of 0.2 t subject to a maximum of 3 mm. Where proof of fatigue strength is required (see Section 20), these welds are to be assigned to types D2 or D3.

3.2.4 Corner, T and double-T (cruciform) joints which are accessible from one side only may be made in accordance with Fig. 19.11 in a manner analogous to the butt joints referred to in 3.1.3 using a weld pool support (backing), or as single-side, single bevel welds in a manner similar to those prescribed in 3.2.2.

The effective weld thickness shall be determined by analogy with 3.1.3 or 3.2.2, as appropriate. Wherever possible, these joints should not be used where proof of fatigue strength is required (see Section 20).

3.2.5 Where corner joints are flush; the weld shapes shall be as shown in Fig. 19.12 with bevelling of at least 30° of the vertically drawn plates to avoid the danger of lamellar tearing. A similar procedure is to be followed in the case of fitted T joints (uniting three plates) where the abutting plate is to be socketed between the aligned plates.
3.2.6 Where, in the case of T joints, the direction of the main stress lies in the plane of the horizontal plates (e.g. the plating) shown in Fig. 19.13 and where the connection of the perpendicular (web) plates is of secondary importance, welds uniting three plates may be made in accordance with Fig. 19.13 (with the exception of those subjected mainly to dynamic loads). For the root passes of the three plate weld sufficient penetration shall be achieved. Sufficient penetration has to be verified in way of the welding procedure test.

The effective thickness of the weld connecting the horizontal plates shall be determined in accordance with 3.2.2. The requisite "a" dimension is determined by the joint uniting the vertical (web) plates and shall, where necessary, be determined an accordance with Table 19.3 or by calculation as for fillet welds.

3.3 Fillet weld connections

3.3.1 In principle fillet welds are to be of the double fillet weld type. Exceptions to this rule (as in the case of closed box girders and mainly shear stresses parallel to the weld) are subject to approval in each individual case. The throat thickness "a" of the weld (the height of the inscribed isosceles triangle) shall be determined in accordance with Table 19.3 or by calculation according to C. The leg length of a fillet weld is to be not less than 1.4 times the throat thickness "a". For fillet welds at doubling plates, see 2.4.3; for the welding of the deck stringer to the sheer strake, see Section 7, A.2.1, and for bracket joints, see C.2.7.

3.3.2 The relative fillet weld throat thicknesses specified in Table 19.3 relate to normal strength and higher strength hull structural steels and comparable structural steels. They may also be generally applied to high-strength structural steels and non-ferrous metals provided that the "tensile shear strength" of the weld metal used is at least equal to the tensile strength of the base material. Failing this, the "a" dimension shall be increased accordingly and the necessary increment shall be established during the welding procedure test (see Rules for Welding, Volume VI, Section 12, F.). Alternatively proof by calculation taking account of the properties of the weld metal may be presented.

Note:

In case of higher strength aluminium alloys (e.g. AlMg4.5Mn0.7), such an increment may be necessary for cruciform joint subject to tensile stresses, as experience shows that in the welding procedure tests the tensile-shear strength of fillet welds (made with matching filler metal) often fails to attain the tensile strength of the base material. See also Rules for Welding Volume VI, Section 12, F.

3.3.3 The throat thickness of fillet welds shall not exceed 0.7 times the lesser thickness of the parts to be connected (generally the web thickness). The minimum throat thickness is defined by the expression:
3.3.4 It is desirable that the fillet weld section shall be flat faced with smooth transitions to the base material. Where proof of fatigue strength is required (see Section 20), machining of the weld (grinding to remove notches) may be required depending on the notch category. The weld should penetrate at least close to the theoretical root point.

3.3.5 Where mechanical welding processes are used which ensure deeper penetration extending well beyond the theoretical root point and where such penetration is uniformly and dependably maintained under production conditions, approval may be given for this deeper penetration to be allowed for in determining the throat thickness. The effective dimension:

\[
a_{\text{deep}} = a + \frac{2e_{\text{min}}}{3} \quad [\text{mm}]
\]

shall be ascertained in accordance with Fig. 19.14 and by applying the term "\(e_{\text{min}}\)" to be established for each welding process by a welding procedure test. The throat thickness shall not be less than the minimum throat thickness related to the theoretical root point.

3.3.6 When welding on top of shop primers which are particularly liable to cause porosity, an increase of the "\(a\)" dimension by up to 1 mm may be stipulated depending on the welding process used. This is specially applicable where minimum fillet weld throat thicknesses are employed. The size of the increase shall be decided on a case by case basis considering the nature and severity of the stressing following the test results of the shop primer in accordance with the Rules for Welding, Volume VI, Section 12, F. This applies in analogous manner to welding processes where provision has to be made for inadequate root penetration.

3.3.7 Strengthened fillet welds continuous on both sides are to be used in areas subjected to severe dynamic loads (e.g. for connecting the longitudinal and transverse girders of the engine base to top plates close to foundation bolts, see Section 8, C.3.2.5 and Table 19.3), unless single or double bevel welds are stipulated in these locations. In these areas the "\(a\)" dimension shall equal 0.7 times the lesser thickness of the parts to be welded.

3.3.8 Intermittent fillet welds in accordance with Table 19.3 may be located opposite one another (chain intermittent welds, possibly with scallops) or may be staggered, see Fig. 19.15. In case of small sections other types of scallops may be accepted.

In water and cargo tanks, in the bottom area of fuel oil tanks and of spaces where condensed or sprayed water may accumulate and in hollow components (e.g. rudders) threatened by corrosion, only continuous or intermittent fillet welds with scallops shall be used. This applies accordingly also to areas, structures or spaces exposed to extreme environmental conditions or which are exposed to corrosive cargo.

There shall be no scallops in areas where the plating is subjected to severe local stresses (e.g. in the bottom section of the fore ship) and continuous welds are to be preferred where the loading is mainly dynamic.
3.3.9 The throat thickness \(a_u \) of intermittent fillet welds is to be determined according to the selected pitch ratio \(b/\ell \) by applying the formula:

\[
a_u = 1,1 \cdot a \cdot \left(\frac{b}{\ell} \right) \quad [\text{mm}]
\]

- \(a \) = required fillet weld throat thickness [mm] for a continuous weld according to Table 19.3 or determined by calculation
- \(b \) = pitch = \(e + \ell \) [mm]
- \(e \) = interval between the welds [mm]
- \(\ell \) = length of fillet weld [mm]

The pitch ratio \(b/\ell \) should not exceed 5. The maximum unwelded length (\(b - \ell \) with scallop and chain welds, or \(b/2 - \ell \) with staggered welds) should not exceed 25 times the lesser thickness of the parts to be welded. The length of scallops should, however, not exceed 150 mm.

3.3.10 Lap joints should be avoided wherever possible and are not to be used for heavily loaded components. In the case of components subject to low loads lap joints may be accepted provided that, wherever possible, they are orientated parallel to the direction of the main stress. The width of the lap shall be 1,5 \(t + 15 \) mm (\(t \) = thickness of the thinner plate). Except where another value is determined by calculation, the fillet weld throat thickness “a” shall equal 0,4 times the lesser plate thickness, subject to the requirement that it shall not be less than the minimum throat thickness required by 3.3.3. The fillet weld shall be continuous on both sides and shall meet at the ends.

3.3.11 In the case of slot welding, the slots should, wherever possible, take the form of elongated holes lying in the direction of the main stress. The distance between the holes and the length of the holes may be determined by analogy with the pitch “b” and the fillet weld length “\(\ell \)” in the intermittent welds covered by 3.3.8. The fillet weld throat thickness “\(a_u \)” may be established in accordance with 3.3.9. The width of the holes shall be equal to at least twice the thickness of the plate and shall not be less than 15 mm. The ends of the holes shall be semi-circular. Plates or sections placed underneath should be at least equal to the perforated plate in thickness and should project on both sides to a distance of 1,5x the plate thickness subject to a maximum of 20 mm. Wherever possible only the necessary fillet welds shall be welded, while the remaining void is packed with a suitable filler. In special cases, instead of slot welding, plug weld may be approved by BKI. Lug joint welding is not allowed.

4. Welded joints of particular components

4.1 Welds at the ends of girders and stiffeners

4.1.1 As shown in Fig. 19.16, the web at the end of intermittently welded girders or stiffeners is to be continuously welded to the plating or the flange plate, as applicable, over a distance at least equal to the depth “\(h \)” of the girder or stiffener subject to a maximum of 300 mm. Regarding the strengthening of the welds at the ends, extending normally over 0,15 of the span, see Table 19.3.
4.1.2 The areas of bracket plates should be continuously welded over a distance at least equal to the length of the bracket plate. Scallops are to be located only beyond a line imagined as an extension of the free edge of the bracket plate.

4.1.3 Wherever possible, the free ends of stiffeners shall abut against the transverse plating or the webs of sections and girders so as to avoid stress concentrations in the plating. Failing this, the ends of the stiffeners are to be snipped and continuously welded over a distance of at least 1.7h subject to a maximum of 300 mm.

4.1.4 Where butt joints occur in flange plates, the flange shall be continuously welded to the web on both sides of the joint over a distance at least equal to the width of the flange.

4.2 Joints between section ends and plates

4.2.1 Welded joints connecting section ends and plates may be made in the same plane or lapped. Where no design calculations have been carried out or stipulated for the welded connections, the joints may be made analogously to those shown in Fig. 19.17.

4.2.2 Where the joint lies in the plane of the plate, it may conveniently take the form of a single-bevel butt weld with fillet. Where the joint between the plate and the section end overlaps, the fillet weld shall be continuous on both sides and shall meet at the ends. The necessary "a" dimension is to be calculated in accordance with C.2.6. The fillet weld throat thickness is not to be less than the minimum specified in 3.3.3.

4.3 Welded shaft bracket joints

4.3.1 Unless cast in one piece or provided with integrally cast welding flanges analogous to those prescribed in 2.1.7 (see Fig. 19.18), strut barrel and struts are to be connected to each other and to the shell plating in the manner shown in Fig. 19.19.

4.3.2 In the case of single-strut shaft brackets no welding is to be performed on the arm at or close to the position of constraint. Such components shall be provided with integrally forged or cast welding flanges.
Fig. 19.18 - Shaft bracket with integrally cast welding flanges

![Shaft bracket with integrally cast welding flanges](image)

Fig. 19.19 - Shaft bracket without integrally cast welding flanges

![Shaft bracket without integrally cast welding flanges](image)

\[
t = \text{plating thickness in accordance with Section 6, F. [mm]}
\]
\[
t' = \frac{d}{3} \times 5 \quad \text{[mm] where } d < 50\text{mm}
\]
\[
= 3 \sqrt{d} \quad \text{[mm] where } d \geq 50\text{mm}
\]

For shaft brackets of elliptically shaped cross section \(d\) may be substituted by \(\frac{2}{3}d\) in the above formulae.

4.4 Rudder coupling flanges

4.4.1 Unless forged or cast steel flanges with integrally forged or cast welding flanges in conformity with 2.1.7 are used, horizontal rudder coupling flanges are to be joined to the rudder body by plates of graduated thickness and full penetration single or double-bevel welds as prescribed in 3.2.1, see Fig. 19.20. See also Section 14, D.1.4 and D.2.4.

4.4.2 Allowance shall be made for the reduced strength of the coupling flange in the thickness direction, see 1.5 and 2.5. In case of doubt, proof by calculation of the adequacy of the welded connection shall be produced.

4.4.3 The welded joint between the rudder stock (with thickened collar, see 2.1.8) and the flange shall be made in accordance with Fig. 19.21a.

For small stock diameter welded joint in accordance with Fig. 19.21b may be applied.
\(t = \text{plate thickness in accordance with Section 14, E.3.1 [mm]} \)

\(t_f = \text{actual flange thickness [mm]} \)

\[
\begin{align*}
 \text{where } & t_f < 50 \text{ mm} \\
 t' &= \frac{t_f}{3} + 5 \text{ [mm]} \\
 &= 3 \sqrt{r_f} \text{ [mm]} \text{ where } t_f \geq 50 \text{ mm}
\end{align*}
\]

Fig. 19.20 - Horizontal rudder coupling flanges

Fig. 19.21a - Welded joint between rudder stock and coupling flange

Detail B

smoothly rounded joint contours

Fig. 19.21b - Welded joint between rudder stock and coupling flange for small stock diameter
C. Stress Analysis

1. General analysis of fillet weld stresses

1.1 Definition of stresses

For calculation purposes, the following stresses in a fillet weld are defined (see also Fig. 19.22):

- \(\sigma_\perp \) = normal stresses acting vertically to the direction of the weld seam
- \(\tau_\perp \) = shear stress acting vertically to the direction of the weld seam
- \(\tau_\parallel \) = shear stress acting in the direction of the weld seam.

Normal stresses acting in the direction of the weld seam need not be considered.

For calculation purposes the weld seam area is \(a \cdot \ell \).

Due to equilibrium condition the following applies to the flank area vertical to the shaded weld seam area:

\[\tau_\perp = \sigma_\perp \]

The equivalent stress is to be calculated by the following formula:

\[\sigma_v = \sqrt{\sigma_\perp^2 + \tau_\perp^2 + \tau_\parallel^2} \]

1.2 Definitions

- \(a \) = throat thickness [mm]
- \(\ell \) = length of fillet weld [mm]
- \(P \) = single force [N]
- \(M \) = bending moment at the position considered [Nm]
- \(Q \) = shear force at the point considered [N]
- \(S \) = first moment of the cross sectional area of the flange connected by the weld to the web in relationship to the neutral beam axis [cm³]
- \(I \) = moment of inertia of the girder section [cm⁴]
- \(W \) = section modulus of the connected section [cm³].

2. Determination of stresses

2.1 Fillet welds stressed by normal and shear forces

Flank and frontal welds are regarded as being equal for the purposes of stress analysis. In view of this, normal and shear stresses are calculated as follows:

\[\sigma = \tau = \frac{P}{\Sigma a \cdot \ell} \quad [N/mm^2] \]
Joint as shown in Fig. 19.23:

- Stresses in frontal fillet welds:

\[
\tau_\perp = \frac{P_1}{2 \cdot a (t_1 + t_2)} \quad [\text{N/mm}^2]
\]

\[
\tau_\parallel = \pm \frac{P_2}{2 \cdot a (t_1 + t_2)} \cdot \frac{2 \cdot a \cdot F_t}{2 \cdot a \cdot F_t} \quad [\text{N/mm}^2]
\]

\[
F_t = \frac{(t_1 + a)}{(t_2 + a)} \quad [\text{mm}^2]
\]

- Stresses in flank fillet welds:

\[
\tau_\perp = \frac{P_2}{2 \cdot a (t_1 + t_2)} \quad [\text{N/mm}^2]
\]

\[
\tau_\parallel = \pm \frac{P_1}{2 \cdot a (t_1 + t_2)} \cdot \frac{2 \cdot a \cdot F_t}{2 \cdot a \cdot F_t} \quad [\text{N/mm}^2]
\]

\[
\ell_1, \ell_2, e \quad [\text{mm}]
\]

- Equivalent stress for frontal and flank fillet welds:

\[
\sigma_v = \sqrt{\tau_\perp^2 + \tau_\parallel^2} \quad [\text{N/mm}^2]
\]

Joint as shown in Fig. 19.24:

- Equivalent stress:

\[
\sigma_v = \sqrt{\tau_\perp^2 + \tau_\parallel^2} \quad [\text{N/mm}^2]
\]
2.2 Fillet weld joints stressed by bending moments and shear forces

The stresses at the fixing point of a girder are calculated as follows (in Fig. 19.25 a cantilever beam is given as an example):

![Fig. 19.25 Fixing point of cantilever beam](image)

.1 Normal stress due to bending moment:

\[
\sigma_{\perp}(z) = \frac{M}{I_s} z \quad [\text{N/mm}^2]
\]

\[
\sigma_{\perp \text{max}} = \begin{cases}
\frac{M}{I_s} e_u & \text{if } e_u > e_0 \\
\frac{M}{I_s} e_0 & \text{if } e_u < e_0
\end{cases} \quad [\text{N/mm}^2]
\]

.2 Shear stress due to shear force:

\[
\tau_{\parallel} (z) = \frac{Q \cdot S_s (z)}{10 \cdot I_s \cdot \Sigma a} \quad [\text{N/mm}^2]
\]

\[
\tau_{\parallel \text{max}} = \frac{Q \cdot S_s \text{max}}{20 \cdot I_s \cdot a} \quad [\text{N/mm}^2]
\]

\[I_s = \text{moment of inertia of the welded joint related to the x-axis [cm}^4]\]

\[S_s (z) = \text{the first moment of the connected weld section at the point under consideration [cm}^3]\]

\[z = \text{distance from the neutral axis [cm]}\]

.3 Equivalent stress :

It has to be proved that neither \(\sigma_{\perp \text{max}} \) in the region of the flange nor \(\tau_{\parallel \text{max}} \) in the region of the neutral axis nor the equivalent stress \(\sigma_v = \sqrt{\sigma_{\perp}^2 + \tau_{\parallel}^2} \) exceed the permitted limits given in 2.8 at any given point. The equivalent stress \(\sigma_v \) should always be calculated at the web-flange connection.

2.3 Fillet welded joints stressed by bending and torsional moments and shear forces

Regarding the normal and shear stresses resulting from bending, see 2.2. Torsional stresses resulting from the torsional moment \(M_T \) are to be calculated:

\[
\tau_T = \frac{M_T \cdot 10^3}{2 \cdot a \cdot A_m} \quad [\text{N/mm}^2]
\]

\[M_T = \text{torsoal moment [Nm]}\]

\[A_m = \text{sectional area [mm}^2\text{] enclosed by the weld seam}\]

The equivalent stress composed of all three components (bending, shear and torsion) is calculated by means of the following formulae:

\[
\sigma_v = \sqrt{\sigma_{\perp}^2 + \tau_{\parallel}^2 + \tau_T^2} \quad [\text{N/mm}^2]
\]

where \(\tau_{\parallel} \) and \(\tau_T \) have not the same direction

\[
\sigma_v = \sqrt{\sigma_{\perp}^2 + (\tau_{\parallel} + \tau_T)^2} \quad [\text{N/mm}^2]
\]

where \(\tau_{\parallel} \) and \(\tau_T \) have the same direction.
2.4 Continuous fillet welded joints between web and flange of bending girders

The stresses are to be calculated in way of maximum shear forces. Stresses in the weld’s longitudinal direction need not to be considered. In the case of continuous double fillet weld connections the shear stress is to be calculated as follows:

\[\tau_{\parallel} = \frac{Q \cdot S}{20 \cdot I \cdot a} \quad [\text{N/mm}^2] \]

The fillet weld thickness required is:

\[a_{\text{req}} = \frac{Q \cdot S}{20 \cdot I \cdot \tau_{\text{perm}}} \quad [\text{mm}] \]

2.5 Intermittent fillet weld joints between web and flange of bending girders

Shear stress:

\[\tau_{\parallel} = \frac{Q \cdot S \cdot \alpha}{20 \cdot I \cdot \ell} \frac{b}{\sqrt{\ell}} \quad [\text{N/mm}^2] \]

\[b = \text{pitch} \]
\[\alpha = 1.1 \quad \text{stress concentration factor which takes into account increases in shear stress at the ends of the fillet weld seam } "\ell". \]

![Fig. 19.26 Intermittent fillet weld joint](image)

The fillet weld thickness required is:

\[a_{\text{req}} = \frac{Q \cdot S \cdot 1.1}{20 \cdot I \cdot \tau_{\text{perm}}} \frac{b}{\ell} \quad [\text{mm}] \]

2.6 Fillet weld connections on overlapped profile joints

2.6.1 Profiles joined by means of two flank fillet welds (see Fig. 19.27):

\[\tau_{\perp} = \frac{Q}{2 \cdot a \cdot d} \quad [\text{N/mm}^2] \]
\[\tau_{\parallel} = \frac{M \cdot 10^3}{2 \cdot a \cdot c \cdot d} \quad [\text{N/mm}^2] \]

![Fig. 19.27 Profile joined by means of two flank fillet joints](image)

The equivalent stress is:

\[\sigma_v = \sqrt{\tau_{\perp}^2 + \tau_{\parallel}^2} \quad [\text{N/mm}^2] \]
c, d, \(\ell_1, \ell_2, r\) [mm] see Fig. 19.27

\[c = r + \frac{3\ell_1 - \ell_2}{4} \quad [\text{mm}] \]

As the influence of the shear force can generally be neglected, the required fillet weld thickness may be determined by the following formula:

\[a_{\text{req}} = \frac{W \cdot 10^3}{1.5 \cdot c \cdot d} \quad [\text{mm}] \]

2.6.2 Profiles joined by means of two flank and two frontal fillet welds (all round welding as shown in Fig. 19.28):

\[
\tau_{\perp} = \frac{Q}{a(2d + \ell_1 + \ell_2)} \quad [\text{N/mm}^2]
\]

\[
\tau_{\parallel} = \frac{M \cdot 10^3}{a \cdot c (2d + \ell_1 + \ell_2)} \quad [\text{N/mm}^2]
\]

The equivalent stress is:

\[
\sigma_v = \sqrt{\tau_{\perp}^2 + \tau_{\parallel}^2} \quad [\text{N/mm}^2]
\]

\[a_{\text{req}} = \frac{W \cdot 10^3}{1.5 \cdot c \cdot d \left[1 + \frac{\ell_1 + \ell_2}{2d} \right]} \quad [\text{mm}] \]

Fig. 19.28 Profile joined by means of two flank and two frontal fillet welds (all round welding)

2.7 Bracket joints

Where profiles are joined to brackets as shown in Fig. 19.29, the average shear stress is:

\[
\tau = \frac{3 \cdot M \cdot 10^3}{4 \cdot a \cdot d^2} + \frac{Q}{2 \cdot a \cdot d} \quad [\text{N/mm}^2]
\]

\[d = \text{length of overlap} \quad [\text{mm}] \]

Fig. 19.29 Bracket joint with idealized stress distribution resulting from moment M and shear force Q

The required fillet weld thickness is to be calculated from the section modulus of the profile as follows:

\[a_{\text{req}} = \frac{1000 \cdot W}{d^2} \quad [\text{mm}] \]

(The shear force Q has been neglected.)

2.8 Permissible stresses

The permissible stresses for various materials under mainly static loading conditions are given in Table 19.2. The values listed for high strength steels, austenitic stainless steels and aluminium alloys are based on the assumption that the strength
values of the weld metal used are at least as high as those of the parent metal. If this is not the case, the "a" value calculated shall be increased accordingly (see also B.3.3.2).

Table 19.2 - Permissible stresses in fillet weld seams

<table>
<thead>
<tr>
<th>Material</th>
<th>ReH or Rp0,2 [N/mm²]</th>
<th>Permissible stresses [N/mm²] equivalent stress, shear stress</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>normal strength hull structural steel</td>
<td>235</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>higher strength hull structural steel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI - A/D/E/F 32</td>
<td>315</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>KI - A/D/E/F 36</td>
<td>355</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>KI - A/D/E/F 40</td>
<td>390</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>high strength steels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 460</td>
<td>460</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>S 690</td>
<td>685</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>austenitic and austenitic-ferritic stainless steels</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4306/304 L</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4404/316 L</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4435/316 L</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4438/317 L</td>
<td>195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4541/321</td>
<td>205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4571/316 Ti</td>
<td>215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4406/316 LN</td>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4429/316 LN</td>
<td>285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4439/317 LN</td>
<td>285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4462/318 LN</td>
<td>480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium alloys</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Mg 3/5754</td>
<td>80 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Mg 4,5 Mn0,7/5083</td>
<td>125 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Mg Si 6060</td>
<td>65 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Mg Si Mn/6082</td>
<td>110 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Plates, soft condition
2) Sections, cold hardened

BKI - Rules for Hull - 2014
Table 19.3 - Fillet Weld Connections

<table>
<thead>
<tr>
<th>Structural parts to be connected</th>
<th>Basic thickness of fillet welds a / t₀ ¹ for double continuous fillet welds ²</th>
<th>Intermittent fillet welds permissible ³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>transverse and longitudinal girders to each other</td>
<td>0,35 ×</td>
<td></td>
</tr>
<tr>
<td>– to shell and inner bottom</td>
<td>0,20 ×</td>
<td></td>
</tr>
<tr>
<td>centre girder to flat keel and inner bottom</td>
<td>0,40 ×</td>
<td></td>
</tr>
<tr>
<td>transverse and longitudinal girders and stiffeners including shell plating in way of bottom strengthening forward machinery space</td>
<td>0,30 ×</td>
<td></td>
</tr>
<tr>
<td>transverse and longitudinal girders to each other</td>
<td>0,35 ×</td>
<td></td>
</tr>
<tr>
<td>– to shell and inner bottom</td>
<td>0,30 ×</td>
<td></td>
</tr>
<tr>
<td>inner bottom to shell</td>
<td>0,40 ×</td>
<td></td>
</tr>
<tr>
<td>sea chests, water side inside</td>
<td>0,50 ×</td>
<td></td>
</tr>
<tr>
<td>Machinery foundation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>longitudinal and transverse girders to each other and to the shell</td>
<td>0,40 ×</td>
<td></td>
</tr>
<tr>
<td>– to inner bottom and face plates</td>
<td>0,40 ×</td>
<td></td>
</tr>
<tr>
<td>– to top plates</td>
<td>0,50 ⁴</td>
<td></td>
</tr>
<tr>
<td>– in way of foundation bolts</td>
<td>0,70 ⁴</td>
<td></td>
</tr>
<tr>
<td>– to brackets and stiffeners</td>
<td>0,30 ×</td>
<td></td>
</tr>
<tr>
<td>longitudinal girders of thrust bearing to inner bottom</td>
<td>0,40 ×</td>
<td></td>
</tr>
<tr>
<td>Decks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>to shell (general)</td>
<td>0,40 ×</td>
<td></td>
</tr>
<tr>
<td>deckstringer to sheerstrakes (see also Section 7, A.2)</td>
<td>0,50 ×</td>
<td></td>
</tr>
<tr>
<td>Frames, stiffeners, beams etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>general</td>
<td>0,15 ×</td>
<td></td>
</tr>
<tr>
<td>in peak tanks</td>
<td>0,30 ×</td>
<td></td>
</tr>
<tr>
<td>bilge keel to shell</td>
<td>0,15 ×</td>
<td></td>
</tr>
<tr>
<td>Transverse, longitudinal and transverse girders</td>
<td>0,15 ×</td>
<td></td>
</tr>
<tr>
<td>general</td>
<td>0,15 ×</td>
<td></td>
</tr>
<tr>
<td>within 0,15 of span from supports.</td>
<td>0,25 ×</td>
<td></td>
</tr>
<tr>
<td>cantilevers</td>
<td>0,40 ×</td>
<td></td>
</tr>
<tr>
<td>pillars to decks.</td>
<td>0,40 ×</td>
<td></td>
</tr>
<tr>
<td>Bulkheads, tank boundaries, walls of superstructures and deckhouses.</td>
<td>0,40 ×</td>
<td></td>
</tr>
<tr>
<td>to decks, shell and walls</td>
<td>0,40 ×</td>
<td></td>
</tr>
<tr>
<td>Hatch coamings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>to deck (see also Section 17, C.1.8)</td>
<td>0,40 ×</td>
<td></td>
</tr>
<tr>
<td>to longitudinal stiffeners</td>
<td>0,30 ×</td>
<td></td>
</tr>
<tr>
<td>Hatch covers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>general</td>
<td>0,15 ×</td>
<td></td>
</tr>
<tr>
<td>watertight or oiltight fillet welds.</td>
<td>0,30 ×</td>
<td></td>
</tr>
<tr>
<td>Rudder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plating to webs</td>
<td>0,25 ×</td>
<td></td>
</tr>
<tr>
<td>Stem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plating to webs</td>
<td>0,25 ×</td>
<td></td>
</tr>
</tbody>
</table>

¹) t₀ = thickness of the thinner plate.
²) In way of large shear forces larger throat thicknesses may be required on the bases of calculations according to C.
³) For intermittent welding in spaces liable to corrosion B.3.3.8 is to be observed.
⁴) For plate thicknesses exceeding 15 mm single or double bevel butt joints with, full penetration or with defined incomplete root penetration according to Fig. 19.9 to be applied.
⁵) Excepting hatch covers above holds provided for ballast water.
Preamble
The proof of sufficient fatigue strength, i.e. the strength against crack initiation under dynamic loads during operation, is useful for judging and reducing the probability of crack initiation of structural members during the design stage.

Due to the randomness of the load process, the spreading of material properties and fabrication factors and to effects of ageing, crack initiation cannot be completely excluded during later operation. Therefore among other things periodical surveys are necessary.

A. General

1. Definitions

\[\Delta \sigma = \text{applied stress range (}\sigma_{\text{max}} - \sigma_{\text{min}}) \text{ [N/mm}^2\text{], see also Fig. 20.1} \]
\[\sigma_{\text{max}} = \text{maximum upper stress of a stress cycle [N/mm}^2\text{]} \]
\[\sigma_{\text{min}} = \text{maximum lower stress of a stress cycle [N/mm}^2\text{]} \]
\[\sigma_m = \text{mean stress } (\sigma_{\text{max}}/2 + \sigma_{\text{min}}/2) \text{ [N/mm}^2\text{]} \]
\[\Delta \sigma_{\text{max}} = \text{applied peak stress range within a stress range spectrum [N/mm}^2\text{]} \]
\[\Delta \sigma_p = \text{permissible stress range [N/mm}^2\text{]} \]
\[\Delta \tau = \text{corresponding range for shear stress [N/mm}^2\text{]} \]
\[n = \text{number of applied stress cycles} \]
\[N = \text{number of endured stress cycles according to S-N curve (}= \text{endured stress cycles under constant amplitude loading)} \]
\[\Delta \sigma_R = \text{fatigue strength reference value of S-N curve at } 2 \cdot 10^6 \text{ cycles of stress range [N/mm}^2\text{] (}= \text{detail category number according to Table 20.3)} \]
\[f_m = \text{correction factor for material effect} \]
\[f_R = \text{correction factor for mean stress effect} \]
\[f_w = \text{correction factor for weld shape effect} \]
\[f_i = \text{correction factor for importance of structural element} \]
\[f_s = \text{additional correction factor for structural stress analysis} \]
\[f_n = \text{factor considering stress spectrum and number of cycles for calculation of permissible stress range.} \]
\[\Delta \sigma_{Rc} = \text{corrected fatigue strength reference value of S-N curve at } 2 \cdot 10^6 \text{ stress cycles [N/mm}^2\text{]} \]
\[D = \text{cumulative damage ratio.} \]
2. Scope

2.1 A fatigue strength analysis is to be performed for structures which are predominantly subjected to cyclic loads. Items of equipment, e.g. hatch cover resting pads or equipment holders, are thereby also to be considered. The notched details i.e. the welded joints as well as notches at free plate edges are to be considered individually. The fatigue strength assessment is to be carried out either on the basis of a permissible peak stress range for standard stress spectra (see B.2.1) or on the basis of a cumulative damage ratio (see B.2.2).

2.2 No fatigue strength analysis is required if the peak stress range due to dynamic loads in the seaway (stress spectrum A according to 2.4) and/or due to changing draught or loading conditions, respectively, fulfils the following conditions:

- peak stress range only due to seaway-induced dynamic loads:
 \[\Delta \sigma_{\text{max}} \leq 2.5 \Delta \sigma \]

- sum of the peak stress ranges due to seaway induced dynamic loads and due to changes of draught or loading condition, respectively:
 \[\Delta \sigma_{\text{max}} \leq 4.0 \Delta \sigma \]

Note

For welded structures of detail category 80 or higher a fatigue strength analysis is required only in case of extraordinary high dynamic stresses.

2.3 The rules are applicable to constructions made of normal and higher-strength hull structural steels according to Section 2, B. as well as aluminium alloys. Other materials such as cast steel can be treated in an analogous manner by using appropriate design S-N curves.

Low cycle fatigue problems in connection with extensive cyclic yielding have to be specially considered. When applying the following rules, the calculated nominal stress range should not exceed \(1.5 \) times the minimum nominal upper yield point. In special cases the fatigue strength analysis may be performed by considering the local elasto-plastic stresses.

2.4 The stress ranges \(\Delta \sigma \) which are to be expected during the service life of the ship or structural component, respectively, may be described by a stress range spectrum (long-term distribution of stress range). Fig. 20.2 shows three standard stress range spectra A, B and C, which differ from each other in regard to the distribution of stress range \(\Delta \sigma \) as a function of the number of load cycles.

\[\begin{align*}
A & : \text{straight-line spectrum (typical stress range spectrum of seaway-induced stress ranges)} \\
B & : \text{parabolic spectrum (approximated normal distribution of stress range } \Delta \sigma \text{ acc. to DIN 15018)} \\
C & : \text{rectangular spectrum (constant stress range within the whole spectrum; typical spectrum of engine- or propeller-excited stress ranges).}
\end{align*} \]

Fig. 20.2 Standard stress range spectra A, B and C

In case of only seaway-induced stresses, for a design lifetime of about 20 years normally the stress range spectrum A is to be assumed with a number of cycles \(n_{\text{max}} = 5 \cdot 10^7 \).

For design lifetime of 30 years the number of cycles \(n_{\text{max}} = 7.5 \cdot 10^7 \) is to be assumed.

The maximum and minimum stresses result from the maximum and minimum relevant seaway-induced load effects. The
different load-effects for the calculation of $\Delta \sigma_{max}$ are, in general, to be superimposed conservatively. Table 20.1 shows examples for the individual loads which have to be considered in normal cases.

Under extreme seaway conditions stress ranges exceeding $\Delta \sigma_{max}$ occur (see Section 5, C.8.). These stress ranges, which load cycles are to be generally assumed with $n < 10^4$, can be neglected regarding the fatigue life, when the stress ranges $\Delta \sigma_{max}$ derived from loads according to Table 20.1 are assigned to the spectrum A.

For ships of unconventional hull shape and for ships for which a special mission profile applies, a stress range spectrum deviating from spectrum A may be applied which may be evaluated by the spectral method.

Other significant fluctuating stresses, e.g. in longitudinal due to deflections of supporting transverses (see Section 9, B.3.5), in longitudinal and transverse structures due to torsional deformations (see for this also Section 5, F.1.1) as well as additional stresses due to the application of non-symmetrical sections, have to be considered, see Section 3, L.

2.5 Additional stress cycles resulting from changing mean stresses, e.g. due to changing loading conditions or draught, need generally not be considered as long as the seaway-induced stress ranges are determined for the loading condition being most critical with respect to fatigue strength and the maximum change in mean stress is less than the maximum seaway-induced stress range.

Larger changes in mean stress are to be included in the stress range spectrum by conservative superpositioning of the largest stress ranges (e.g. in accordance with the "rainflow counting method"). If nothing else is specified, 10^3 load cycles have to be assumed for changes in loading condition or draught.

2.6 The fatigue strength analysis is, depending on the detail considered, based on one of the following types of stress:

- For notches of free plate edges the notch stress σ_n, determined for linear - elastic material behaviour, is relevant, which can normally be calculated from a nominal stress σ_n and a theoretical stress concentration factor K_t. Values for K_t are given in Section 3, J., Figs. 3.8 and 3.9 for different types of cut-outs. The fatigue strength is determined by the detail category (or $\Delta \sigma_R$) according to Table 20.3, type E2 and E3.

- For welded joints the fatigue strength analysis is normally based on the nominal stress σ_n at the structural detail considered and on an appropriate detail classification as given in Table 20.3, which defines the detail category (or $\Delta \sigma_R$).

- For those welded joints, for which the detail classification is not possible or additional stresses occur, which are not or not adequately considered by the detail classification, the fatigue strength analysis may be performed on the basis of the structural stress σ_s in accordance with C.
Table 20.1 Maximum and minimum value for seaway-induced cyclic loads

<table>
<thead>
<tr>
<th>Load</th>
<th>Maximum load</th>
<th>Minimum load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical longitudinal bending moments (Section 5, B.)¹)</td>
<td>$M_{SW} + M_{ST} + f_Q M_{WV hog}$</td>
<td>$M_{SW} + M_{ST} + f_Q M_{WV sug}$</td>
</tr>
<tr>
<td>Vertical bending moments and horizontal wave bending moments ¹) (Section 5, B.)</td>
<td>$M_{SW} + M_{ST} + f_Q (0,6 M_{WV hog} + M_{WH})$</td>
<td>$M_{SW} + M_{ST} + f_Q (0,6 M_{WV hog} - M_{WH})$</td>
</tr>
<tr>
<td>Vertical longitudinal bending moments ¹), horizontal wave bending moments and torsional moments (Section 5, B.)</td>
<td>$f_F \cdot [M_{SW} + M_{ST} + f_Q [0,43 + C \cdot (0,5 - C)] M_{WV hog} + M_{WT}]$</td>
<td>$f_F \cdot [M_{SW} + M_{ST} + f_Q [0,43 + C \cdot (0,5 - C)] M_{WV hog} + C \cdot (0,43 + C) M_{WV sug} - M_{WT}]$</td>
</tr>
</tbody>
</table>

$$C = \left(\frac{X}{L} - 0.5\right)^2$$

<table>
<thead>
<tr>
<th>Loads on weather decks ²)</th>
<th>p_0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loads on ship’s sides ²)⁴)</td>
<td>$10 (T - z) + p_0 \cdot c_F \left[1 + \frac{z}{T}\right]$</td>
<td>$10 (T - z) - p_0 \cdot c_F \left[1 + \frac{z}{T}\right]$ but $z \geq 0$</td>
</tr>
<tr>
<td>Loads on ship’s bottom ²)⁴)</td>
<td>$10 T + p_0 \cdot c_F$</td>
<td>$10 T - p_0 \cdot c_F$</td>
</tr>
<tr>
<td>Liquid pressure in completely filled tanks ⁴)</td>
<td>$9,81 \cdot h_1 \cdot \rho (1 + a_z) + 100 p_v$ or $9,81 \cdot h_1 \cdot \rho [h_1 \cdot \cos \varphi + (0,3 \cdot b + y) \sin \varphi] + 100 p_v$</td>
<td>$9,81 \cdot h_1 \cdot \rho (1 - a_z) + 100 p_v$ or $9,81 \cdot h_1 \cdot \rho [h_1 \cdot \cos \varphi + (0,3 \cdot b - y) \sin \varphi] + 100 p_v$ but $\geq 100 p_v$</td>
</tr>
<tr>
<td>Loads due to cargo ⁵) (Section 4, C.1.1 and E.1)</td>
<td>$p (1 + a_x)$ $p \cdot a_x \cdot 0,7$ $p \cdot a_y \cdot 0,7$</td>
<td>$p (1 - a_x)$ $- p \cdot a_x \cdot 0,7$ $- p \cdot a_y \cdot 0,7$</td>
</tr>
<tr>
<td>Loads due to friction forces ³) (Section 17, B.4.5.5)</td>
<td>P_h</td>
<td>$- P_h$</td>
</tr>
<tr>
<td>Loads due to rudder forces ³) (Section 14, B.)</td>
<td>C_R Q_R</td>
<td>$- C_R$ $- Q_R$</td>
</tr>
</tbody>
</table>

¹) Maximum and minimum load are to be so determined that the largest applied stress range $\Delta \sigma$ as per Figure 20.1 at conservative mean stress is obtained having due regard to the sign (plus, minus). For f_F, f_Q see Section 5.D.1
²) With probability factor f for calculation p_0 according to Section 4, A.2.2.: however $f = 1,0$ for stiffeners if no other cyclic load components are considered
³) In general the largest friction load is to be taken in connection with the load spectrum B without considering further cyclic loads.
⁴) Assumption of conservative super positioning for the shell: Where appropriate, proof is to be furnished for T_{min}.
⁵) Probability factor $f_a = 1,0$ used for determination of a_0 and further calculation of a_x and a_y according to Section 4, E.1.

3. Quality requirements (fabrication tolerances)

3.1 The detail classification of the different welded joints as given in Table 20.3 is based on the assumption that the fabrication of the structural detail or welded joint, respectively, corresponds in regard to external defects at least to quality group B according to DIN EN ISO 5817 and in regard to internal defects at least to quality group C. Further information about the tolerances can also be found in the Rules for Welding, Volume VI, Appendix 6.

3.2 Relevant information have to be included in the manufacturing document for fabrication. If it is not possible to comply with the tolerances given in the standards this has to be accounted for when designing the structural details or welded joints, respectively. In special cases an improved manufacture as stated in 3.1 may be required, e.g. stricter tolerances or improved weld shapes, see also B.3.2.4.

3.3 The following stress increase factors k_{fat} for considering significant influence of axial and angular misalignment are already included in the fatigue strength reference values $\Delta \sigma_k$ (Table 20.3):
k_n = 1,15 butt welds (corresponding type A1, A2, A11)
 = 1,30 butt welds (corresponding type A3–A10)
 = 1,45 cruciform joints (corresponding type D1–D5)
 = 1,25 fillet welds on one plate surface (corresponding type C7,C8)

Other additional stresses need to be considered separately.

B. Fatigue Strength Analysis for Free Plate Edges and for Welded Joints Using Detail Classification

1. Definition of nominal stress and detail Classification for welded joints

1.1 Corresponding to their notch effect, welded joints are normally classified into detail categories considering particulars in geometry and fabrication, including subsequent quality control, and definition of nominal stress. Table 20.3 shows the detail classification based on recommendations of the International Institute of Welding (IIW) giving the detail category number (or F_R) for structures made of steel or aluminium alloys (Al).

In Table 20.4 $\Delta \sigma_c$-values for steel are given for some intersections of longitudinal frames of different shape and webs, which can be used for the assessment of the longitudinal stresses.

It has to be noted that some influence parameters cannot be considered by the detail classification and that a large scatter of fatigue strength has therefore to be expected.

1.2 Details which are not contained in Table 20.3 may be classified either on the basis of local stresses in accordance with C. or, else, by reference to published experimental work or by carrying out special fatigue tests, assuming a sufficiently high confidence level (see 3.1) and taking into account the correction factors as given in C.4.

1.3 Regarding the definition of nominal stress, the arrows in Table 20.3 indicate the location and direction of the stress for which the stress range is to be calculated. The potential crack location is also shown in Table 20.3. Depending on this crack location, the nominal stress range has to be determined by using either the cross sectional area of the parent metal or the weld throat thickness, respectively. Bending stresses in plate and shell structures have to be incorporated into the nominal stress, taking the nominal bending stress acting at the location of crack initiation.

Note:

The factor K_s for the stress increase at transverse butt welds between plates of different thickness (see type A5 in Table 20.3) can be estimated in a first approximation as follows:

$$K_s = \frac{t_2}{t_1}$$

t_1 = smaller plate thickness

t_2 = larger plate thickness

Additional stress concentrations which are not characteristic of the detail category itself, e.g. due to cut-outs the neighbourhood of the detail, have also to be incorporated into the nominal stress.

1.4 In the case of combined normal and shear stress the relevant stress range may be taken as the range of the principal stress at the potential crack location which act approximately perpendicular (within ± 45°) to the crack front as shown in Table 20.3 as long as it is larger than the individual stress components.

1.5 Where solely shear stresses are acting the largest principal stress $\sigma_1 = \tau$ may be used in combination with the relevant detail category.

2. Permissible stress range for standard stress range spectra or calculation of the cumulative damage ratio

2.1 For standard stress range spectra according to Fig. 20.2, the permissible peak stress range can be calculated as follows:

$$\Delta \sigma_p = f_n \cdot \Delta \sigma_{Fc}$$

$\Delta \sigma_{Fc} =$ detail category or fatigue strength reference value, respectively, corrected according to 3.2

$f_n =$ factor as given in Table 20.2.
The peak stress range of the spectrum shall not exceed the permissible value, i.e.

$$\Delta \sigma_{\text{max}} \leq \Delta \sigma_p$$

2.2 If the fatigue strength analysis is based on the calculation of the cumulative damage ratio, the stress range spectrum expected during the envisaged service life is to be established (see A.2.4) and the cumulative damage ratio D is to be calculated as follows:

$$D = \sum_{i=1}^{I} \left(\frac{b_i}{N_i} \right)$$

- \(I\) = total number of blocks of the stress range spectrum for summation (normally \(I = 20\))
- \(n_i\) = number of stress cycles in block \(i\)
- \(N_i\) = number of endured stress cycles determined from the corrected design S-N curve (see 3.) taking \(\Delta \sigma = \Delta \sigma_i\)
- \(\Delta \sigma_i\) = stress range of block \(i\).

To achieve an acceptable high fatigue life, the cumulative damage sum should not exceed \(D = 1\).

If the expected stress range spectrum can be superimposed by two or more standard stress spectra according to A.2.4, the partial damage ratios \(D_i\) due to the individual stress range spectra can be derived from Table 20.2. In this case a linear relationship between number of load cycles and cumulative damage ratio may be assumed. The numbers of load cycles given in Table 20.2 apply for a cumulative damage ratio of \(D = 1\).

3. Design S-N Curves

3.1 Description of the design S-N curves

3.1.1 The design S-N curves for the calculation of the cumulative damage ratio according to 2.2 are shown in Fig. 20.3 for welded joints at steel and in Fig. 20.4 for notches at plate edges of steel plates. For aluminium alloys (Al) corresponding S-N curves apply with reduced detail categories \(\Delta \sigma_{\text{R}}\) acc. to Table 20.3. The S-N curves represent the lower limit of the scatter band of 95% of all test results available (corresponding to 97.5% survival probability) considering further detrimental effects in large structures.

To account for different influence factors, the design S-N curves have to be corrected according to 3.2.

3.1.2 The S-N curves represent section wise linear relationships between log (\(\Delta \sigma\)) and log (N):

$$\log (N) = 7,0 + m \cdot Q$$

- \(Q\) = log (\(\Delta \sigma_{\text{R}}/\Delta \sigma\)) - 0.69897/m_0
- \(m\) = slope exponent of S-N curve, see 3.1.3 and 3.1.4
- \(m_0\) = inverse slope in the range \(N \leq 1 \cdot 10^7\)

- = 3 for welded joints
- = 3.5 + 5 for free plate edges.

(see Fig. 20.4)

The S-N curve for detail category 160 forms the upper limit also for the S-N curves of free edges of steel plates with detail categories 100 – 140 in the range of low stress cycles, see Fig. 20.4.

The same applies accordingly to detail categories 71 or 80 of aluminium alloys, see type E1 in Table 20.3.

3.1.3 For structures subjected to variable stress ranges, the S-N curves shown by the solid lines in Fig. 20.3 and Fig. 20.4 have to be applied (S-N curves of type "M"), i.e.

$$m = m_0 \quad \text{for } N \leq 10^7 \ (Q \leq 0)$$
$$m = 2 \cdot m_0 - 1 \quad \text{for } N > 10^7 \ (Q > 0)$$
Table 20.2 - Factor f_n for the determination of the permissible range for standard stress range spectra

<table>
<thead>
<tr>
<th>Stress range</th>
<th>Welded Joints</th>
<th>Plates Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m₀ = 3) n max =</td>
<td>type E1 (m₀ = 5) n max =</td>
</tr>
<tr>
<td></td>
<td>10³</td>
<td>10⁵</td>
</tr>
<tr>
<td>A</td>
<td>(17,2)</td>
<td>3,53</td>
</tr>
<tr>
<td>B</td>
<td>(9,2)</td>
<td>1,67</td>
</tr>
<tr>
<td>C</td>
<td>(12,6)</td>
<td>2,71</td>
</tr>
</tbody>
</table>

For definition of type E1 to type E3 see Table 20.3

For definition of m₀ see 3.1.2

The values given in parentheses may be applied for interpolation.

For interpolation between any pair of values $(n_{max1} : f_{n1})$ and $(n_{max2} : f_{n2})$, the following formula may be applied in the case of stress spectrum A or B:

$$\log f_n = \log f_{n1} + \log \left(\frac{n_{max}}{n_{max1}}\right)$$

For the stress spectrum C intermediate values may be calculated according to 3.1.2 by taking $N = n_{max}$ and $f_n = \Delta\sigma/\Delta\sigma_R$.

1) f_n for non-corrosive environment, see also 3.1.4.

2) for $\Delta\sigma_R = 100$ [N/mm²]

3.1.4 For stress ranges of constant magnitude (stress range spectrum C) in non-corrosive environment from $N = 1 \cdot 10^7$ the S-N curves of type "O" in Fig. 20.3 and 20.4 can be used, thus:

$$m = m_0 \quad \text{for} \quad N \leq 10^7 \quad (Q \leq 0)$$

$$m = 22 \quad \text{for} \quad N > 10^7 \quad (Q > 0)$$

3.2 Correction of the reference value of the design S-N curve

3.2.1 A correction of the reference value of the S-N curve (or detail category) is required to account for additional influence factors on fatigue strength as follows:

$$\Delta\sigma_{Rc} = f_m \cdot f_k \cdot f_w \cdot f_i \cdot f_t \cdot \Delta\sigma_R$$

f_m, f_k, f_w, f_i, f_t defined in 3.2.2 - 3.2.6

For the description of the corrected design S-N curve, the formulae given in 3.1.2 may be used by replacing $\Delta\sigma_R$ by $\Delta\sigma_{Rc}$.

3.2.2 Material effect (f_m)

For welded joints it is generally assumed that the fatigue strength is independent of steel strength, i.e. :

$$f_m = 1.0.$$

For free edges at steel plates the effect of the material’s yield point is accounted for as follows :

$$f_m = 1 + \frac{R_{eh} - 235}{1200}$$

R_{eh} = minimum nominal upper yield point of the steel [N/mm²].

For aluminium alloys, $f_m = 1$ generally applies.
3.2.3 Effect of mean stress (f_R)

The correction factor is calculated as follows:

- in the range of tensile pulsating stresses, i.e.\n \[\sigma_m \geq \frac{\Delta\sigma_{\text{max}}}{2} \]
 \[f_R = 1.0 \]

- in the range of alternating stresses, i.e.\n \[-\frac{\Delta\sigma_{\text{max}}}{2} \leq \sigma_m \leq \frac{\Delta\sigma_{\text{max}}}{2} \]
 \[f_R = 1 + c \left[1 - \frac{2 \cdot \sigma_m}{\Delta\sigma_{\text{max}}} \right] \]

- in the range of compressive pulsating stresses, i.e.
\[\sigma_m \leq -\frac{\Delta \sigma_{\text{max}}}{2} \]

\[f_R = 1 + 2 \cdot c \]

- \(c = 0 \) for welded joints subjected to constant stress cycles (stress range spectrum C)
- \(c = 0.15 \) for welded joints subjected to variable stress cycles (corresponding to stress range spectrum A or B)
- \(c = 0.3 \) for unwelded base material.

3.2.4 Effect of weld shape \((f_w) \)

In normal cases:

\[f_w = 1.0. \]

A factor \(f_w > 1.0 \) applies for welds treated e.g. by grinding. By this surface defects such as slag inclusions, porosity and crack-like undercuts shall be removed and a smooth transition from the weld to the base material shall be achieved. Final grinding shall be performed transversely to the weld direction. The depth should be approx. 0.5 mm larger than that of visible undercuts.

For ground weld toes of fillet and K- butt welds machined by:
- disk grinder \(f_w = 1.15 \).
- burr grinder \(f_w = 1.30 \).

For butt welds ground flush the corresponding detail category has to be chosen, e.g. type A1, A10 or A12 in Table 20.3.

For endings of stiffeners or brackets, e.g. type C4 or C6 in Table 20.3, which have a full penetration weld and are completely ground flush to achieve a notch-free transition, the following factor applies:

\[f_w = 1.4. \]

The assessment of a local post-weld treatment of the weld surface and the weld toe by other methods e.g. ultrasonic impact treatment has to be agreed on in each case.

3.2.5 Influence of importance of structural element \((f_i) \)

In general the following applies:

\[f_i = 1.0. \]

For secondary structural elements failure of which may cause failure of larger structural areas, the correction factor \(f_i \) is to be taken as:

\[f_i = 0.9. \]

For notches at plate edges in general the following correction factor is to be taken which takes into account the radius of rounding:

\[f_i = 0.9 + \frac{5}{r} \leq 1.0. \]

\(r = \) notch radius [mm]; for elliptical roundings the mean value of the two main half axes may be taken.

3.2.6 Plate thickness effect \((f_t) \)

In order to account for the plate thickness effect, application of the reduction factor \(f_t \) is required by BKI for butt welds oriented transversely to the direction of applied stress for plate thicknesses \(t > 25 \) mm.

\[f_t = \left(\frac{25}{t} \right)^a \]

- \(n = 0.17 \) as welded
- \(n = 0.10 \) toe-ground

For all other weld connections consideration of the thickness effect may be required subject to agreement with BKI.
C. Fatigue Strength Analysis for Welded Joints Based on Local Stresses

1. Alternatively to the procedure described in the preceding paragraphs, the fatigue strength analysis for welded joints may be performed on the basis of local stresses. For common plate and shell structures in ships the assessment based on the so called structural (or hot-spot) stress σ_s is normally sufficient.

The structural stress is defined as the stress being extrapolated to the weld toe excluding the local stress concentration in the local vicinity of the weld, see Fig. 20.5.

![Fig. 20.5 Structural stress](image)

2. The structural stress can be determined by measurements or numerically e.g. by the finite element method using shell or volumetric models under the assumption of linear stress distribution over the plate thickness. Normally the stress is extrapolated linearly to the weld toe over two reference points which are located 0.5 and 1.5 × plate thickness away from the weld toe. In some cases the structural stress can be calculated from the nominal stress F_n and a structural stress concentration factor K_s, which has been derived from parametric investigations using the methods mentioned. Parametric equations should be used with due consideration of their inherent limitations and accuracy.

3. For the fatigue strength analysis based on structural stress, the S-N curves shown in Fig. 20.3 apply with the following reference values:

 - $\Delta \sigma_R = 100$ (resp. 40 for Al) for the butt welds type A1 - A6 and K-butt welds with fillet welded ends, e.g. type D1 in Table 20.3, and for fillet welds which carry no load or only part of the load of the attached plate, type C1-C9 in Table 20.3
 - $\Delta \sigma_R = 90$ (resp. 36 for Al) for fillet welds, which carry the total load of the attached plate, e.g. types D2 in Table 20.3.

 In special cases, where e.g. the structural stresses are obtained by non-linear extrapolation to the weld toe and where they contain a high bending portion, increased reference values of up to 15% can be allowed.

4. The reference value $\Delta \sigma_{Rc}$ of the corrected S-N curve is to be determined according to B.3.2, taking into account the following additional correction factor which describes influencing parameters not included in the calculation model such as e.g. misalignment:

 $$f_s = \frac{1}{k_m - \frac{\Delta \sigma_{sb}}{\Delta \sigma_{s,\max}} (k'_m - 1)}$$

 - $\Delta \sigma_{s,\max}$ = applied peak stress range within a stress range spectrum
 - $\Delta \sigma_{sb}$ = bending portion of $\Delta \sigma_{s,\max}$
 - k'_m = $k_m - 0.05$
 - k_m = stress increase factor due to misalignment under axial loading, at least k_m according A.3.3

 The permissible stress range or cumulative damage ratio, respectively, has to be determined according to B.2.

5. In addition to the assessment of the structural stress at the weld toe, the fatigue strength with regard to root failure has to be considered by analogous application of the respective detail category, e.g. type D3 of Table 20.3. In this case the relevant stress is the stress in the weld throat caused by the axial stress in the plate perpendicular to the weld. It is to be converted at a ratio of $t/2a$.
Table 20.3 Catalogue of Details

A. Butt welds, transverse loaded

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Joint configuration showing mode of fatigue cracking and stress σ considered</th>
<th>Description of joint</th>
<th>Detail category $\Delta\sigma_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Steel</td>
<td>Al</td>
</tr>
<tr>
<td>A1</td>
<td></td>
<td>Transverse butt weld ground flush to plate, 100% NDT (Non Destructive Testing)</td>
<td>112</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>Transverse butt weld made in the shop in the flat position, max. weld reinforcement 1 mm + 0.1 x weld width, smooth transitions, NDT</td>
<td>90</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>Transverse butt welds not satisfying conditions for joint type No.A2, NDT</td>
<td>80</td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td>Transverse butt weld on backing strip or three-plate connection with unloaded branch Buttweld, welded on ceramic backing, root crack</td>
<td>71</td>
</tr>
<tr>
<td>A5</td>
<td></td>
<td>Transverse butt welds between plates of different widths or thickness, NDT as for joint type No. 2, slope 1 : 5 as for joint type No. 2, slope 1 : 3 as for joint type No. 2, slope 1 : 2 as for joint type No.3, slope 1 : 5 as for joint type No.3, slope 1 : 3 as for joint type No.3, slope 1 : 2 For the third sketched case the slope results from the ratio of the difference in plate thicknesses to the breadth of the welded seam. Additional bending stress due to thickness change to be considered, see also B.1.3.</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>63</td>
<td>20</td>
</tr>
<tr>
<td>A6</td>
<td></td>
<td>Transverse butt welds welded from one side without backing bar, full penetration root controlled by NDT not NDT For tubular profiles $\Delta\sigma_R$ may be lifted to the next higher detail category</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36</td>
<td>12</td>
</tr>
<tr>
<td>A7</td>
<td></td>
<td>Partial penetration butt weld; the stress is to be related to the weld throat sectional area, weld overfill not to be taken into account</td>
<td>36</td>
</tr>
</tbody>
</table>
A. Butt welds, transverse loaded

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Joint configuration showing mode of fatigue cracking and stress σ considered</th>
<th>Description of joint</th>
<th>Detail category $\Delta\sigma_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Full penetration butt weld at crossing flanges</td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welded from both sides.</td>
<td>50</td>
</tr>
<tr>
<td>A9</td>
<td></td>
<td>Full penetration butt weld at crossing flanges</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welded from both sides</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cutting edges in the quality according to type E2 or E3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connection length $w \geq 2b \sigma_{\text{min}} = \frac{F}{b \cdot t}$</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td></td>
<td>Full penetration butt weld at crossing flanges</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welded from both sides, NDT, weld ends ground, butt weld ground flush to surface</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cutting edges in the quality according to type E2 or E3 with $\Delta\sigma_R = 125$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connection length $w \geq 2b \sigma_{\text{min}} = \frac{F}{b \cdot t}$</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td></td>
<td>Full penetration butt weld at crossing flanges</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welded from both sides made in shop at flat position, radius transition with $R \geq b$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weld reinforcement $\leq 1 \text{ mm} + 0,1 \times \text{ weld width}$, smooth transitions, NDT, weld ends ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cutting edges in the quality according to type E2 or E3 with $\Delta\sigma_R = 125$</td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td></td>
<td>Full penetration butt weld at crossing flanges, radius transition with $R \geq b$</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welded from both sides, no misalignment, 100 % NDT, weld ends ground, butt weld ground flush to surface</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cutting edges broken or rounded according to type E2</td>
<td></td>
</tr>
</tbody>
</table>
Table 20.3 Catalogue of Details (Continued)

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Joint configuration showing mode of fatigue cracking and stress σ considered</th>
<th>Description of joint</th>
<th>Detail category $\Delta\sigma_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steel</td>
</tr>
<tr>
<td>B1</td>
<td>Longitudinal butt welds both sides ground flush parallel to load direction</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>without start/stop positions, NDT</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>with start/stop positions</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>B2</td>
<td>Continuous automatic longitudinally fully penetrated K-butt weld without stop/start positions (based on stress range in flange adjacent to weld)</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>B3</td>
<td>Continuous automatic longitudinal fillet weld penetrated K-butt weld without stop/start positions (based on stress range in flange adjacent to weld)</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>B4</td>
<td>Continuous manual longitudinal fillet or butt weld (based on stress range in flange adjacent to weld)</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>B5</td>
<td>Intermittent longitudinal fillet weld (based on stress range in flange at weld ends)</td>
<td>In presence of shear τ in the web, the detail category has to be reduced by the factor $(1 - \Delta\tau / \Delta\sigma)$, but not below 36 (steel) or 14 (Al).</td>
<td>80</td>
</tr>
<tr>
<td>B6</td>
<td>Longitudinal butt weld, fillet weld or intermittent fillet weld with cut outs (based on stress range in fillet at weld ends)</td>
<td>If cut outs is higher than 40% of web height</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In presence of shear τ in the web, the detail category has to be reduced by the factor $(1 - \Delta\tau / \Delta\sigma)$, but not below 36 (steel) or 14 (Al).</td>
<td>63</td>
</tr>
</tbody>
</table>

Note
For Q-shaped scallops, an assessment based on local stresses is recommended.
Table 20.3 Catalogue of Details (Continued)

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Joint configuration showing mode of fatigue cracking and stress σ considered</th>
<th>Description of joint</th>
<th>Detail category $\Delta\sigma_{R}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steel</td>
</tr>
<tr>
<td>C1</td>
<td>Longitudinal gusset welded on beam flange, bulb or plate:</td>
<td>$\ell \leq 50$ mm</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 mm $< \ell \leq 150$ mm</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 mm $< \ell \leq 300$ mm</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\ell > 300$ mm</td>
<td>56</td>
</tr>
</tbody>
</table>

For $t_2 \leq 0.5$ t_1, $\Delta\sigma_{R}$ may be increased by one category, but not over 80 (steel) or 28 (Al); not valid for bulb profiles.

When welding close to edges of plates or profiles (distance less than 10 mm) and/or the structural element is subjected to bending, $\Delta\sigma_{R}$ is to be decreased by one category.

C2	Gusset with smooth transition (sniped end or radius) welded on beam flange, bulb or plate; $c \leq 2t_2$, max 25 mm	$r \geq 0.5$ h	71	25
		$r < 0.5$ h or $\varphi \leq 20^\circ$	63	20
		$\varphi > 20^\circ$ see joint type C1		

For $t_2 \leq 0.5$ t_1, $\Delta\sigma_{R}$ may be increased by one category; not valid for bulb profiles.

When welding close to edges of plates or profiles (distance less than 10 mm), $\Delta\sigma_{R}$ is to be decreased by one category.

C3	Fillet welded non-load-carrying lap joint welded to longitudinally stressed component.	$t > 150$ mm	56	20
	– flat bar		56	20
	– to bulb section		50	18

For $\ell > 150$ mm, $\Delta\sigma_{R}$ has to be decreased by one category, while for $\ell \leq 50$ mm, $\Delta\sigma_{R}$ may be increased by one category.

If the component is subjected to bending, $\Delta\sigma_{R}$ has to be reduced by one category.

C4	Fillet welded lap joint with smooth transition (sniped end with $\varphi \leq 20^\circ$ or radius) welded to longitudinally stressed component.	$c \leq 2t$, max. 25 mm	56	20
	– flat bar		56	20
	– to bulb section		50	18
	– to angle section			
Table 20.3 Catalogue of Details (Continued)

<table>
<thead>
<tr>
<th>C. Non-load-carrying attachments</th>
<th>Description of joint</th>
<th>Detail category $\Delta \sigma_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Steel</td>
</tr>
<tr>
<td>Type No</td>
<td>Joint configuration showing mode of fatigue cracking and stress σ considered</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>Longitudinal flat side gusset welded on plate or beam flange edge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\ell \leq 50$ mm</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>$50 \text{ mm} < \ell \leq 150$ mm</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>$150 \text{ mm} < \ell \leq 300$ mm</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>$\ell > 300$ mm</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>For $t_2 \leq 0,7 \ t_1$, $\Delta \sigma_R$ may be increased by one category, but not over 56 (steel) or 20 (Al).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the plate or beam flange is subjected to in-plane bending, $\Delta \sigma_R$ has to be decreased by one category.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>Longitudinal flat side gusset welded on plate edge or beam, flange edge, with smooth transition (snipped end or radius); $c \leq 2 \ t_2$, max. 25 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$r \geq 0,5 \ h$</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>$r < 0,5 \ h$ or $\varphi \leq 20^\circ$</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>$\varphi > 20^\circ$ see joint type C5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For $t_2 \leq 0,7 \ t_1$, $\Delta \sigma_R$ may be increased by one category.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>Transverse stiffener with fillet welds (applicable for short and long stiffeners).</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>Non-load-carrying shear connector</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>End of long doubling plate on beam, welded ends (based on stress range in flange at weld toe)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$t_D \leq 0,8 \ t$</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>$0,8 \ t < t_D \leq 1,5 \ t$</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>$t_D > 1,5 \ t$</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>The following features increase $\Delta \sigma_R$ by one category accordingly:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– reinforced ends according to Fig. 19.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– weld toe angle $\leq 30^\circ$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– length of doubling ≤ 300 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For length of doubling ≤ 150 mm, $\Delta \sigma_R$ may be increased by two categories.</td>
<td></td>
</tr>
</tbody>
</table>
Table 20.3 Catalogue of Details (Continued)

<table>
<thead>
<tr>
<th>Type No</th>
<th>Joint configuration showing mode of fatigue cracking and stress σ considered</th>
<th>Description of joint</th>
<th>Detail category $\Delta\sigma_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steel</td>
</tr>
<tr>
<td>D1</td>
<td></td>
<td>Cruciform or tee-joint K-butt welds with full penetration or with defined incomplete root penetration according to Section 19, Fig. 19.9.</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cruciform joint</td>
<td>80</td>
</tr>
<tr>
<td>D2</td>
<td><img src="image" alt="Cruciform or tee-joint with transverse fillet weld, toe failure (root failure particularly for throat thickness $a < 0.7 \cdot t$, see joint type D3)" /></td>
<td>Cruciform or tee-joint with transverse fillet weld, toe failure (root failure particularly for throat thickness $a < 0.7 \cdot t$, see joint type D3)</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cruciform joint</td>
<td>71</td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td>Welded metal in transverse load-carrying fillet weld at cruciform or tee-joint, root failure (based on stress range in weld throat). See also joint type No. D2</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note Crack initiation at weld root</td>
<td>40</td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td>Full penetration weld at the connection between a hollow section (e.g. pillar) and a plate, for tubular section for rectangular hollow section. For $t \leq 8$ mm, $\Delta\sigma_R$ has to be decreased by one category.</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For large diameters an assessment based on local stress is recommended.</td>
<td>50</td>
</tr>
<tr>
<td>D5</td>
<td></td>
<td>Fillet weld at the connection between a hollow section (e.g. pillar) and a plate, for tubular section for rectangular hollow section</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The stress is to be related to the weld sectional area. For $t \leq 8$ mm, $\Delta\sigma_R$ has to be decreased by one category.</td>
<td>40</td>
</tr>
<tr>
<td>D6</td>
<td></td>
<td>Continuous butt or fillet weld connecting a pipe penetrating through a plate</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td> 50 mm" /></td>
<td>d ≤ 50 mm</td>
<td>63</td>
</tr>
</tbody>
</table>

Note

For large diameters an assessment based on local stress is recommended.
Table 20.3 Catalogue of Details (Continued)

E. Unwelded base material

<table>
<thead>
<tr>
<th>Type No</th>
<th>Joint configuration showing mode of fatigue cracking and stress σ considered</th>
<th>Description of joint</th>
<th>Steel $\Delta\sigma_R$</th>
<th>Al $\Delta\sigma_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Rolled or extruded plates and sections as well as seamless pipes, no surface or rolling defects</td>
<td>160 ($m_0 = 5$)</td>
<td>71 ($m_0 = 5$)</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>Plate edge sheared or machined cut by any thermal process with surface free of cracks and notches, corners broken or rounded. Stress increase due to geometry of cut-outs to be considered(^1).</td>
<td>140 ($m_0 = 4$)</td>
<td>40 ($m_0 = 4$)</td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>Plate edge not meeting the requirements of type E2, but free from cracks and severe notches. Machine cut or sheared edge: Manually thermally cut: Stress increase due to geometry of cut-outs to be considered.</td>
<td>125 ($m_0 = 3.5$)</td>
<td>36 ($m_0 = 3.5$)</td>
<td>100 ($m_0 = 3.5$)</td>
</tr>
</tbody>
</table>

\(^1\) Stress concentrations caused by an opening to be considered as follows:

\[
\Delta\sigma_{\text{max}} = K_t \cdot \Delta\sigma_N
\]

K_t = Notch factor according to Section 3, J.

\[
\Delta\sigma_{\text{max}} = \text{Nominal stress range related to net section}
\]

Alternatively direct determination of $\Delta\sigma_{\text{max}}$ from FE-calculation, especially in case of hatch openings or multiple arrangement of openings.

Partly based on Recommendations on Fatigue of Welded Components, reproduced from IIW document XIII-2151-07 / XV-1254-07, by kind permission of the International Institute of Welding.
Table 20.4 Various intersections

Joint configuration	Loads	Description of joint	Detail category	Δσ\text{fr}
	Location being at risk for cracks	Non-watertight intersection without heel stiffener. For predominant longitudinal load only.	80	80
		Watertight intersection without heel stiffener (without cyclic load on the transverse member) For predominant longitudinal load only.	71	71
		With heel stiffener direct \(t \leq 150 \) connection \(t > 150 \) overlapping direct \(t \leq 150 \) connection \(t > 150 \)	45	56
		With heel stiffener and integrated bracket	45	56
		With heel stiffener and integrated bracket and with backing bracket direct connection overlapping connection	50	63
		With heel stiffener but considering the load transferred to the stiffener crack initiation at weld toe crack initiation at weld root stress increase due to eccentricity and shape cut out has to be observed	80	71

1) Additional stresses due to asymmetric sections have to be observed, see Section 3, L.
2) To be increased by one category, when longitudinal loads only.
| Structure or equipment detail | Description of structure or equipment detail | Type No. | Joint configuration showing mode of fatigue cracking and stress σ considered | Description of joint | Detail category $\Delta\sigma_R$
Steel |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstiffened flange to web joint, to be assessed according to type D1, D2 or D3, depending on the type of joint. The stress in the web is calculated using the force F_g in the flange as follows: $\sigma = \frac{F_g}{r \cdot t}$</td>
<td>Cruciform or tee-joint K-butt welds with full penetration or with defined incomplete root penetration according to Section 19, Fig. 19.9. cruciform joint tee-joint</td>
<td>D1</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint at stiffened knuckle of a flange, to be assessed according to type D1, D2 or D3, depending on the type of joint. The stress in the stiffener at the knuckle can normally be calculated as follows: $\sigma = \sigma_0 \frac{t_r}{t_b} 2 \sin \alpha$</td>
<td>Cruciform or tee-joint with transverse fillet weld, toe failure (root failure particularly for throat thickness $a < 0.7 \cdot t$, see joint type D3) cruciform joint tee-joint</td>
<td>D2</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holder welded in way of an opening and arranged parallel to the edge of the opening. Not valid for hatch corner.</td>
<td>Welded metal in transverse load-carrying fillet weld at cruciform or tee - joint, root failure (based on stress range in weld throat). See also joint type No. D2</td>
<td>D3</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 20.5 Examples of details

Section 20 - Fatigue Strength

BKI - Rules for Hull - 2014
Table 20.5 Examples of details (continued)

<table>
<thead>
<tr>
<th>Detail category</th>
<th>Δσ_{ik}</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>63</td>
</tr>
<tr>
<td>Description of joint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ≤ t_d < 0.8 t</td>
<td>0 ≤ t_d < 0.8 t</td>
<td>0 ≤ t_d < 0.8 t</td>
</tr>
<tr>
<td>0.8 t ≤ t_d < 1.5 t</td>
<td>0.8 t ≤ t_d < 1.5 t</td>
<td>0.8 t ≤ t_d < 1.5 t</td>
</tr>
<tr>
<td>t_d > 1.5 t</td>
<td>t_d > 1.5 t</td>
<td>t_d > 1.5 t</td>
</tr>
<tr>
<td>150 < d < 300 mm</td>
<td>d = diameter</td>
<td>Partial penetration butt weld: section stress is related to the weld throat sectional area, weld overfills not to be taken into account</td>
</tr>
<tr>
<td>Transverse stiffener with fillet welds (applicable for short and long stiffeners).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type No.</th>
<th>C9</th>
<th>C9</th>
<th>A7</th>
<th>C7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of structure or equipment detail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circular doubler plate with max. 150 mm diameter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain plugs according to DIN 87721-1 (diameter about 190 mm).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment corresponding to doubler plate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain plugs with partial penetration butt weld.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The detail category is also valid for not fully circumferential welded holders.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For stiffeners loaded in bending Δσ_{ik} to be downgraded by one category.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure: Joint configuration showing mode of fatigue cracking and stress considered.
Section 21

Hull Outfit

A. Partition Bulkheads

1. General
Spaces, which are to be accessible for the service of the ship, hold spaces and accommodation spaces are to be gastight against each other.

2. Partition bulkheads between engine and boiler rooms

2.1 General

2.1.1 Boiler rooms generally are to be separated from adjacent engine rooms by bulkheads. Unless these bulkheads are watertight or tank bulkheads according to Section 11 or 12, the scantlings according to 2.2 are sufficient.

2.1.2 The bilges are to be separated from each other in such a way that no oil can pass from the boiler room bilge to the engine room bilge. Bulkhead openings are to have hinged doors.

2.1.3 Where a close connection between engine and boiler room is advantageous in respect of supervision and safety, complete bulkheads may be dispensed with, provided the conditions given in Rules for Machinery Installations, Volume III, are complied with.

2.2 Scantlings

2.2.1 The thickness of watertight parts of the partition bulkheads is not to be less than 6,0 mm. The thickness or the remaining parts may be 5 mm.

2.2.2 Platforms and decks below the boilers are to be made watertight; they are to be not less than 6,0 mm in thickness, and are to be well supported.

2.2.3 Stiffeners spaced 900 mm apart are to be fitted. The section modulus of the stiffeners is not to be less than:

\[W = 12 \cdot \ell \] \[[\text{cm}^3]\]

\(\ell \) = unsupported span of stiffener [m].

Where the stiffener spacing deviates from 900 mm, the section modulus is to be corrected in direct proportion.

B. Ceiling

1. Bottom ceiling

1.1 Where in the holds of general cargo ships a tight bottom ceiling is to be fitted from board to board, the thickness of a wooden ceiling shall not be less than 60 mm.

1.2 On single bottoms ceilings are to be removable for inspection of bottom plating at any time.

1.3 Ceilings on double bottoms are to be laid on battens not less than 12,5 mm thick providing a clear space for drainage of water or leakage oil. The ceiling may be laid directly on the inner bottom plating, if embedded in preservation and sealing compound.

1.4 It is recommended to fit double ceilings under the hatchways.

1.5 The manholes are to be protected by a steel coaming welded around each manhole, fitted with a cover of wood or steel, or by other suitable means.
2. Side ceiling, ceiling at tank bulkheads

2.1 In cargo holds of ordinary dry cargo ships, side ceiling is to be fitted in general. The side ceiling may be omitted if agreed by the Owner. The side ceilings shall extend from the upper turn of bilge or from tweendeck up to the lower edge of deck beam brackets. The clear distance between adjacent wooden battens shall not exceed 250-300 mm. The thickness shall, in general, not to be less than 50 mm.

2.2 Where tanks are intended to carry liquids at temperatures exceeding 40°C, their boundaries facing the cargo hold shall be fitted with a ceiling. At vertical walls, sparred ceilings are sufficient except in holds intended to carry grain. The ceiling may be dispensed with only with Owners' consent.

C. Side Scuttles, Windows and Skylights

1. General

1.1 Side scuttles and windows, together with their glasses, deadlights and storm covers, if fitted, shall be of an approved design and substantial construction. Non-metallic frames are not acceptable.

1.2 Side scuttles are defined as being round or oval openings with an area not exceeding 0,16 m². Round or oval openings having areas exceeding 0,16 m² shall be treated as windows.

1.3 Windows are defined as being rectangular openings generally, having a radius at each corner relative to the window size and round or oval openings with an area exceeding 0,16 m².

1.4 Side scuttles to the following spaces shall be fitted with hinged inside deadlights:
 - spaces below freeboard deck
 - spaces within the first tier of enclosed superstructures
 - first tier deckhouses on the freeboard deck protecting openings leading below or considered buoyant in stability calculations

Deadlights shall be capable of being closed and secured watertight if fitted below the freeboard deck and weathertight if fitted above.

1.5 Side scuttles shall not be fitted in such a position that their sills are below a line drawn parallel to the freeboard deck at side and having its lowest point 2.5% of the breadth (B), or 500 mm, whichever is the greatest distance, above the Summer Load Line (or Timber Summer Load Line if assigned), see Fig. 21.1.

1.6 If the required damage stability calculations indicate that the side scuttles would become immersed at any intermediate stage of flooding or the final equilibrium waterline, they shall be of the non-opening type.

1.7 Windows shall not be fitted in the following locations:
 - below the freeboard deck
 - in the first tier end bulkheads or sides of enclosed superstructures
 - in first tier deckhouses that are considered buoyant in the stability calculations

1.8 Side scuttles and windows at the side shell in the second tier shall be provided with hinged inside deadlights capable of being closed and secured weathertight if the superstructure protects direct access to an opening leading below or is considered buoyant in the stability calculations.

1.9 Side scuttles and windows in side bulkheads set inboard from the side shell in the second tier which protect direct access below to spaces listed in 1.4 shall be provided with either hinged inside deadlights or, where they are accessible, permanently attached external storm covers which are capable of being closed and secured weathertight.

1) Deadlights are fitted to the inside of windows and side scuttles, while storm covers are fitted to the outside of windows, where accessible, and may be hinged or portable.
1.10 Cabin bulkheads and doors in the second tier and above separating side scuttles and windows from a direct access leading below or the second tier considered buoyant in the stability calculations may be accepted in place of deadlights or storm covers fitted to the side scuttles and windows.

1.11 Deckhouses situated on a raised quarter deck or on the deck of a superstructure of less than standard height may be regarded as being in the second tier as far as the requirements for deadlights are concerned, provided that the height of the raised quarter deck or superstructure is equal to or greater than the standard quarter deck height.

1.12 Fixed or opening skylights shall have a glass thickness appropriate to their size and position as required for side scuttles and windows. Skylight glasses in any position shall be protected from mechanical damage and, where fitted in position 1 or 2, shall be provided with permanently attached deadlights or storm covers.

1.13 Additional requirements for passenger vessels given in Section 29 have to be observed.

1.14 Additional requirements for oil tankers given in Section 24 have to be observed.

2. Design Load

2.1 The design load shall be in accordance with Section 4 and Section 16.

2.2 For ships with a length L_c equal to or greater than 100 m, loads in accordance with ISO 5779 and 5780 standard have to be calculated additionally. The greater value has to be considered up to the third tier.

2.3 Deviations and special cases are subject to separate approval.

3. Frames

3.1 The design has to be in accordance with ISO Standard 1751, 3903 and 21005 or any other recognised, equivalent National or International standard.

3.2 Variations from respective standards may require additional proof of sufficient strength by direct calculation or tests. This is to be observed for bridge windows in exposed areas (e.g. within forward quarter of ships length) in each case.

4. Glass panes

4.1 Glass panes have to be made of thermally toughened safety glass (TSG), or laminated safety glass made of TSG. The ISO standards 614, 1095 and 3254 are to be observed.

4.2 The glass thickness for windows and side scuttles has to be determined in accordance with the respective ISO standards 1095 and 3254 or any other equivalent national or international standard, considering the design loads given in 2. For sizes deviating from the standards, the formulas given in ISO 3903 may be used.

Fig.21.1 Arrangement of side scuttles
4.3 Heated glass panes have to be in accordance with ISO 3434.

4.4 An equivalent thickness (t_e) of laminated toughened safety glass is to be determined from the following formula:

$$t_e = \sqrt{t_1^2 + t_2^2 + \ldots + t_n^2}$$

5. Tests

Windows and side scuttles have to be tested in accordance with the respective ISO standards 1751 and 3903.

D. Scuppers, Sanitary Discharges and Freeing Ports

1. Scuppers and sanitary discharges

1.1 Scuppers sufficient in number and size to provide effective drainage of water are to be fitted in the weather deck and in the freeboard deck within weathertight closed superstructures and deckhouses. Cargo decks and decks within closed superstructures are to be drained to the bilge. Scuppers from superstructures and deckhouses which are not closed weathertight are also to be led outside.

1.2 Scuppers draining spaces below the summer load line, are to be connected to pipes, which are led to the bilges and are to be well protected.

1.3 Where scupper pipes are led outside from spaces below the freeboard deck and from weathertight closed superstructures and deckhouses, they are to be fitted with non-return valves of automatic type, which can be operated from a position always accessible and above the freeboard deck. Means showing whether the valves are open or closed (positive means of closing) are to be provided at the control position.

1.4 Where the vertical distance from the summer load waterline to the inboard end of the discharge pipe exceeds 0,01 L, the discharge may have two automatic non-return valves without positive means of closing, provided that the inboard valve is always accessible for examination, i.e., the valve is to be situated above the tropical or subdivision load line.

1.5 Where the vertical distance mentioned under 1.4 exceeds 0,02 L, a single automatic non-return valve, without positive means of closing may be accepted. This relaxation is not valid for compartments below the freeboard deck of ships, for which a flooding calculation in the damaged condition is required.

1.6 Scuppers and discharge pipes originating at any level and penetrating the shell either more than 450 mm below the freeboard deck or less than 600 mm above the summer load water line are to be provided with a non-return valve at the shell. This valve, unless required by 1.3, may be omitted if a heavy gauge discharge pipe is fitted.

1.7 Requirements for seawater valves related to operating the power-plant shall be observed see Rules for Machinery Installations, Volume III, Section 11, I.3.

1.8 All valves including ship side valves required under 1.2 to 1.7 are to be of steel, bronze or other approved ductile material. Ordinary casts iron is not acceptable. Pipe lines are to be of steel or similar material (see Rules for Machinery Installations, Volume III, Section 11).

1.9 Scuppers and sanitary discharges should not be fitted above the lowest ballast waterline in way of lifeboat launching positions or means for preventing any discharge of water into the life boats are to be provided for. The location of scuppers and sanitary discharges is also to be taken into account when arranging gangways and pilot lifts.

2. Freeing ports

2.1 Where bulwarks on exposed portions of freeboard and/or superstructure decks form wells, ample provision is to be made for rapidly freeing the decks of water.

2.2 Except as provided in 2.3 to 2.5 the minimum freeing port area on each side of the ship for each well on the freeboard deck of a ship of type "B" is to be determined by the following formulae in cases where the sheer in way of the well is standard or greater than standard:

$$A = 0.7 + 0.035 \ell \quad [\text{m}^2] \quad \text{for} \quad \ell \leq 20 \text{ m}$$
The minimum area for each well on superstructure decks shall be one half of the area obtained by the formulae.

If the bulwark is more than 1,2 m in average height the required area is to be increased by 0,004 m² per metre of length of well for each 0,1 m difference in height.

If the bulwark is less than 0,9 m in average height, the required area may be decreased accordingly.

2.3 In ships with no sheer the area calculated according to 2.2 is to be increased by 50%. Where the sheer is less than the standard the percentage shall be obtained by linear interpolation.

2.4 In ships of type "B with reduced freeboard" the freeing port area on the exposed freeboard deck is to be obtained as follows:
- Where a combination of open rail and rigid bulwark is fitted, the length of the open rail is to be at least 50% of the length of the exposed part of the freeboard deck.
- Where a continuous bulwark is fitted, the freeing port area is to be 25% of the total area of the bulwarks, where the freeboard is reduced by not more than 60% of the difference between B and A tables. Where the freeboard is reduced by more than 60% the area is to be not less than 33% of the total area of the bulwarks.

2.5 Where a ship is fitted with a trunk on the freeboard deck, which will not be taken into account when calculating the freeboard, or where continuous or substantially continuous hatchway side coamings are fitted between detached superstructures the minimum area of the freeing port openings is to be determined from Table 21.1.

2.6 In ships having open superstructures, adequate freeing ports are to be provided which guarantee proper drainage.

2.7 Where trunks are taken into account when calculating the freeboard an open rail is to be fitted in way of the trunk for at least 50% of the length of the trunk.

As an equivalent, a continuous bulwark can be fitted with a continuous slot of 33% of the bulwark area.

2.8 The lower edges of the freeing ports shall be as near to the deck as practicable. Two thirds of the freeing port area required shall be provided in the half of the well nearest to the lowest point of the sheer curve.

Table 21.1 - Minimum area of freeing ports

<table>
<thead>
<tr>
<th>Breadth of hatchway or trunk in relation to B [%]</th>
<th>Area of freeing ports in relation to the total area of the bulwark [%] (^1) (each side separately)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 or less</td>
<td>20</td>
</tr>
<tr>
<td>75 or more</td>
<td>10</td>
</tr>
</tbody>
</table>

\(^1\) The area of freeing ports at intermediate breadth is to be obtained by linear interpolation

2.9 All such openings in the bulwarks shall be protected by rails or bars spaced approximately 230 millimeters apart. If shutters are fitted to freeing ports, ample clearance shall be provided to prevent jamming. Hinges shall have pins or bearings of non-corrodible material.

2.10 On containerships with continuous longitudinal hatch coamings, where water may accumulate between the transverse coamings, freeing ports are to be provided at both sides, with a minimum sectional area \(A_q\) of:

\[
A_q = 0.07 \cdot b_Q \quad [m^2]
\]

\[
b_Q = \text{breadth of transverse box girder} \quad [m]
\]

E. Air Pipes, Overflow Pipes, Sounding Pipes

1. Each tank is to be fitted with air pipes, overflow pipes and sounding pipes. The air pipes are in general to be led
to above the exposed deck. For the arrangement and scantlings of pipes see also Rules for Machinery Installations, Volume III, Section 11, R. The height from the deck of the point where the water may have access is to be at least 760 mm on the freeboard deck and 450 mm on a superstructure deck.

2. Suitable closing appliances are to be provided for air pipes, overflow pipes and sounding pipes, see also Rules for Machinery Installations, Volume III, Section 11, R. Where deck cargo is carried, the closing appliances are to be readily accessible at all times. In ships for which flooding calculations are to be made, the ends of the air pipes are to be above the damage waterline in the flooded condition. Where they immerse at intermediate stages of flooding, these conditions are to be examined separately.

3. Closely under the inner bottom or the tank top, holes are to be cut into floor plates and side girders as well as into beams, girders, etc., to give the free air access to the air pipes. Besides, all floor plates and side girders are to be provided with limbers to permit the water or oil to reach the pump suctions.

4. Sounding pipes are to be extended to directly above the tank bottom. The shell plating is to be strengthened by thicker plates or doubling plates under the sounding pipes.

5. Special strength requirements for fore deck fittings

5.1 General

The following strength requirements are to be observed to resist green sea forces for the items given below, located within the forward quarter length:

- air pipes, ventilator pipes and their closing devices

Exempted from these requirements are air pipes, ventilator pipes and their closing devices of the cargo venting systems and the inert gas systems of tankers.

5.2 Application

For ships that are contracted for construction on or after 1st January 2004 on the exposed deck over the forward 0,25 \(L \), applicable to:

- all ship types of seagoing service of length 80 m or more, where the height of the exposed deck in way of the item is less than 0,1 \(L \) or 22 m above the summer load waterline, whichever is the lesser

5.3 Applied loading for air pipes, ventilator pipes and their closing devices

5.3.1 The pressures \(p \) [kN/m\(^2\)] acting on air pipes, ventilator pipes and their closing devices may be calculated from:

\[
p = 0.5 \cdot \rho \cdot V^2 \cdot C_d \cdot C_s \cdot C_p \quad [\text{kN/m}^2]
\]

\(\rho \) = density of sea water (1,025 t/m\(^3\))
\(V \) = velocity of water over the fore deck-
- 13,5m/sec for \(d \leq 0.5 \leq d_i \)
- \[13.5 \sqrt{2 \left(1 - \frac{d}{d_i} \right)} \] m/sec for \(0.5 d \leq d \leq d_i \)

\(d \) = distance from summer load waterline to exposed deck
\(d_i \) = 0.1L or 22m whichever is the lesser
\(C_d \) = shape coefficient
- 0.5 for pipes
- 0.8 for an air pipe or ventilator head of cylindrical form with its axis in the vertical direction
- 1.3 for air pipes or ventilator heads

2) For ships contracted for construction prior to 1st January 2004 refer to IACS UR S27 para 2.2.
Cs = slamming coefficient
 = 3.2

Cp = protection coefficient
 = 0.7 for pipes and ventilator heads located immediately behind a breakwater or forecastle
 = 1.0 elsewhere and immediately behind a bulwark

5.3.2 Forces acting in the horizontal direction on the pipe and its closing device may be calculated from 5.3.1 using the largest projected area of each component.

5.4 Strength requirements for air pipes, ventilator pipes and their closing devices

5.4.1 Bending moments and stresses in air and ventilator pipes are to be calculated at critical positions:
 – at penetration pieces
 – at weld or flange connections
 – at toes of supporting brackets

Bending stresses in the net section are not to exceed \(0.8 \cdot \sigma_y\), where \(\sigma_y\) is the specified minimum yield stress or 0.2 % proof stress of the steel at room temperature. Irrespective of corrosion protection, a corrosion addition to the net section of 2.0 mm is then to be applied.

5.4.2 For standard air pipes of 760 mm height closed by heads of not more than the tabulated projected area, pipe thicknesses and bracket heights are specified in Table 21.2. Where brackets are required, three or more radial brackets are to be fitted.

Brackets are to be of gross thickness 8 mm or more, of minimum length 100 mm, and height according to Table 21.2 but need not extend over the joint flange for the head. Bracket toes at the deck are to be suitably supported.

5.4.3 For other configurations, loads, according to 5.3 are to be applied, and means of support determined in order to comply with the requirements of 5.4.1. Brackets, where fitted, are to be of suitable thickness and length according to their height. Pipe thickness is not to be taken less than as indicated in Rules for Machinery Installations, Volume III, Section 11, Table 11.20a and 11.20b.

5.4.4 For standard ventilators of 900 mm height closed by heads of not more than the tabulated projected area, pipe thicknesses and bracket heights are specified in Table 21.3. Brackets, where required are to be as specified in 5.4.2.

5.4.5 For ventilators of height greater than 900 mm, brackets or alternative means of support are to be specially considered. Pipe thickness is not to be taken less than as indicated in Rules for Machinery Installations, Volume III, Section 11, Table 11.20a and 11.20b.

5.4.6 All component part and connections of the air pipe or ventilator are to be capable of withstanding the loads defined in 5.3.

5.4.7 Rotating type mushroom ventilator heads are unsuitable for application in the areas defined in 5.2.

Table 21.2 - 760 mm air pipe thickness and bracket standards

<table>
<thead>
<tr>
<th>Nominal pipe diameter [mm]</th>
<th>Minimum fitted gross thickness [mm]</th>
<th>Maximum projected area of head [cm²]</th>
<th>Height [mm] of brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>65A</td>
<td>6.0</td>
<td>—</td>
<td>480</td>
</tr>
<tr>
<td>80A</td>
<td>6.3</td>
<td>—</td>
<td>460</td>
</tr>
<tr>
<td>100A</td>
<td>7.0</td>
<td>—</td>
<td>380</td>
</tr>
<tr>
<td>125A</td>
<td>7.8</td>
<td>—</td>
<td>300</td>
</tr>
<tr>
<td>150A</td>
<td>8.5</td>
<td>—</td>
<td>300</td>
</tr>
<tr>
<td>175A</td>
<td>8.5</td>
<td>—</td>
<td>300</td>
</tr>
<tr>
<td>200A</td>
<td>8.5 3(^\text{)})</td>
<td>1900</td>
<td>300 3(^\text{)})</td>
</tr>
<tr>
<td>250A</td>
<td>8.5 3(^\text{)})</td>
<td>2500</td>
<td>300 3(^\text{)})</td>
</tr>
<tr>
<td>300A</td>
<td>8.5 3(^\text{)})</td>
<td>3200</td>
<td>300 3(^\text{)})</td>
</tr>
<tr>
<td>350A</td>
<td>8.5 3(^\text{)})</td>
<td>3800</td>
<td>300 3(^\text{)})</td>
</tr>
</tbody>
</table>

BKI - Rules for Hull - 2014
Table 21.3 - 900 mm ventilator pipe thickness and bracket standards

<table>
<thead>
<tr>
<th>Nominal pipe diameter [mm]</th>
<th>Minimum fitted gross thickness [mm]</th>
<th>Maximum projected area of head [cm²]</th>
<th>Height of brackets [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>80A</td>
<td>6,3</td>
<td>—</td>
<td>460</td>
</tr>
<tr>
<td>100A</td>
<td>7,0</td>
<td>—</td>
<td>380</td>
</tr>
<tr>
<td>150A</td>
<td>8,5</td>
<td>550</td>
<td>—</td>
</tr>
<tr>
<td>200A</td>
<td>8,5</td>
<td>880</td>
<td>—</td>
</tr>
<tr>
<td>250A</td>
<td>8,5</td>
<td>1200</td>
<td>—</td>
</tr>
<tr>
<td>300A</td>
<td>8,5</td>
<td>2000</td>
<td>—</td>
</tr>
<tr>
<td>350A</td>
<td>8,5</td>
<td>2700</td>
<td>—</td>
</tr>
<tr>
<td>400A</td>
<td>8,5</td>
<td>3300</td>
<td>—</td>
</tr>
<tr>
<td>450A</td>
<td>8,5</td>
<td>4000</td>
<td>—</td>
</tr>
<tr>
<td>500A</td>
<td>8,5</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note:
For other ventilator heights, the relevant requirements of 5.4 are to be applied.

F. Ventilators

1. General

1.1 The height of the ventilator coamings on the exposed freeboard deck, quarter deck and on exposed superstructure decks in the range 0,25 L from F.P. is to be at least 900 mm.

1.2 On exposed superstructure decks abaft 0,25 L from F.P. the coaming height is not to be less than 760 mm.

1.3 Ventilators of cargo holds are not to have any connection with other spaces.

1.4 The thickness of the coaming plates is to be 7,5 mm where the clear opening sectional area of the ventilator coamings is 300 cm² or less, and 10 mm where the clear opening sectional area exceeds 1600 cm². Intermediate values are to be determined by direct interpolation. A thickness of 6 mm will generally be sufficient within not permanently closed superstructures.

1.5 The thickness of ventilator posts should be at least equal to the thickness of coaming as per 1.4.

1.6 The wall thickness of ventilator posts of a clear sectional area exceeding 1600 cm² is to be increased according to the expected loads.

1.7 Generally, the coamings and posts shall pass through the deck and shall be welded to the deck plating from above and below.

Where coamings or posts are welded onto the deck plating, fillet welds of \(a = 0,5 \cdot t_p \) subject to Section 19, B.3.3 should be adopted for welding inside and outside.

1.8 Coamings and posts particularly exposed to wash of sea are to be efficiently connected with the ship's structure.

1.9 Coamings of a height exceeding 900 mm are to be specially strengthened.

1.10 Where the thickness of the deck plating is less than 10 mm, a doubling plate or insert plate of 10 mm thickness
is to be fitted. Their side lengths are to be equal to twice the length or breadth of the coaming.

1.11 Where beams are pierced by ventilator coamings, carlings of adequate scantlings are to be fitted between the beams in order to maintain the strength of the deck.

2. Closing appliances

2.1 Inlet and exhaust openings of ventilation systems are to be provided with easily accessible closing appliances, which can be closed weathertight against wash of the sea. In ships of not more than 100 m in length, the closing appliances are to be permanently attached. In ships exceeding 100 m in length, they may be conveniently stowed near the openings to which they belong.

2.2 For ventilator posts which exceed 4.5 m in height above the freeboard deck or raised quarterdeck and above exposed superstructure decks forward of 0.25 \(L \) from F.P. and for ventilator posts exceeding 2.3 m in height above exposed superstructure decks abaft 0.25 \(L \) from F.P. closing appliances are required in special cases only.

2.3 For the case of fire draught-tight fire dampers are to be fitted.

3. For Special strength requirements for fore deck fittings, see E.5.

G. Stowage of Containers

1. General

1.1 All parts for container stowing and lashing equipment are to comply with the "Rules for the Stowage and Lashing of Containers Aboard Ships". All parts which are intended to be welded to the ship's hull, including hatchcovers, are to be made of materials complying with and tested in accordance with the Rules for Materials, Volume V.

1.2 All equipment on deck and in the holds essential for maintaining the safety of the ship and which are to be accessible at sea, e.g. fire fighting equipment, sounding pipes etc., should not be made inaccessible by containers or their stowing and lashing equipment.

1.3 For transmitting the forces from the container stowing and lashing equipment into the ship's hull adequate welding connections and local reinforcements of structural members are to be provided (see also 2. and 3.).

1.4 The hatchway coamings are to be strengthened in way of the connections of transverse and longitudinal struts of cell guide systems.

The cell guide systems are not permitted to be connected to projecting deck plating edges in way of the hatchways. Any flame cutting or welding should be avoided, particularly at the deck rounding in the hatchway corners.

1.5 Where inner bottom, decks, or hatchcovers are loaded with containers, adequate substructures, e.g. carlings, half height girders etc., are to be provided and the plate thickness is to be increased where required. For welded-in parts, see Section 19, B.2.

2. Load assumptions

2.1 The scantlings of the local ship structures and of the container substructures are to be determined on the basis of the Containers Stowage and Lashing Plans.

2.2 For determining scantlings the following design forces are to be used which are assumed to act simultaneously in the centre of gravity of a stack:

- ship's transverse (\(y \)-) direction:
 \[0.5 \cdot g \cdot G \ [kN] \]
- ship's vertical (\(z \)-) direction:
 \[(1 + a_v) \cdot g \cdot G \ [kN] \]

\(G \) = stack mass [t]
av = see Section 4, C.1.1.

3. Permissible stresses

3.1 For hatchway covers in pos. 1 and 2 loaded with containers, the permissible stresses according to Section 17, C.2. are to be observed.

3.2 The stresses in local ship structures and in substructure for containers as well as for cell guide systems and lashing devices in the hatch covers of cargo decks are not to exceed the following values:

\[
\sigma_b = \frac{R_{sh}}{1.5} \quad [\text{N/mm}^2]
\]

\[
\tau = \frac{R_{sh}}{2.3} \quad [\text{N/mm}^2]
\]

\[
\sigma_c = \sqrt{\sigma_b^2 + 3\tau^2} \leq \frac{R_{sh}}{1.3} \quad [\text{N/mm}^2]
\]

\(R_{sh} \) = minimum nominal upper yield point of the material.

3.3 For dimensioning the double bottom in case of single point loads due to 20'- or 40'-containers, see Section 8, B.8.2.

3.4 Where other structural members of the hull, e.g. frames, deck beams, bulkheads, hatchway coamings, bulwark stays etc. are subjected to loads from containers, cell guide systems and container lashing devices, these members are to be strengthened wherever necessary so that the actual stresses will not exceed those upon which the formulae in the respective Sections are based.

H. Lashing Arrangements

Lashing eyes and holes are to be arranged in such a way as to not unduly weaken the structural members of the hull. In particular where lashings are attached to frames, they are to be so arranged that the bending moment in the frames is not unduly increased. Where necessary, the frame is to be strengthened.

J. Car Decks

1. General

1.1 These Rules apply to movable as well as to removable car decks not forming part of the ship's structure.

1.2 The following information should be included in the plans to be submitted for approval:

- Scantlings of the car decks
- Masses of the car decks
- Number and masses of cars intended to be stowed on the decks
- Wheel loads and distance of wheels
- Connection of the car decks to the hull structure
- Moving and lifting gear of the car decks.

1.3 Car decks in accordance with these requirements may be made of hull structural steel or of the following materials:

- Structural steel R St 37-2 (Fe 360 B) and St 52-3 (Fe 510 D1)
- Seawater resisting aluminium alloys

2. Design loads

2.1 For determining the scantlings of remaining component parts of the decks, the following loads are to be used:
- Uniformly distributed load resulting from the mass of the deck and maximum number of cars to be carried. This load is not to be taken less than 2,5 [kN/m²].
- Wheel load P

Where all wheels of one axle are standing on a deck girder or a deck beam, the axle load is to be evenly distributed on all wheels.

Where not all of the wheels of one axle are standing on a deck girder or a deck beam, the following wheel loads are to be used:

\[P = 0,5 \times \text{axle load for 2 wheels per axle} \]
\[= 0,3 \times \text{axle load for 4 wheels per axle} \]
\[= 0,2 \times \text{axle load for 6 wheels per axle}. \]

Where no data is available, P is to be taken as 25 [kN].

2.2 For determining the scantlings of the suspensions, the increased wheel load in case of four and six wheels per axle as per 2.1 need not be considered.

3. Plating

3.1 The thickness of the plating is to be determined according to the formulae as per Section 7, B.2. Where aluminium alloy is used, the thickness is to be determined as per Section 2, D.1.

3.2 The thickness of plywood is to be determined taking into account a safety factor of 6 against the minimum ultimate strength of the material. Where plywood plates, supported on two sides only, are subjected to single loads, 1,45 times the unsupported span may be taken as effective width of the plating.

4. Permissible stresses

4.1 In steel stiffeners and girders as well as in the steel structural elements of the suspensions, subjected to loads as per 2. including the acceleration factor \(a_v \) according to Section 4, C.1.1 the following permissible stresses are to be observed:

Normal and bending stresses (tension and compression):

\[\sigma \leq \frac{140}{k} \quad \text{[N/mm}^2\text{]} \]

Sheer stresses:

\[\tau \leq \frac{90}{k} \quad \text{[N/mm}^2\text{]} \]

Combined stresses:

\[\sigma_v = \sqrt{\sigma^2 + 3 \tau^2} \leq \frac{180}{k} \quad \text{[N/mm}^2\text{]} \]

\(k \) = material factor according to Section 2, B.2.
- 0,72 \(\text{for Fe 510 D1 (St 52-3)} \)
- 1,0 \(\text{for Fe 360 B (R St 37-2)} \)

4.2 Where aluminium alloys are used, the permissible stresses may be derived from multiplying the permissible stresses specified for ordinary hull structural steel by the factor \(1/k_{Al} \) (\(k_{Al} \) = material factor for aluminium according to Section 2, D.1.).

5. Permissible deflection

5.1 The deflection of girders subjected to loads stipulated under 2. is not to exceed:

\[f = \frac{\ell}{200} \]

\(\ell \) = unsupported span of girder.

5.2 An adequate safety distance should be maintained between the girders of a loaded deck and the top of car stowed on the deck below.
6. **Buckling**
The buckling strength of girders is to be proved according to Section 3, F., if required.

K. **Life Saving Appliances**

1. It is assumed that for the arrangement and operation of life boats and other life saving appliances the regulations of **SOLAS 74** or those of the competent Authority are complied with.

2. The design appraisal and testing of life boats with their launching appliances and of other life saving appliances are not part of Classification.

However, approval of the hull structure in way of the launching appliances taking into account the forces from the above appliances is part of classification.

Part of Classification also is the survey of the life saving appliances and their launching appliances with regard to their proper condition and functioning within the scope of the class renewal surveys.

L. **Signal and Radar Masts**

1. **General**

 1.1 Drawings of masts, mast substructures and hull connections are to be submitted for approval.

 1.2 Loose component parts are to comply with the “Regulations for the Construction and Survey of Lifting Appliances”. They are to be tested by **BKI**.

 1.3 Other masts than covered by 2. and 3. as well as special designs, shall as regards dimensions and construction in each case be individually agreed with BKI.

2. **Single tubular masts**

The following requirements apply to tubular or equivalent rectangular sections made of steel with an ultimate tensile strength of 400 N/mm², which are designed to carry only signals (navigation lanterns, flag and day signals).

2.1 **Stayed masts**

 2.1.1 Stayed masts may be constructed as simply supported masts (rocker masts) or may be supported by one or more decks (constrained masts).

 2.1.2 The diameter of stayed steel masts in the uppermost housing is to be at least 20 mm for each 1 m length of hounding. The length of the mast top above the hounds is not to exceed $1/3 \ell_w$ (ℓ_w denotes the hounding [m]).

 2.1.3 Mast according to 2.1.2 may be gradually tapered towards the hounds to 75% of the diameter at the uppermost housing. The plate thickness is not to be less than $1/70$ of the diameter or at least 4 mm, see 4.1.

 2.1.4 Wire ropes for shrouds are to be thickly galvanized. It is recommended to use wire ropes composed of a minimum number of thick wires, as for instance a rope construction 6 x7 with a tensile breaking strength of 1570 N/mm².

 2.1.5 Where masts are stayed forward and aft by one shroud on each side of the ship, steel wire ropes are to be used with a tensile breaking strength of 1570 N/mm² according to Table 21.4.

<table>
<thead>
<tr>
<th>Table 21.4 - Rope and shackles of stayed steel masts</th>
</tr>
</thead>
<tbody>
<tr>
<td>h [m]</td>
</tr>
<tr>
<td>Rope diameter [mm]</td>
</tr>
<tr>
<td>Nominal size of shackle, rigging screw, rope socket</td>
</tr>
</tbody>
</table>

$h = \text{height of hound over the hauling of the shrouds}$

BKI - Rules for Hull - 2014
2.1.6 Where steel wire ropes according to Table 21.2 are used, the following conditions apply:

\[
\begin{align*}
 b & \geq 0.3 \, h \\
0.15 \, h & \leq a \leq b
\end{align*}
\]

- \(a \) = the distance of the hauling points of the shrouds from the transverse section through the hound.
- \(b \) = the distance of the hauling points of the shrouds from the longitudinal section through the hound.

Alternative arrangements of staying are to be of equivalent stiffness

2.2 Unstayed masts

2.2.1 Unstayed masts may be completely constrained in the uppermost deck or be supported by two or more decks. (In general, the fastenings of masts to the hull of a ship should extend over at least one deck height).

2.2.2 The scantlings for unstayed steel masts are given in the Table 21.5

<table>
<thead>
<tr>
<th>Length of mast (\ell_m) [m]</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dxt [mm]</td>
<td>160 x 4</td>
<td>220 x 4</td>
<td>290 x 4,5</td>
<td>360 x 5,5</td>
<td>430 x 6,5</td>
</tr>
</tbody>
</table>

- \(\ell_m \) = length of mast from uppermost support to the top
- \(D \) = diameter of mast at uppermost support
- \(t \) = plate thickness of mast

2.2.3 The diameter of masts may be gradually tapered to \(D/2 \) at the height of 0.75 \(\ell_m \).

3. Box girder and frame work masts

3.1 For dimensioning the dead loads, acceleration forces and wind loads are to be considered.

3.2 Where necessary additional loads e.g. loads caused by the sea fastening of crane booms or tension wires are also to be considered.

3.3 The design loads for 3.1 and 3.2 as well as the allowable stresses can be taken from the "Regulations for the Construction and Survey of Lifting Appliances."

3.4 Single tubular masts mounted on the top may be dimensioned according to 2.

3.5 In case of thin walled boxgirder masts stiffeners and additional buckling stiffeners may be necessary.

4. Structural details

4.1 Steel masts closed all-round shall have a wall thickness of at least 4 mm. For masts not closed all-round the minimum wall thickness is 6 mm. For masts used as funnels a corrosion addition of at least 1 mm is required.

4.2 The ship’s side foundations are to be dimensioned in accordance with the acting forces.

4.3 Doubling plates at mast feet are permissible only for the transmission of compressive forces since they are generally not suitable for the transmission of tensile forces or bending moments.

4.4 In case of tubular constructions all welded fastenings and connections shall be of full penetration weld type.

4.5 If necessary, slim tubes are to be additionally supported in order to avoid vibrations.

4.6 The dimensioning normally does not require a calculation of vibrations. However, in case of undue vibrations occurring during the ship’s trial a respective calculation will be required.

4.7 For determining scantlings of masts made from aluminium or austenitic steel, the requirements given in Section 2, D. and E. apply.
4.8 At masts solid steel ladders have to be fixed at least up to 1,50 m below top, if they have to be climbed for operational purposes. Above them, suitable handgrips are necessary.

4.9 If possible from the construction point of view, ladders should be at least 0,30 m wide. The distance between the rungs shall be 0,30 m. The horizontal distance of the rung centre from fixed parts shall not be less than 0,15 m. The rungs shall be aligned and be made of square steel bars 20/20 edge up.

4.10 Platforms on masts which have to be used for operational reasons, shall have a rail of at least 0,90 m in height with one intermediate bar. Safe access from the mast ladders to the platform is to be provided.

4.11 On masts additional devices have to be installed consisting of foot, back, and hand rings enabling safe work in places of servicing and maintenance.

M. Loading and Lifting Gear

1. The design appraisal and testing of loading and lifting gear on ships are not part of Classification.

2. However approval of the hull structure in way of loading and lifting gear taking into account the forces from the gear is part of Classification.

Note

Where BKI is entrusted with the judgement of loading and lifting gears, Society’s Regulations for the Construction and Survey of Lifting Appliances are to be applied.

N. Access to Cargo Area of Oil Tankers and Bulk Carriers

Special measures are to be taken for safe access to and working in spaces in and forward of the cargo area of tankers and bulk carriers for the purpose of maintenance and carrying out surveys.

Note

This requirement is considered to be complied with where the SOLAS, Chapter II-1, Reg. 3-6, is adhered to Abstract of this Regulation:

1. Safe access to cargo holds, cargo tanks, ballast tanks and other spaces

1.1 Safe access to cargo holds, cofferdams, ballast tanks, cargo tanks and other spaces in the cargo area shall be direct from the open deck and such as to ensure their complete inspection. Safe access to double bottom spaces may be from a pump-room, deep cofferdam, pipe tunnel, cargo hold, double hull space or similar compartment not intended for the carriage of oil or hazardous cargoes.

1.2 Tanks, and subdivisions of tanks, having a length of 35 m or more, shall be fitted with at least two access hatchways and ladders, as far apart as practicable. Tanks less than 35 m in length shall be served by at least one access hatchway and ladder. When a tank is subdivided by one or more swash bulkheads or similar obstructions which do not allow ready means of access to the other parts of the tank, at least two hatchways and ladders shall be fitted.

1.3 Each cargo hold shall be provided with at least two means of access as far apart as practicable. In general, these accesses should be arranged diagonally, for example one access near the forward bulkhead on the port side, the other one near the aft bulkhead on the starboard side.

1.4 Where a permanent means of access may be susceptible to damage during normal cargo loading and unloading operations or where it is impracticable to fit permanent means of access, the Administration may allow, in lieu thereof, the provision of movable or portable means of access, as specified in the Technical provisions, provided that the means of attaching, rigging, suspending or supporting the portable means of access forms a permanent part of the ship’s structure. All portable equipment shall be capable of being readily erected or deployed by ship’s personnel.

2. Definitions
2.1 **Rung**
Rung means the step of a vertical ladder or step on the vertical surface.

2.2 **Tread**
Tread means the step of an inclined ladder or step for the vertical access opening.

2.3 **Flight of an inclined ladder**
Flight of an inclined ladder means the actual stringer length of an inclined ladder. For vertical ladders, it is the distance between the platforms.

2.4 **Stringer**
Stringer means:
– the frame of a ladder; or
– the stiffened horizontal plating structure fitted on the side shell, transverse bulkheads and/or longitudinal bulkheads in the space. For the purpose of ballast tanks of less than 5 m width forming double side spaces, the horizontal plating structure is credited as a stringer and a longitudinal permanent means of access, if it provides a continuous passage of 600 mm or more in width past frames or stiffeners on the side shell or longitudinal bulkhead. Openings in stringer plating utilized as permanent means of access shall be arranged with guard rails or grid covers to provide safe passage on the stringer or safe access to each transverse web.

2.5 **Vertical ladder**
Vertical ladder means a ladder of which the inclined angle is 70° and over up to 90°. A vertical ladder shall not be skewed by more than 2°.

2.6 **Overhead obstructions**
Overhead obstructions mean the deck or stringer structure including stiffeners above the means of access.

2.7 **Distance below deck head**
Distance below deck head means the distance below the plating.

2.8 **Cross deck**
Cross deck means the transverse area of the main deck which is located inboard and between hatch coamings.

3. **Technical provisions**

3.1 Structural members subject to the close-up inspections and thickness measurements of the ship's structure, except those in double bottom spaces, shall be provided with a permanent means of access to the extent as specified in Table 21.6 and Table 21.7, as applicable. For oil tankers and wing ballast tanks of ore carriers, approved alternative methods may be used in combination with the fitted permanent means of access, provided that the structure allows for its safe and effective use.

3.2 Permanent means of access should as far as possible be integral to the structure of the ships, thus ensuring that they are robust and at the same time contributing to the overall strength of the structure of the ship.

3.3 Elevated passageways forming sections of a permanent means of access, where fitted, shall have a minimum clear width of 600 mm, except for going around vertical webs where the minimum clear width may be reduced to 450 mm, and have guard rails over the open side of their entire length. Sloping structures providing part of the access shall be of a non-skid construction. Guard rails shall be 1,000 mm in height and consist of a rail and an intermediate bar 500 mm in height and of substantial construction. Stanchions shall be not more than 3 m apart.

3.4 Access to permanent means of access and vertical openings from the ship's bottom shall be provided by means of easily accessible passageways, ladders or treads. Treads shall be provided with lateral support for the foot. Where the rungs of ladders are fitted against a vertical surface, the distance from the centre of the rungs to the surface shall be at least 150 mm. Where vertical manholes are fitted higher than 600 mm above the walking level, access shall be facilitated by means of treads and hand grips with platform landings on both sides.

3.5 Permanent inclined ladders shall be inclined at an angle of less than 70°. There shall be no obstructions within
750 mm of the face of the inclined ladder, except that in way of an opening this clearance may be reduced to 600 mm. Resting platforms of adequate dimensions shall be provided, normally at a maximum of 6 m vertical height. Ladders and handrails shall be constructed of steel or equivalent material of adequate strength and stiffness and securely attached to the structure by stays. The method of support and length of stay shall be such that vibration is reduced to a practical minimum. In cargo holds, ladders shall be designed and arranged so that cargo handling difficulties are not increased and the risk of damage from cargo handling gear is minimized.

Table 21.6 Means of access for ballast and cargo tanks of oil tankers

<table>
<thead>
<tr>
<th>Water ballast tanks except those specified in the right column, and cargo oil tanks</th>
<th>Water ballast wing tanks of less than 5 m width forming double side spaces and their bilge hopper sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to the underdeck and vertical structure</td>
<td>For double side spaces above the upper knuckle point of the bilge hopper sections, permanent means of access are to be provided in accordance with 1. to 3.:</td>
</tr>
<tr>
<td>1. continuous athwartship permanent access arranged at each transverse bulkhead on the stiffened surface, at a minimum of 1.6 m to a maximum of 3 m below the deck head;</td>
<td>1. where the vertical distance between horizontal uppermost stringer and deck head is 6 m or more, one continuous longitudinal permanent means of access shall be provided for the full length of the tank with a means to allow passing through transverse webs installed at a minimum of 1.6 m to a maximum of 3 m below the deck head with a vertical access ladder at each end of the tank;</td>
</tr>
<tr>
<td>2. at least one continuous longitudinal permanent means of access at each side of the tank. One of these accesses shall be at a minimum of 1.6 m to a maximum of 6 m below the deck head and the other shall be at a minimum of 1.6 m to a maximum of 3 m below the deck head;</td>
<td>2. continuous longitudinal permanent means of access, which are integrated in the structure, at a vertical distance not exceeding 6 m apart; and</td>
</tr>
<tr>
<td>3. access between the arrangements specified in 1. and 2. and from the main deck to either 1. or 2.;</td>
<td>3. plated stringers shall, as far as possible, be in alignment with horizontal girders of transverse bulkheads</td>
</tr>
<tr>
<td>4. continuous longitudinal permanent means of access which are integrated in the structural member on the stiffened surface of a longitudinal bulkhead, in alignment, where possible, with horizontal girders of transverse bulkheads are to be provided for access to the transverse webs unless permanent fittings are installed at the uppermost platform for use of alternative means, as defined in 3.9 for inspection at intermediate heights;</td>
<td></td>
</tr>
<tr>
<td>5. for ships having cross-ties which are 6 m or more above tank bottom, a transverse permanent means of access on the cross-ties providing inspection of the tie flaring brackets at both sides of the tank, with access from one of the longitudinal permanent means of access in 4.; and</td>
<td></td>
</tr>
<tr>
<td>6. alternative means as defined in 3.9 may be provided for small ships as an alternative to 4. for cargo oil tanks of which the height is less than 17 m.</td>
<td></td>
</tr>
</tbody>
</table>
Table 21.6 Means of access for ballast and cargo tanks of oil tankers (continued)

<table>
<thead>
<tr>
<th>Water ballast tanks except those specified in the right column, and cargo oil tanks</th>
<th>Water ballast wing tanks of less than 5 m width forming double side spaces and their bilge hopper sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to the underdeck and vertical structure</td>
<td>For bilge hopper sections of which the vertical distance from the tank bottom to the upper knuckle point is 6 m and over, one longitudinal permanent means of access shall be provided for the full length of the tank. It shall be accessible by vertical permanent means of access at each end of the tank.
Where the vertical distance is less than 6 m, alternative means as defined in 3.9 or portable means of access may be utilised in lieu of the permanent means of access. To facilitate the operation of the alternative means of access, in-line openings in horizontal stringers shall be provided. The openings shall be of an adequate diameter and shall have suitable protective railings.
The longitudinal continuous permanent means of access may be installed at a minimum 1.6 m to maximum 3 m from the top of the bilge hopper section. In this case, a platform extending the longitudinal continuous permanent means of access in way of the webframe may be used to access the identified structural critical areas.
Alternatively, the continuous longitudinal permanent means of access may be installed at a minimum of 1.2 m below the top of the clear opening of the web ring allowing a use of portable means of access to reach identified structural critical areas.</td>
</tr>
<tr>
<td>For tanks of which the height is less than 6 m, alternative means as defined in 3.9 or portable means may be utilized in lieu of the permanent means of access.</td>
<td>For bilge hopper sections of which the vertical distance from the tank bottom to the upper knuckle point is 6 m and over, one longitudinal permanent means of access shall be provided for the full length of the tank. It shall be accessible by vertical permanent means of access at each end of the tank. Where the vertical distance is less than 6 m, alternative means as defined in 3.9 or portable means of access may be utilised in lieu of the permanent means of access. To facilitate the operation of the alternative means of access, in-line openings in horizontal stringers shall be provided. The openings shall be of an adequate diameter and shall have suitable protective railings. The longitudinal continuous permanent means of access may be installed at a minimum 1.6 m to maximum 3 m from the top of the bilge hopper section. In this case, a platform extending the longitudinal continuous permanent means of access in way of the webframe may be used to access the identified structural critical areas. Alternatively, the continuous longitudinal permanent means of access may be installed at a minimum of 1.2 m below the top of the clear opening of the web ring allowing a use of portable means of access to reach identified structural critical areas.</td>
</tr>
<tr>
<td>Fore peak tanks</td>
<td>For fore peak tanks with a depth of 6 m or more at the centre line of the collision bulkhead, a suitable means of access shall be provided for access to critical areas such as the underdeck structure, stringers, collision bulkhead and side shell structure Stringers of less than 6 m in vertical distance from the deck head or a stringer immediately above are considered to provide suitable access in combination with portable means of access. In case the vertical distance between the deck head and stringers, stringers or the lowest stringer and the tank bottom is 6 m or more, alternative means of access as defined in 3.9 shall be provided.</td>
</tr>
</tbody>
</table>
Table 21.7 Means of access for bulk carriers

<table>
<thead>
<tr>
<th>Cargo holds</th>
<th>Ballast tanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to underdeck structure</td>
<td>Top side tanks</td>
</tr>
<tr>
<td>Permanent means of access shall be fitted to provide access to the overhead structure at both sides of the cross deck and in the vicinity of the centreline. Each means of access shall be accessible from the cargo hold access or directly from the main deck and installed at a minimum of 1.6 m to a maximum of 3 m below the deck. An athwartship permanent means of access fitted on the transverse bulkhead at a minimum 1.6 m to a maximum 3 m below the cross-deck head is accepted as equivalent.</td>
<td>For each topside tank of which the height is 6 m and over, one longitudinal continuous permanent means of access shall be provided along the side shell webs and installed at a minimum of 1.6 m to a maximum of 3 m below deck with a vertical access ladder in the vicinity of each access to that tank.</td>
</tr>
<tr>
<td>Access to the permanent means of access to overhead structure of the cross deck may also be via the upper stool.</td>
<td>If no access holes are provided through the transverse webs within 600 mm of the tank base and the web frame rings have a web height greater than 1 m in way of side shell and sloping plating, then step rungs/grab rails shall be provided to allow safe access over each transverse web frame ring.</td>
</tr>
<tr>
<td>Ships having transverse bulkheads with full upper stools with access from the main deck which allows monitoring of all framing and plates from inside do not require permanent means of access of the cross deck.</td>
<td>Three permanent means of access, fitted at the end bay and middle bay of each tank, shall be provided spanning from tank base up to the intersection of the sloping plate with the hatch side girder. The existing longitudinal structure, if fitted on the sloping plate in the space may be used as part of this means of access.</td>
</tr>
<tr>
<td>Alternatively, movable means of access may be utilized for access to the overhead structure of the cross deck if its vertical distance is 17 m or less above the tank top.</td>
<td>For topside tanks of which the height is less than 6 m, alternative means as defined in 3.9 or portable means may be utilized in lieu of the permanent means of access</td>
</tr>
<tr>
<td>Access to vertical structures</td>
<td>Bilge hopper tanks</td>
</tr>
<tr>
<td>Permanent means of vertical access shall be provided in all cargo holds and built into the structure to allow for an inspection of a minimum of 25 % of the total number of hold frames port and starboard equally distributed throughout the hold including at each end in way of transverse bulkheads. But in no circumstance shall this arrangement be less than 3 permanent means of vertical access fitted to each side (fore and aft ends of hold and mid-span). Permanent means of vertical access fitted between two adjacent hold frames is counted for an access for the inspection of both hold frames. A means of portable access may be used to gain access over the sloping plating of lower hopper ballast tanks.</td>
<td>For each bilge hopper tank of which the height is 6 m and over, one longitudinal continuous permanent means of access shall be provided along the side shell webs and installed at a minimum of 1.2 m below the top of the clear opening of the web ring with a vertical access ladder in the vicinity of each access to the tank.</td>
</tr>
<tr>
<td>In addition, portable or movable means of access shall be utilized for access to the remaining hold frames up to their upper brackets and transverse bulkheads.</td>
<td>An access ladder between the longitudinal continuous permanent means of access and the bottom of the space shall be provided at each end of the tank.</td>
</tr>
<tr>
<td>Alternatively, the longitudinal continuous permanent means of access can be located through the upper web plating above the clear opening of the web ring, at a minimum of 1.6 m below the deck head, when this arrangement facilitates more suitable inspection of identified structurally critical areas. An enlarged longitudinal frame can be used for the purpose of the walkway.</td>
<td></td>
</tr>
</tbody>
</table>
Table 21.7 Means of access for bulk carriers (continued)

<table>
<thead>
<tr>
<th>Cargo holds</th>
<th>Ballast tanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>The width of vertical ladders for access to hold frames shall be at least 300 mm, measured between stringers. A single vertical ladder over 6 m in length is acceptable for the inspection of the hold side frames in a single skin construction. For double-side skin construction no vertical ladders for the inspection of the cargo hold surfaces are required. Inspection of this structure should be provided from within the double hull space.</td>
<td>For double-side skin bulk carriers, the longitudinal continuous permanent means of access may be installed within 6 m from the knuckle point of the bilge, if used in combination with alternative methods to gain access to the knuckle point. If no access holes are provided through the transverse ring webs within 600 mm of the tank base and the web frame rings have a web height greater than 1 m in way of side shell and sloping plating, then step rungs/grab rails shall be provided to allow safe access over each transverse web frame ring. For bilge hopper tanks of which the height is less than 6 m, alternative means as defined in 3.9 or portable means may be utilized in lieu of the permanent means of access. Such means of access shall be demonstrated that they can be deployed and made readily available in the areas where needed.</td>
</tr>
</tbody>
</table>

3.6 The width of inclined ladders between stringers shall not be less than 400 mm. The treads shall be equally spaced at a distance apart, measured vertically, of between 200 mm and 300 mm. When steel is used, the treads shall be formed of two square bars of not less than 22 mm by 22 mm in section, fitted to form a horizontal step with the edges pointing upward. The treads shall be carried through the side stringers and attached thereto by double continuous welding. All inclined ladders shall be provided with handrails of substantial construction on both sides, fitted at a convenient distance above the treads.

3.7 For vertical ladders or spiral ladders, the width and construction should be in accordance with international or national standards accepted by the Administration.

3.8 No free-standing portable ladder shall be more than 5 m long.

3.9 Alternative means of access include, but are not limited to, such devices as:
- hydraulic arm fitted with a stable base
- wire lift platform
- staging
- rafting
- root arm or remotely operated vehicle (ROV)
- portable ladders more than 5 m long shall only be utilized if fitted with a mechanical device to secure the upper end of the ladder
other means of access, approved by and acceptable to the Administration

Means for safe operation and rigging of such equipment to and from and within the spaces shall be clearly described in the Ship Structure Access Manual.

3.10 For access through horizontal openings, hatches or manholes, the minimum clear opening shall not be less than 600 mm X 600 mm. When access to a cargo hold is arranged through the cargo hatch, the top of the ladder shall be placed as close as possible to the hatch coaming. Access hatch coamings having a height greater than 900 mm shall also have steps on the outside in conjunction with the ladder.

3.11 For access through vertical openings, or manholes, in swash bulkheads, floors, girders and web frames providing passage through the length and breadth of the space, the minimum opening shall be not less than 600 mm x 800 mm at a height of not more than 600 mm from the passage unless gratings or other foot holds are provided.

3.12 For oil tankers of less than 5,000 tonnes deadweight, the Administration may approve, in special circumstances, smaller dimensions for the openings referred to in 3.10 and 3.11, if the ability to traverse such openings or to remove an injured person can be proved to the satisfaction of the Administration.

3.13 For bulk carriers, access ladders to cargo holds and other spaces shall be:

3.13.1 Where the vertical distance between the upper surface of adjacent decks or between deck and the bottom of the cargo space is not more than 6 m, either a vertical ladder or an inclined ladder.

3.13.2 Where the vertical distance between the upper surface of adjacent decks or between deck and the bottom of the cargo space is more than 6 m, an inclined ladder or series of inclined ladders at one end of the cargo hold, except the uppermost 2,5 m of a cargo space measured clear of overhead obstructions and the lowest 6 m may have vertical ladders, provided that the vertical extent of the inclined ladder or ladders connecting the vertical ladders is not less than 2,5 m. The second means of access at the other end of the cargo hold may be formed of a series of staggered vertical ladders, which should comprise of one or more ladder linking platforms spaced not more than 6 m apart vertically and displaced to one side of the ladder. Adjacent sections of ladder should be laterally offset from each other by at least the width of the ladder. The uppermost entrance section of the ladder directly exposed to a cargo hold should be vertical for a distance of 2,5 m measured clear of overhead obstructions and connected to a ladder-linking platform.

3.13.3 A vertical ladder may be used as a means of access to topside tanks, where the vertical distance is 6 m or less between the deck and the longitudinal means of access in the tank or the stringer or the bottom of the space immediately below the entrance. The uppermost entrance section from deck of the vertical ladder of the tank should be vertical for a distance of 2,5 m measured clear of overhead obstructions and comprise a ladder linking platform, unless landing on the longitudinal means of access, the stringer or the bottom within the vertical distance, displaced to one side of a vertical ladder.

3.13.4 Unless allowed in 3.13.3 above, an inclined ladder or combination of ladders should be used for access to a tank or a space where the vertical distance is greater than 6 m between the deck and a stringer immediately below the entrance, between stringers, or between the deck or a stringer and the bottom of the space immediately below the entrance.

3.13.5 In case of 3.13.4 above, the uppermost entrance section from deck of the ladder should be vertical for a distance of 2,5 m clear of overhead obstructions and connected to a landing platform and continued with an inclined ladder. The flights of inclined ladders should not be more than 9 m in actual length and the vertical height should not normally be more than 6 m. The lowermost section of the ladders may be vertical for a distance of not less than 2,5 m.

3.13.6 In double-side skin spaces of less than 2,5 m width, the access to the space may be by means of vertical ladders that comprise of one or more ladder linking platforms spaced not more than 6 m apart vertically and displaced to one side of the ladder. Adjacent sections of ladder should be laterally offset from each other by at least the width of the ladder.

3.13.7 A spiral ladder is considered acceptable as an alternative for inclined ladders. In this regard, the uppermost 2,5 m can continue to be comprised of the spiral ladder and need not change over to vertical ladders.

3.14 The uppermost entrance section from deck of the vertical ladder providing access to a tank should be vertical for a distance of 2,5 m measured clear of overhead obstructions and comprise a ladder linking platform, displaced to one side of a vertical ladder. The vertical ladder can be between 1,6 m and 3 m below deck structure if it lands on a longitudinal or athwartship permanent means of access fitted within that range.
4. **Ship structure access manual**

4.1 A ship's means of access to carry out overall and close-up inspections and thickness measurements shall be described in a Ship structure access manual approved by the Administration, an updated copy of which shall be kept on board. The Ship structure access manual shall include the following for each space in the cargo area:

- plans showing the means of access to the space, with appropriate technical specifications and dimensions.
- plans showing the means of access within each space to enable an overall inspection to be carried out, with appropriate technical specifications and dimensions. The plans shall indicate from where each area in the space can be inspected.
- plans showing the means of access within the space to enable close-up inspections to be carried out, with appropriate technical specifications and dimensions. The plans shall indicate the positions of critical structural areas, whether the means of access is permanent or portable and from where each area can be inspected.
- instructions for inspecting and maintaining the structural strength of all means of access and means of attachment, taking into account any corrosive atmosphere that may be within the space
- instructions for safety guidance when rafting is used for close-up inspections and thickness measurements
- instructions for the rigging and use of any portable means of access in a safe manner
- an inventory of all portable means of access
- records of periodical inspections and maintenance of the ship's means of access

4.2 For the purpose of these regulations "critical structural areas" are locations which have been identified from calculations to require monitoring or from the service history of similar or sister ships to be sensitive to cracking, buckling, deformation or corrosion which would impair the structural integrity of the ship.

5. **Other Regulations and Recommendations**

O. **Guard - Rails**

1. Efficient guard-rails or bulwarks are to be fitted on all exposed parts of the freeboard and superstructure decks. The height is to be at least 1,0 m from the deck.

2. The height below the lowest course of the guard-rails is not to exceed 230 mm. The other courses are not to be spaced more than 380 mm apart.

3. In the case of ships with rounded gunwales the guard-rail supports are to be placed on the flat part of the deck.

4. Guard-rails are to be constructed in accordance with DIN 81702 standards. Equivalent constructions of sufficient strength and safety can be accepted.

5. Guard-rail stanchions are not to be welded to the shell plating.

P. **Access to Ships**

The design appraisal and testing of accesses to ships (accomodation ladders, gangways) are not part of Classification. However, approval of substructures in way of accomodation ladders and gangways is part of Classification.
This page intentionally left blank
Section 22 - Structural Fire Protection on Board Seagoing Ships

A. General

1. Application, submission of plans

1.1 These regulations apply to ships to be classed for unrestricted service. For ships classed for restricted service or ships which are intended to trade within specified limits as well as for fishing vessels, pontoons without propulsion, barges and dredgers exceptions from the requirements of this Section may be permitted.

1.2 The terms used in this Section correspond to the definitions as per Chapter II-2, Regulation 3 of SOLAS 74.

1.3 The term "Approved" relates to a material or construction, for which BKI has issued an Approval Certificate. A type approval can be issued on the basis of a successful standard fire test, which has been carried out by a neutral and recognized fire testing institute.

1.4 The fire safety design and arrangements may differ from the prescriptive regulations of this section, provided that the design and arrangements meet the fire safety objectives and functional requirements of Chapter II-2 of SOLAS 74\(^1\). Compliance of the alternative design and arrangements needs to be verified by an engineering analysis which consists of three steps

- Qualitative Design Review (QDR)
- Modelling/ Data Analysis (MDA)
- Quantitative Risk Analysis (QRA).

1.5 Documents to be submitted

The following drawings and documents are to be submitted, at least in triplicate\(^2\) for approval. BKI reserves its right to ask for supplementary copies, if deemed necessary.

- Fire division plan
- Insulation plan
- Joiner plan
- Ventilation and Air condition scheme
- Deck covering plan
- Door plan
- Window plan
- Fire control plan
- List of approved materials and equipment

Additional drawings for passenger ships

- Escape way plan incl. escape way calculation
- Evacuation analysis (only Ro-Ro passenger ships)
- Fire load calculation
- Safety sign scheme

1.6 Type "A", "B" and "C" class partitions, fire dampers, duct penetrations as well as the insulation materials, linings,

1) Reference is made to the "Guidelines on Alternative Design and Arrangements for Fire Safety" adopted by IMO by MSC/Circ.1002
2) For Indonesian flagship in quadruplicate (one for Indonesian government).
ceilings, surface materials and not readily ignitable deck coverings shall be of approved type.

1.7 For regulations on fire alarm systems and on fire extinguishing arrangements, see Rules for Machinery Installations, Volume III, Section 12.

1.8 IACS Unified Interpretations have to be observed and shall be complied with.

B. Regulations on Fire Protection for Passenger Ships carrying more than 36 Passengers

1. Materials

1.1 The hull, decks, structural bulkheads, superstructures and deckhouses are to be of steel or other equivalent materials (Aluminium alloy suitably insulated).

1.2 Components made from aluminium alloys require special treatment, with regard to the mechanical properties of the material in case of temperature increase. In principle, the following is to be observed:

1.2.1 The insulation of "A" or "B" class divisions shall be such that the temperature of the structural core does not rise more than 200 °C above the ambient temperature at any time during the applicable fire exposure to the standard fire test.

1.2.2 Special attention shall be given to the insulation of aluminium alloy components of columns, stanchions and other structural members required to support lifeboat and liferaft stowage, launching and embarkation areas, and "A" and "B" class divisions to ensure:

that for such members supporting lifeboat and liferaft areas and "A" class divisions, the temperature rise limitation specified in 1.2.1 shall apply at the end of one hour; and that for such members required to support "B" class divisions, the temperature rise limitation specified in 1.2.1 shall apply at the end of half an hour.

1.2.3 Crowns and casings of machinery spaces of category A shall be of steel construction and be insulated as required by Table 22.1 as appropriate. Openings therein, if any, shall be suitably arranged and protected to prevent the spread of fire.

2. Main vertical zones and horizontal zones

2.1 The hull, superstructures and deckhouses are to be subdivided into main vertical zones the average length and width of which on any deck is generally not to exceed 40 m.

Subdivision is to be effected by "A-60" class divisions. Steps and recesses shall be kept to a minimum. Where a category 4.3 [5], 4.3 [9] or 4.3 [10] space is on one side of the division or where fuel oil tanks are on both sides of the division the standard may be reduced to "A-0".

As far as practicable, the bulkheads forming the boundaries of the main vertical zones above the bulkhead deck shall be in line with watertight subdivision bulkheads situated immediately below the bulkhead deck. The length and width of main vertical zones may be extended to a maximum of 48 m in order to bring the ends of main vertical zones to coincide with subdivision watertight bulkheads or in order to accommodate a large public space extending for the whole length of the main vertical zone provided that the total area of the main vertical zone is not greater than 1600 m² on any deck. The length or width of a main vertical zone is the maximum distance between the furthestmost points of the bulkheads bounding it.

The divisions are to be extended from deck to deck and to the shell or other boundaries. At the edges insulating bridges are to be provided where required.

2.2 On ships designed for special purposes (automobile or railroad car ferries), where the provision of main vertical zone bulkheads would defeat the purpose for which the ship is intended, equivalent means for controlling and limiting a fire are to be provided and specifically approved. Service spaces and ship stores shall not be located on ro-ro decks unless protected in accordance with the applicable regulations.

3. Bulkheads within main vertical zones

3.1 All bulkheads which are not required to be "A" class divisions shall be at least "B" class or "C" class divisions as prescribed in Table 22.1. All such divisions may be faced with combustible materials.

3.2 All bulkheads required to be "B" class divisions shall extend from deck to deck and to the shell or other boundaries.
unless the continuous "B" class ceilings or linings fitted on both sides of the bulkheads are at least of the same fire resistance as the bulkhead, in which case the bulkheads may terminate at the continuous ceiling or lining.

4. **Fire integrity of bulkheads and decks**

4.1 In addition to complying with the specific provisions for fire integrity of bulkheads and decks mentioned elsewhere in this Section, the minimum fire integrity of all bulkheads and decks shall be as prescribed in Tables 22.1 to 22.2.

4.2 The following requirements shall govern application of the tables:

Table 22.1 shall apply to bulkheads and walls not bounding either main vertical zones or horizontal zones.

Table 22.2 shall apply to decks not forming steps in main vertical zones nor bounding horizontal zones.

4.3 For the purpose of determining the appropriate fire integrity standards to be applied to boundaries between adjacent spaces, such spaces are classified according to their fire risk as shown in the following categories 1 to 14. Where the contents and use of a space are such that there is a doubt as to its classification for the purpose of this regulation, or where it is possible to assign two or more classifications to a space, it shall be treated as a space within the relevant category having the most stringent boundary requirements. Smaller, enclosed rooms within a space that have less than 30% communicating openings to that space are to be considered separate spaces. The fire integrity of the boundary bulkheads of such smaller rooms shall be as prescribed in Tables 22.1 and 22.2. The title of each category is intended to be typical rather than restrictive. The number in parentheses preceding each category refers to the applicable column or row number in the tables.
Table 22.1 Bulkheads not bounding either main vertical zones or horizontal zones

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control stations</td>
<td>B-01</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
</tr>
<tr>
<td>Evacuation stations and external escape routes</td>
<td>A-0</td>
<td>B-60</td>
<td>A-60</td>
<td>A-0</td>
<td>A-60</td>
</tr>
<tr>
<td>Open deck spaces</td>
<td>A-0</td>
</tr>
<tr>
<td>Accommodation spaces of minor fire risk</td>
<td>B-0</td>
<td>B-0</td>
<td>B-0</td>
<td>C</td>
<td>A-0</td>
</tr>
<tr>
<td>Accommodation spaces of greater fire risk</td>
<td>B-0</td>
<td>C</td>
<td>A-0</td>
</tr>
<tr>
<td>Sanitary and similar spaces</td>
<td>C</td>
<td>A-0</td>
</tr>
<tr>
<td>Tanks, voids and auxiliary machinery spaces having little or no fire risk</td>
<td>A-01</td>
<td>A-0</td>
</tr>
<tr>
<td>Auxiliary machinery spaces, cargo spaces, cargo and other oil tanks and other similar spaces of moderate fire risk</td>
<td>A-01</td>
<td>A-0</td>
</tr>
<tr>
<td>Machinery spaces and main galleys</td>
<td>A-01</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
</tr>
<tr>
<td>Store-rooms, workshops, pantries etc.</td>
<td>A-01</td>
<td>A-0</td>
</tr>
<tr>
<td>Other spaces in which flammable, liquids are stowed</td>
<td>A-01</td>
<td>A-0</td>
</tr>
</tbody>
</table>

Notes to be applied to Tables 22.1 to 22.2, as appropriate.

1. Where adjacent spaces are in the same numerical category and superscript 1 appears, a bulkhead or deck between such spaces need not be fitted. For example, in category [12] a bulkhead need not be required between a galley and its annexed pantries provided the pantry bulkheads and decks maintain the integrity of the galley boundaries. A bulkhead is, however, required between a galley and a machinery space even though both spaces are in category [12].

2. The ship's side, to the waterline in the lightest seagoing condition, superstructure and deckhouse sides situated below and adjacent to the liferafts and evacuation slides may be reduced to "A-30".

3. Where public toilets are installed completely within the stairway enclosure, the public toilet bulkhead within the stairway enclosure can be of "B" class integrity.

4. Where spaces of category [6], [7], [8] and [9] are located completely within the outer perimeter of the muster station, the bulkheads of these spaces are allowed to be of "B-0" class integrity. Control positions for audio, video and light installations may be considered as part of the muster station.
Table 22.2 Decks not forming steps in main vertical zones nor bounding zones

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spaces below</td>
<td></td>
</tr>
<tr>
<td>Evacuation stations and external escape routes</td>
<td>[4]</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>–</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
</tr>
<tr>
<td>Open deck spaces</td>
<td>[5]</td>
<td>A-0</td>
</tr>
<tr>
<td>Sanitary and similar spaces</td>
<td>[9]</td>
<td>A-0</td>
</tr>
<tr>
<td>Tanks, voids and auxiliary machinery spaces having little or no fire risk</td>
<td>[10]</td>
<td>A-0</td>
</tr>
<tr>
<td>Other spaces in which flammable, liquids are stowed</td>
<td>[14]</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
<td>A-0</td>
<td>A-30</td>
<td>A-60</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
</tr>
</tbody>
</table>

See notes under Table 22.1

1. **Control stations**
 Spaces containing emergency sources of power and lighting. Wheelhouse and chartroom. Spaces containing the ship’s radio equipment. Fire control stations. Control room for propulsion machinery when located outside the propulsion machinery space. Spaces containing centralized fire alarm equipment. Spaces containing centralized emergency public address system stations and equipment.

2. **Stairways**
 Interior stairways, lifts, totally enclosed emergency escape trunks and escalators (other than those wholly contained within the machinery spaces) for passengers and crew and enclosures thereto. In this connection, a stairway which is enclosed at only one level shall be regarded as part of the space from which it is not separated by a fire door.
B Section 22 - Structural Fire Protection on Board Seagoing Ships

[3] **Corridors**
Passenger and crew corridors and lobbies.

[4] **Evacuation stations and external escape routes.**
Survival craft stowage area.
Open deck spaces and enclosed promenades forming lifeboat and liferaft embarkation and lowering stations.
Assembly stations, internal and external.
External stairs and open decks used for escape routes.
The ship’s side to the waterline in the lightest seagoing condition, superstructure and deck house sides situated below and adjacent to the liferaft’s and evacuation slide’s embarkation areas.

[5] **Open deck spaces**
Open deck spaces and enclosed promenades clear of lifeboat and liferaft embarkation and lowering stations. To be considered in this category, enclosed promenades shall have no significant fire risk, meaning that furnishings shall be restricted to deck furniture. In addition, such spaces shall be naturally ventilated by permanent openings. Air spaces (the space outside superstructures and deckhouses).

[6] **Accommodation spaces of minor fire risk**
Cabins containing furniture and furnishings of restricted fire risk. Offices and dispensaries containing furniture and furnishings of restricted fire risk. Public spaces containing furniture and furnishings of restricted fire risk and having a deck area of less than 50 m².

[7] **Accommodation spaces of moderate fire risk**
Spaces as in category [6] above but containing furniture and furnishings of other than restricted fire risk. Public spaces containing furniture and furnishings of restricted fire risk and having a deck area of 50 m² or more. Isolated lockers and small store-rooms in accommodation spaces having areas less than 4 m² (in which flammable liquids are not stowed). Sale shops. Motion picture projection and film stowage rooms. Diet kitchens (containing no open flame). Cleaning gear lockers (in which flammable liquids are not stowed). Laboratories (in which flammable liquids are not stowed). Pharmacies. Small drying rooms (having a deck area of 4 m² or less). Specie rooms, operating rooms, electrical distribution boards (see 4.3.2 and 4.3.3).

[8] **Accommodation spaces of greater fire risk**
Public spaces containing furniture and furnishings of other than restricted fire risk and having a deck area of 50 m² or more. Barber shops and beauty parlours. Saunas.

[9] **Sanitary and similar spaces**
Communal sanitary facilities, showers, baths, water closets, etc. Small laundry rooms. Indoor swimming pool area. Isolated pantries containing no cooking appliances in accommodation spaces.
Private sanitary facilities shall be considered a portion of the space in which they are located.

[10] **Tanks, voids and auxiliary machinery spaces having little or no fire risk.**
Water tanks forming part of the ship’s structure. Voids and cofferdams. Auxiliary machinery spaces which do not contain machinery having a pressure lubrication system and where storage of combustibles is prohibited, such as: Ventilation and air-conditioning rooms; windlass room; steering gear room; stabilizer equipment room; electrical propulsion motor room; rooms containing section switchboards and purely electrical equipment other than oil-filled electrical transformers (above 10 kVA); shaft alleys and pipe tunnels; spaces for pumps and refrigeration machinery (not handling or using flammable liquids).
Closed trunks serving the spaces listed above. Other closed trunks such as pipe and cable trunks.

[11] **Auxiliary machinery spaces, cargo spaces, cargo and other oil tanks and other similar spaces of moderate fire risk**
Cargo oil tanks. Cargo holds, trunkways and hatchways. Refrigerated chambers. Oil fuel tanks (where installed in a separate space with no machinery). Shaft alleys and pipe tunnels allowing storage of combustibles. Auxiliary machinery spaces as in category [10] which contain machinery having a pressure lubrication system or where storage of combustibles is permitted. Oil fuel filling stations. Spaces containing oil-filled electrical transformers (above 10 kVA). Spaces containing
turbine and reciprocating steam engine driven auxiliary generators and small internal combustion engines of power output up to 110 kW driving generators, sprinkler, drencher or fire pumps, bilge pumps, etc. Closed trunks serving the spaces listed above.

[12] Machinery spaces and main galleys
Main propulsion machinery rooms (other than electric propulsion motor rooms) and boiler rooms. Auxiliary machinery spaces other than those in categories [10] and [11] which contain internal combustion machinery or other oil-burning, heating or pumping units. Main galleys and annexes. Trunks and casings to the spaces listed above.

[13] Store-rooms, workshops, pantries, etc.
Main pantries not annexed to galleys. Main laundry. Large drying rooms (having a deck area of more than 4 m²). Miscellaneous stores. Mail and baggage rooms. Garbage rooms. Workshops (not part of machinery spaces, galleys, etc.), lockers and store-rooms having areas greater than 4 m², other than those spaces which have provisions for the storage of flammable liquids.

[14] Other spaces in which flammable liquids are stowed
Lamp rooms. Paint rooms. Store-rooms containing flammable liquids (including dyes, medicines, etc.). Laboratories (in which flammable liquids are stowed).

4.3.1 In respect of category [5] spaces BKI shall determine whether the insulation values in Table 22.1 shall apply to ends of deckhouses and superstructures, and whether the insulation values in Table 22.2 shall apply to weather decks. In no case shall the requirements of category [5] of Tables 22.1 and 22.2 necessitate enclosure of spaces which in the opinion of BKI need not be enclosed.

4.3.2 Electrical distribution boards may be located behind panels/linings within accommodation spaces including stairway enclosures, without the need to categorize the space, provided no provision for storage is made.

4.3.3 If distribution boards are located in an identifiable space having a deck area of less than 4 m², this space shall be categorized in [7].

4.4 Continuous "B" class ceilings or linings, in association with the relevant decks or bulkheads, may be accepted as contributing wholly or in part, to the required insulation and integrity of a division.

4.5 At intersections and terminal points of the required fire insulation constructions due regard is to be paid to the effect of thermal bridges. In order to avoid this, the insulation of a deck or bulkhead shall be carried past the intersection or terminal point for a distance of at least 450 mm.

5. Protection of stairways and lifts in accommodation and service spaces

5.1 All stairways in accommodation and service spaces are to be of steel frame or other approved equivalent construction; they are to be arranged within enclosures formed by "A" Class division, with effective means of closure for all openings. The following exceptions are admissible:

5.1.1 A stairway connecting only two decks need not be enclosed, provided that the integrity of the pierced deck is maintained by suitable bulkheads or doors at one of the two decks. When a stairway is closed at one 'ween deck space, the stairway enclosure shall be protected in accordance with the tables for decks.

5.1.2 Stairways fitted within a closed public space need not be enclosed.

5.2 Stairway enclosures are to be directly accessible from the corridors and of sufficient area to prevent congestion, having in mind the number of persons likely to use them in an emergency. Within the perimeter of such stairway enclosures, only public toilets, lockers of non-combustible material providing storage for safety equipment and open information counters are permitted. Only public spaces, corridors, public toilets, special category spaces, other escape stairways required by 12.3.3 and external areas are permitted to have direct access to these stairway enclosures.

Small corridors or lobbies used to separate an enclosed stairway from galleys or main laundries may have direct access to the stairway provided they have a minimum deck area of 4.5 m², a width of no less than 900 mm and contain a fire hose station.

5.3 Lift trunks shall be so fitted as to prevent the passage of smoke and flame from one 'tweendeck to another and
shall be provided with means of closing so as to permit the control of draught and smoke.

6. **Openings in "A" class divisions**

6.1 Where "A" class divisions are penetrated for the passage of electric cables, pipes, trunks, ducts, etc., or for girders, beams or other structural members, arrangements shall be made to ensure that the fire resistance is not impaired, subject to the provisions of 6.6.

6.2 All openings in the divisions are to be provided with permanently attached means of closing which shall be at least as effective for resisting fire as the divisions. This does not apply for hatches between cargo, special category, store and baggage spaces and between such spaces and the weather decks.

6.3 The construction of all doors and door frames in "A" class divisions, with the means of securing them when closed, shall provide resistance to fire as well as to the passage of smoke and flame equivalent to that of the bulkheads in which the doors are situated\(^3\). Such doors and door frames shall be approved by BKI and constructed of steel or other equivalent material. Watertight doors need not be insulated.

6.4 It shall be possible for each door to be opened and closed from each side of the bulkhead by one person only.

6.5 Fire doors in main vertical zone bulkheads, galley boundaries and stairway enclosures other than power operated watertight doors and those which are normally locked shall satisfy the following requirements:

6.5.1 The doors shall be self-closing and be capable of closing against an angle of inclination of up to 3.5° opposing closure.

6.5.2 The approximate time of closure for hinged fire doors shall be no more than 40 s and no less than 10 s from the beginning of their movement with the ship in upright position. The approximate uniform rate of closure for sliding fire doors shall be of no more than 0.2 m/s and no less than 0.1 m/s with the ship in the upright position.

6.5.3 The doors, except those for emergency escape trunks shall be capable of remote release from the continuously manned central control station, either simultaneously or in groups and shall be capable of release also individually from a position at both sides of the door. Release switches shall have an on-off function to prevent automatic resetting of the system.

6.5.4 Hold-back hooks not subject to central control station release are prohibited.

6.5.5 A door closed remotely from the central control station shall be capable of being re-opened at both sides of the door by local control. After such local opening, the door shall automatically close again (see also Rules for Electrical Installations, Volume IV, Section 9).

6.5.6 Indication shall be provided at the fire door indicator panel in the continuously manned central control station whether each of the remote-released doors are closed.

6.5.7 The release mechanism shall be so designed that the door will automatically close in the event of disruption of the control system or main source of electric power.

6.5.8 Local power accumulators for power operated doors shall be provided in the immediate vicinity of the doors to enable the doors to be operated after disruption of the control system or main source of electric power at least ten times (fully opened and closed) using the local controls (see also Rules for Machinery Installations, Volume III, Section 14).

6.5.9 Disruption of the control system or main source of electric power at one door shall not impair the safe functioning of the other doors.

6.5.10 Remote-released sliding or power-operated doors shall be equipped with an alarm that sounds for at least 5 s but no more than 10 s after the door is released from the central control station and before the door begins to move and continue sounding until the door is completely closed.

6.5.11 A door designed to re-open upon contacting an object in its path shall re-open not more than 1 m from the point of contact.

\(^3\) Reference is made to the Fire Test Procedure Code, Annex 1, Part 3, adopted by IMO by Resolution MSC 61(67).
6.5.12 Double-leaf doors equipped with a latch necessary to their fire integrity shall have a latch that is automatically activated by the operation of the doors when released by the control system.

6.5.13 Doors giving direct access to special category spaces which are power-operated and automatically closed need not be equipped with the alarms and remote release mechanisms required in 6.5.3 and 6.5.10.

6.5.14 The components of the local control system shall be accessible for maintenance and adjusting.

6.5.15 Power-operated doors shall be provided with a control system of an approved type which shall be able to operate in case of fire. This system shall satisfy the following requirements:

6.5.15.1 The control system shall be able to operate the door at the temperature of at least 200 °C for at least 60 min, served by the power supply;

6.5.15.2 The power supply for all other doors not subject to fire shall nor be impaired; and

6.5.15.3 At temperatures exceeding 200 °C the control system shall be automatically isolated from the power supply and shall be capable of keeping the door closed up to at least 945 °C.

6.6 The requirements for "A" class integrity of the outer boundaries of a ship shall not apply to glass partitions, windows and side scuttles, provided that there is no requirement for such boundaries to have "A" class integrity in 8.3. The requirements for "A" class integrity of the outer boundaries of the ship shall not apply to exterior doors, except for those in superstructures and deckhouses facing life-saving appliances, embarkation and external muster station areas, external stairs and open decks used for escape routes. Stairway enclosure doors need not meet this requirement.

6.7 Except for watertight, weathertight doors (semi-watertight doors), doors leading to the open deck and doors which need to be reasonably gastight, all "A" class doors located in stairways, public spaces and main vertical zone bulkheads in escape routes shall be equipped with a self-closing hose port of material, construction and fire resistance which is equivalent to the door into which it is fitted, and shall be a 150 mm square clear opening with the door closed and shall be inset into the lower edge of the door, opposite the door hinges, or in the case of sliding doors, nearest the opening.

7. Openings in "B" class divisions

7.1 Where "B" class divisions are penetrated for the passage of electric cables, pipes, trunks, ducts, etc., or for the fitting of ventilation terminals, lighting fixtures and similar devices, arrangements shall be made to ensure that the fire resistance is not impaired. Pipes other than steel or copper that penetrate "B" class divisions shall be protected by either:

- a fire tested penetration device, suitable for the fire resistance of the division pierced and the type of pipe used;
- or
- a steel sleeve, having a thickness of not less than 1,8 mm and a length of not less than 900 mm for pipe diameters of 150 mm or more and not less than 600 mm for pipe diameters of less than 150 mm, preferably equally divided to each side of the division. The pipe shall be connected to the ends of the sleeve by flanges or couplings; or the clearance between the sleeve and the pipe shall not exceed 2,5 mm; or any clearance between pipe and sleeve shall be made tight by means of non-combustible or other suitable material.

7.2 Doors and door frames in "B" class divisions and means of securing them shall provide a method of closure which shall have resistance to fire equivalent to that of the divisions except that ventilation openings may be permitted in the lower portion of such doors. Where such opening is in or under a door the total net area of any such opening or openings shall not exceed 0,05 m². Alternatively, a non-combustible air balance duct routed between the cabin and the corridor, and located below the sanitary unit is permitted where the cross-sectional area of the duct does not exceed 0,05 m². All ventilation openings shall be fitted with a grill made of non-combustible material. Doors shall be non-combustible and approved by BKI.

7.3 Cabin doors in "B" class divisions shall be of a self-closing type. Hold-backs are not permitted.

7.4 The requirements for "B" class integrity of the outer boundaries of a ship shall not apply to glass partitions, windows and sidescuttles. Similarly, the requirements for "B" class integrity shall not apply to exterior doors in superstructures and deckhouses.

4) Reference is made to the Fire Test Procedure Code, Annex 1, Part 3, adopted by IMO by Resolution MSC 61(67).
5) Reference is made to the Fire Test Procedure Code, Annex 1, Part 3, adopted by IMO by Resolution MSC 61(67).
8. Windows and sidescuttles

8.1 All windows and sidescuttles in bulkheads within accommodation and service spaces and control stations other than those to which the provisions of 6.6 and of 7.4 apply, shall be so constructed as to preserve the integrity requirements of the type of bulkheads in which they are fitted.

8.2 Notwithstanding the requirements of the Tables 22.1 to 22.2 all windows and sidescuttles in bulkheads separating accommodation and service spaces and control stations from weather shall be constructed with frames of steel or other suitable material. The glass shall be retained by a metal glazing bead or angle.

8.3 Windows facing life-saving appliances, embarkation and muster areas, external stairs and open decks used for escape routes, and windows situated below liferaft and escape slide embarkation areas shall have the fire integrity as required in the Tables 22.1 to 22.2. Where automatic dedicated sprinkler heads are provided for windows (see also Rules for Machinery Installations, Volume III, Section 12), A-0 windows may be accepted as equivalent. Windows located in the ship’s side below the lifeboat embarkation areas shall have the fire integrity at least equal to "A-0" class.

9. Ventilation systems

9.1 In general, the ventilation fans shall be so disposed that the ducts reaching the various spaces remain within the main vertical zone.

9.2 Where ventilation systems penetrate decks, precautions shall be taken, in addition to those relating to the fire integrity of the deck required by 6. to reduce the likelihood of smoke and hot gases passing from one between deck space to another through the system. In addition to insulation requirements contained in 9. vertical ducts shall, if necessary, be insulated as required by the appropriate tables in 4.

9.3 The main inlets and outlets of all ventilation systems shall be capable of being closed from outside the respective spaces in the event of a fire.

9.4 Except in cargo spaces, ventilation ducts shall be constructed of the following materials:

9.4.1 Ducts not less than 0,075 m² in sectional area and all vertical ducts serving more than a single 'ween deck space shall be constructed of steel or other equivalent material.

9.4.2 Ducts less than 0,075 m² in sectional area other than vertical ducts referred to in 9.4.1 shall be constructed of non-combustible materials. Where such ducts penetrate "A" or "B" Class divisions due regard shall be given to ensuring the fire integrity of the division.

9.4.3 Short lengths of duct, not in general exceeding 0,02 m² in sectional area nor 2 m in length, need not be non-combustible provided that all of the following conditions are met:

9.4.3.1 The duct is constructed of a material having low flame spread characteristics which is type approved.

9.4.3.2 The duct is used only at the terminal end of the ventilation system; and

9.4.3.3 The duct is not located closer than 0,6 m measured along its length to a penetration of an "A" or "B" class division, including continuous "B" class ceilings.

9.5 Stairway enclosures shall be ventilated by an independent fan and duct system which shall not serve any other spaces in the ventilation system.

9.6 All power ventilation, except machinery and cargo spaces ventilation and any alternative system which may be required under 9.9, shall be fitted with controls so grouped that all fans may be stopped from either of two positions which shall be situated as far apart as practicable. Controls provided for the power ventilation serving machinery spaces shall also be grouped so as to be operable from two positions, one of which shall be outside such spaces. Fans serving power ventilation systems to cargo spaces shall be capable of being stopped from a safe position outside such spaces.

9.7 Where a thin plated duct with a free cross-sectional area equal to or less than 0,02 m² passes through "A" class bulkheads or decks, the opening shall be lined with a steel sheet sleeve having a thickness of at least 3 mm and a length of

6) Reference is made to the Fire Test Procedure Code, Annex 1, Part 5, adopted by IMO by Resolution MSC 61(67).
at least 200 mm, divided preferably into 100 mm on each side of the bulkhead or, in the case of the deck, wholly laid on the lower side of the decks pierced.

Where the ventilation ducts with a free-sectional area exceeding 0.02 m² pass through "A" class bulkheads or decks, the opening shall be lined with a steel sheet sleeve. However, where such ducts are of steel construction and pass through a deck or bulkhead, the ducts and sleeves shall comply with the following:

9.7.1 The sleeves shall have a thickness of at least 3 mm and a length of at least 900 mm. When passing through bulkheads, this length shall be divided preferably into 450 mm on each side of the bulkhead. These ducts, or sleeves lining such ducts, shall be provided with fire insulation. The insulation shall have at least the same fire integrity as the bulkhead or deck through which the duct passes.

9.7.2 Ducts with a free cross-sectional area exceeding 0.075 m² shall be fitted with fire dampers in addition to the requirements of 9.7.1. The fire damper shall operate automatically but shall also be capable of being closed manually from both sides of the bulkhead or deck. The damper shall be provided with an indicator which shows whether the damper is open or closed. Fire dampers are not required, however, where ducts pass through spaces surrounded by "A" class divisions, without serving those spaces, provided those ducts have the same fire integrity as the divisions which they pierce.

The fire dampers should be easily accessible. Where they are placed behind ceilings and linings, these latter should be provided with an inspection door on which a plate reporting the identification number of the fire damper. Such plate and identification number should be placed also on any remote control required.

9.7.3 The following arrangement shall be of an approved type 7).

9.7.3.1 Fire dampers, including relevant means of operation.

9.7.3.2 Duct penetrations through "A" class divisions. Where steel sleeves are directly joined to ventilation ducts by means of riveted or screwed flanges or by welding, the test is not required.

9.8 Exhaust ducts from galley ranges in which grease or fat is likely to accumulate shall meet the requirements as mentioned in 9.10.2 and shall be fitted with:

9.8.1 A grease trap readily removable for cleaning unless an alternative approved grease removal system is fitted;

9.8.2 A fire damper located in the lower end of the duct which is automatically and remotely operated, and in addition a remotely operated fire damper located in the upper end of the duct;

9.8.3 A fixed means for extinguishing a fire within the duct (see also Rules for Machinery Installations, Volume III, Section 12);

9.8.4 Remote control arrangements for shutting off the exhaust fans and supply fans, for operating the fire dampers mentioned in 9.8.2 and for operating the fire-extinguishing system, which shall be placed in a position close to the entrance to the galley. Where a multi branch system is installed, means shall be provided to close all branches exhausting through the same main duct before an extinguishing medium is released into the system; and

9.8.5 Suitably located hatches for inspection and cleaning.

9.9 Such measures as are practicable shall be taken in respect of control stations outside machinery spaces in order to ensure that ventilation, visibility and freedom from smoke are maintained, so that in the event of fire the machinery and equipment contained therein may be supervised and continue to function effectively. Alternative and separate means of air supply shall be provided; air inlets of the two sources of supply shall be so disposed that the risk of both inlets drawing in smoke simultaneously is minimized. Such requirements need not apply to control stations situated on, and opening on to, an open deck.

9.10 The ventilation systems for machinery spaces of category A, vehicle spaces, ro-ro spaces, galleys, special category spaces and cargo spaces shall, in general, be separated from each other and from the ventilation system serving other spaces.

9.11 Ducts provided for the ventilation of machinery spaces of category A, galleys, vehicle spaces, ro-ro cargo spaces or special category spaces shall not pass through accommodation spaces, service spaces or control stations unless the ducts are either complying with 9.11.1 or 9.11.2.

7) Reference is made to the Fire Test Procedure Code, Annex 1, Part 3, adopted by IMO by Resolution MSC 61(67).
9.11.1 Constructed of steel having a thickness of at least 3 mm and 5 mm for ducts the widths or diameters of which are up to and including 300 mm and 760 mm and over respectively and, in the case of such ducts, the widths or diameters of which are between 300 mm and 760 mm having a thickness to be obtained by interpolation; suitably supported and stiffened; fitted with automatic fire dampers close to the boundaries penetrated; and insulated to "A-60" standard from the machinery spaces, galleys, vehicle spaces, ro-ro cargo spaces or special category spaces to a point at least 5 m beyond each fire damper; or

9.11.2 Constructed of steel suitable supported and stiffened in accordance with 9.11.1 and insulated to "A-60" standard throughout the accommodation spaces, service spaces or control stations;

9.11.3 Except that penetrations of main zone divisions shall also comply with the requirements of 9.14.

9.12 Ducts provided for the ventilation to accommodation spaces, service spaces or control stations shall not pass through machinery spaces of category A, galleys, vehicle spaces, ro-ro cargo spaces or special category spaces unless either complying with 9.12.1 or 9.12.2.

9.12.1 The ducts where they pass through a machinery space of category A, galley, vehicle space, ro-ro cargo space or special category space are constructed of steel, suitable supported and stiffened in accordance with 9.11.1 and automatic fire dampers are fitted close to the boundaries penetrated; and integrity of the machinery space, galley, vehicle space, ro-ro cargo space or special category space boundaries is maintained at the penetrations; or

9.12.2 The ducts where they pass through a machinery space of category A, galley, vehicle space, ro-ro cargo space or special category space are constructed of steel, suitable supported and stiffened in accordance with 9.11.1 are insulated to "A-60" standard within the machinery space, galley, vehicle space, ro-ro cargo space or special category space;

9.12.3 Except that penetrations of main zone division shall also comply with the requirements in 9.14.

9.13 Ventilation ducts with a free cross-sectional area exceeding 0,02 m² passing through "B" class bulkheads shall be lined with steel sheet sleeves of 900 mm in length divided preferably into 450 mm on each side of the bulkheads unless the duct is of steel for this length.

9.14 Where in a passenger ship it is necessary that a ventilation duct passes through a main vertical zone division, a fail-safe automatic closing fire damper shall be fitted adjacent to the division. The damper shall also be capable of being manually closed from each side of the division. The operating position shall be readily accessible and be marked in red light-reflecting colour. The duct between the division and the damper shall be of steel or other equivalent material and, if necessary, insulated to comply with the requirements of 6.1. The damper shall be fitted on at least one side of the division with a visible indicator showing whether the damper is in the open position.

9.15 Power ventilation of accommodation spaces, service spaces, cargo spaces, control stations and machinery spaces shall be capable of being stopped from an easily accessible position outside the space being served. This position should not be readily cut off in the event of a fire in the spaces served. The means provided for stopping the power ventilation of the machinery spaces shall be entirely separate from the means provided for stopping ventilation of other spaces.

9.16 Controls for shutting down the ventilation fans shall be centralized in a continuously manned central control station. The ventilation fans shall be capable of reactivation by the crew at this location, whereby the control panels shall be capable of indicating closed or off status of fans.

9.17 Exhaust ducts shall be provided with suitably located hatches for inspection and cleaning. The hatches shall be located near the fire damper.

9.18 Where public spaces span three or more open decks and contain combustibles such as furniture and enclosed spaces such as shops, offices and restaurants, the space shall be equipped with a smoke extraction system (see also Rules for Machinery Installations, Volume III, Section 12).
10. Restriction of combustible materials

10.1 Except in cargo spaces, mail rooms, baggage rooms, saunas \(^8\) or refrigerated compartments of service spaces, all linings, grounds, draught stops, ceilings and insulations shall be of non-combustible materials. Partial bulkheads or decks used to subdivide a space for utility or artistic treatment shall also be of non-combustible material.

Linings, ceilings and partial bulkheads or decks used to screen or to separate adjacent cabin balconies shall be of non-combustible material.

10.2 Vapour barriers and adhesives used in conjunction with insulation, as well as insulation of pipe fittings, for cold service systems need not be non-combustible but they shall be kept to the minimum quantity practicable and their exposed surfaces shall have low flame spread characteristics.

10.3 The following surfaces shall have low flame spread characteristics \(^9\):

10.3.1 exposed surfaces in corridors and stairway enclosures, and of bulkheads, wall and ceiling linings in all accommodation and service spaces (except saunas) and control stations;

10.3.2 concealed or inaccessible spaces in accommodation, service spaces and control stations.

10.4 The total volume of combustible facings, mouldings, decorations and veneers in any accommodation and service space shall not exceed a volume equivalent to 2.5 mm veneer on the combined area of the walls and ceilings. Furniture fixed to linings, bulkheads or decks need not be included in the calculation of the total volume of combustible materials. This applies also to traditional wooden benches and wooden linings on bulkheads and ceilings in saunas. In the case of ships fitted with an automatic sprinkler system, the above volume may include some combustible material used for erection of "C" class divisions.

10.5 Combustible materials used on surfaces and linings covered by the requirements of 10.3 shall have a calorific value \(^10\) not exceeding 45 MJ/m² of the area for the thickness used. This does not apply to surfaces of furniture fixed to linings or bulkheads as well as to traditional wooden benches and wooden linings on bulkheads and ceilings in saunas.

10.6 Furniture in stairway enclosures shall be limited to seating. It shall be fixed, limited to six seats on each deck in each stairway enclosure, be of restricted fire risk, and shall not restrict the passenger escape route.

Furniture shall not be permitted in passenger and crew corridors forming escape routes in cabin areas. Lockers of non-combustible material, providing storage for safety equipment, may be permitted within these areas.

Drinking water dispensers and ice cube machines may be permitted in corridors provided they are fixed and do not restrict the width of the escape route. This applies as well to decorative flower arrangements, statues or other objects d’art such as paintings and tapestries in corridors and stairways.

10.7 Furniture and furnishings on cabin balconies shall comply with the following, unless such balconies are protected by a fixed pressure water-spraying and fixed fire detection and fire alarm systems.

10.7.1 case furniture shall be constructed entirely of approved non-combustible materials, except that a combustible veneer not exceeding 2 mm may be used on the working surface;

10.7.2 free-standing furniture shall be constructed with frames of non-combustible materials;

10.7.3 draperies and other suspended textile materials shall have qualities of resistance to the propagation of flame not inferior to those of wool having a mass of 0.8 kg/m² \(^11\);

10.7.4 upholstered furniture shall have qualities of resistance to the ignition and propagation of flame \(^12\) and

\(^8\) Insulation materials used in saunas shall be of non-combustible material.

\(^9\) Reference is made to the Fire Test Procedure Code, Annex 1, Part 5, adopted by IMO by Resolution MSC 61(67).

\(^10\) The gross calorific value measured in accordance with ISO Standard 1716 - "Building Materials - Determination of Calorific Potential", should be quoted.

\(^11\) Reference is made to the Fire Test Procedure Code, Annex 1, Part 7, adopted by IMO by Resolution MSC 61(67).

\(^12\) Reference is made to the Fire Test Procedure Code, Annex 1, Part 8, adopted by IMO by Resolution MSC 61(67).
10.7.5 bedding components shall have qualities of resistance to the ignition and propagation of flame.

10.8 Paints, varnishes and other finishes used on exposed interior surfaces, including cabin balconies with the exclusion of natural hard wood decking systems, shall not be capable of producing excessive quantities of smoke and toxic products.

10.9 Primary deck coverings, if applied within accommodation and service spaces and control stations or if applied on cabin balconies, shall be of approved material which will not readily ignite, or give rise to smoke or toxic or explosive hazards at elevated temperatures.

10.10 Waste receptacles shall be constructed of non-combustible materials with no openings in the sides or bottom. Containers in galleys, pantries, bars, garbage handling or storage spaces and incinerator rooms which are intended purely for the carriage of wet waste, glass bottles and metal cans may be constructed of combustible materials.

11. Details of construction

11.1 In accommodation and service spaces, control stations, corridors and stairways, air spaces enclosed behind ceilings, panelling or linings shall be suitably divided by close fitting draught stops not more than 14 m apart. In the vertical direction, such enclosed air spaces, including those behind linings of stairways, trunks, etc. shall be closed at each deck.

11.2 The construction of ceilings and bulkheads shall be such that it will be possible, without impairing the efficiency of the fire protection, for the fire patrols to detect any smoke originating in concealed and inaccessible spaces.

11.3 Non-load bearing partial bulkheads separating adjacent cabin balconies shall be capable of being opened by the crew from each side for the purpose of fighting fires.

11.4 The cargo holds and machinery spaces shall be capable of being effectively sealed such as to prevent the inlet of air. Doors leading to machinery spaces of category A are to be provided with self-closing devices and 2 securing devices. All other machinery spaces, which are protected by a gas fire extinguishing system, are to be equipped with self-closing doors.

11.5 Helicopter decks shall be of a steel or steel equivalent fire-resistant construction. If the space below the helicopter deck forms the deckhead of a deckhouse or superstructure, it shall be insulated to "A-60" class standard. If an aluminium or other low melting metal construction will be allowed, the following provisions shall be satisfied:

11.5.1 If the platform is cantilevered over the side of the ship, after each fire on the ship or on the platform, the platform shall undergo a structural analysis to determine its suitability for further use.

11.5.2 If the platform is located above the ship's deckhouse or similar structure, the following conditions shall be satisfied:

11.5.2.1 The deckhouse top and bulkheads under the platform shall have no openings;

11.5.2.2 All windows under the platform shall be provided with steel shutters;

11.5.2.3 The required fire-fighting equipment shall be in accordance with the requirements of Rules for Machinery Installations, Volume III, Section 12.

11.5.2.4 After each fire on the platform or in close proximity, the platform shall undergo a structural analysis to determine its suitability for further use.

11.6 Construction and arrangement of saunas

11.6.1 The perimeter of the sauna shall be of "A" class boundaries and may include changing rooms, showers and toilets. The sauna shall be insulated to A-60 standard against other spaces except those inside the perimeter and spaces of category [5], [9] and [10].

13) Reference is made to the Fire Test Procedure Code, Annex 1, Part 9, adopted by IMO by Resolution MSC 61(67).

14) Reference is made to the Fire Test Procedure Code, Annex 1, Part 2, adopted by IMO by Resolution MSC 61(67).

15) Reference is made to the Fire Test Procedure Code, Annex 1, Part 6, adopted by IMO by Resolution MSC.61(67).
11.6.2 Bathrooms with direct access to saunas may be considered as part of them. In such cases, the door between sauna and the bathroom need not comply with fire safety requirements.

11.6.3 The traditional wooden lining on the bulkheads and on the ceiling are permitted in the sauna. The ceiling above the oven shall be lined with a noncombustible plate with an air-gap of at least 30 mm. The distance from the hot surfaces to combustible materials shall be at least 500 mm or the combustible materials shall be suitably protected.

11.6.4 The traditional wooden benches are permitted to be used in the sauna.

11.6.5 The sauna door shall open outwards by pushing.

11.6.6 Electrically heated ovens shall be provided with a timer.

12. Means of escape

12.1 Unless expressly provided otherwise in this regulation, at least two widely separated and ready means of escape shall be provided from all spaces or group of spaces. Lifts shall not be considered as forming one of the required means of escape.

12.2 Doors in escape routes shall, in general, open in the direction of escape, except that

- individual cabin doors may open into the cabins in order to avoid injury to persons in the corridor when the door is opened, and
- doors in vertical emergency escape trunks may open out of the trunk in order to permit the trunk to be used both for escape and access.

12.3 Stairways and ladders shall be arranged to provide ready means of escape to the lifeboat and liferaft embarkation deck from all passenger and crew spaces and from spaces in which the crew is normally employed, other than machinery spaces. In particular, the following provisions shall be complied with:

12.3.1 Below the bulkhead deck, two means of escape, at least one of which shall be independent of watertight doors, shall be provided from each watertight compartment or similarly restricted space or group of spaces. Due regard being paid to the nature and location of spaces and to the number of persons who normally might be employed there, exceptions are possible, however, stairways shall not be less than 800 mm in clear width with handrails on both sides.

12.3.2 Above the bulkhead deck, there shall be at least two means of escape from each main vertical zone or similarly restricted space or group of spaces at least one of which shall give access to a stairway forming a vertical escape.

12.3.3 At least one of the means of escape required by paragraphs 12.1.1 and 12.1.2 shall consist of a readily accessible enclosed stairway, which shall provide continuous fire shelter from the level of its origin to the appropriate lifeboat and liferaft embarkation decks, or to the uppermost weather deck if the embarkation deck does not extend to the main vertical zone being considered. In the latter case, direct access to the embarkation deck by way of external open stairways and passageways shall be provided and shall have emergency lighting (see also Rules for Electrical Installations, Volume IV, Section 3 and 11) and slip-free surfaces under foot. Boundaries facing external open stairways and passageways forming part of an escape route and boundaries in such a position that their failure during a fire would impede escape to the embarkation deck shall have fire integrity, including insulation values, in accordance with the Tables 22.1 and 22.2. The widths, number and continuity of escapes shall be as follows:

12.3.3.1 Stairways shall not be less than 900 mm in clear width. Stairways shall be fitted with handrails on each side. The minimum clear width of stairways shall be increased by 10 mm for every one person provided for in excess of 90 persons. The maximum clear width between handrails where stairways are wider than 900 mm shall be 1800 mm. The total number of persons to be evacuated by such stairways shall be assumed to be two thirds of the crew and the total number of passengers in the areas served by such stairways 16).

12.3.3.2 All stairways sized for more than 90 persons shall be aligned fore and aft.

12.3.3.3 Doorways and corridors and intermediate landings included in means of escape shall be sized in the same manner as stairways. The aggregate width of stairway exit doors to the assembly station shall not be less than the aggregate width

16) Reference is made to the Fire Safety Systems Code, adopted by IMO by Resolution MSC 98 (73).
of stairways serving this deck.

12.3.3.4 Stairways shall not exceed 3.5 m in vertical rise without the provision of a landing and shall not have an angle of inclination greater than 45°.

12.3.3.5 Landings at each deck level shall be not less than 2 m² in area and shall increase by 1 m² for every 10 persons provided for in excess of 20 persons but need not exceed 16 m², except for those landings servicing public spaces having direct access onto the stairway enclosure.

12.3.4 Stairways serving only a space and a balcony in that space shall not be considered as forming one of the means of escape.

12.3.5 A corridor, lobby, or part of a corridor from which there is only one route of escape shall not be permitted. Dead-end corridors used in service areas which are necessary for the practical utility of the ship, such as fuel oil stations and athwartship supply corridors, shall be permitted, provided such dead-end corridors are separated from crew accommodation areas and are inaccessible from passenger accommodation areas. Also, a part of the corridor that has a depth not exceeding its width is considered a recess or local extension and is permitted.

12.3.6 In addition to the emergency lighting (see also Rules for Electrical Installations, Volume IV, Section 3 and 10), the means of escape including stairways and exits, shall be marked by lighting or photoluminescent strip indicators placed not more than 0.3 m above the deck at all points of the escape route including angles and intersections. The marking shall enable passengers to identify all the routes of escape and readily identify the escape exits. If electric illumination is used, it shall be supplied by the emergency source of power and it shall be so arranged that the failure of any single light or cut in a lighting strip, will not result in the marking being ineffective. Additionally, all escape route signs and fire equipment location markings shall be of photoluminescent material or marked by lighting. Such lighting or photo luminescent equipment shall be of an approved type.

12.3.7 The requirement of 12.3.6 shall also apply to the crew accommodation areas.

12.3.8 Public Spaces spanning three or more decks and contain combustibles such as furniture and enclosed spaces such as shops, offices and restaurants shall have at each level within the space two means of escape, one of which shall have direct access to an enclosed vertical means of escape as mentioned under 12.3.3.

12.4 If a radiotelegraph station has no direct access to the open deck, two means of escape from or access to such station shall be provided, one of which may be a porthole or window of sufficient size or another means.

12.5 In special category spaces the number and disposition of the means of escape both below and above the bulkhead deck shall be satisfactory as mentioned under 12.3.1, .2 and .3.

12.6 Two means of escape shall be provided from each machinery space. In particular, the following provisions shall be complied with:

12.6.1 Where the space is below the bulkhead deck the two means of escape shall consist of either:

12.6.1.1 Two sets of steel ladders as widely separated as possible, leading to doors in the upper part of the space similarly separated and from which access is provided to the appropriate lifeboat and liferaft embarkation decks. One of these ladders shall be located within a protected enclosure having fire integrity, including insulation values, in accordance with the Tables 22.1 and 22.2 for a category [2] space, from the lower part of the space to a safe position outside the space. Self-closing doors of the same fire integrity standards shall be fitted in the enclosure. The ladder shall be fixed in such a way that heat is not transferred into the enclosure through non-insulated fixing points. The protected enclosure shall have minimum internal dimensions of at least 800 mm x 800 mm, and shall have emergency lighting provisions, or

12.6.1.2 One steel ladder leading to a door in the upper part of the space from which access is provided to the embarkation deck and additionally, in the lower part of the space and in a position well separated from the ladder referred to, a steel door capable of being operated from each side and which provides access to a safe escape route from the lower part of the space to the embarkation deck.

12.6.2 Where the space is above the bulkhead deck, two means of escape shall be as widely separated as possible and the doors leading from such means of escape shall be in a position from which access is provided to the appropriate lifeboat and liferaft embarkation decks. Where such escapes require the use of ladders these shall be of steel.
12.6.3 A ship of a gross tonnage less than 1000 may be dispensed with one of the means of escape, due regard being paid to the width and disposition of the upper part of the space; and a ship of a gross tonnage of 1000 and above, may be dispensed with one means of escape from any such space so long as either a door or a steel ladder provides a safe escape route to the embarkation deck, due regard being paid to the nature and location of the space and whether persons are normally employed in that space.

12.6.4 In the steering gear room, a second means of escape shall be provided when the emergency steering position is located in that space unless there is direct access to the open deck.

12.6.5 One of the escape routes from the machinery spaces where the crew is normally employed shall avoid direct access to any special category space.

12.6.6 Two means of escape shall be provided from a machinery control room within a machinery space, at least one of which shall provide continuous fire shelter to a safe position outside the machinery space.

12.6.7 A helideck shall be provided with both a main and an emergency means of escape and access for fire fighting and rescue personnel. These shall be located as far as apart from each other as is practicable and preferably on opposite sides of the helideck.

12.7 Additional requirements for ro-ro passenger ships

12.7.1 Handrails or other handholds shall be provided in all corridors along the entire escape route, so that a firm handhold is available every step of the way, where possible, to the assembly stations and embarkation stations. Such handrails shall be provided on both sides of longitudinal corridors more than 1.8 m in width and transverse corridors more than 1 m in width. Particular attention shall be paid to the need to be able to cross lobbies, atriums and other large open spaces along escape routes. Handrails and other handholds shall be of such strength as to withstand a distributed horizontal load of 750 N/m applied in the direction of the centre of the corridor or space, and a distributed vertical load of 750 N/m applied in the downward direction. The two loads need not be applied simultaneously.

12.7.2 Escape routes shall be provided from every normally occupied space on the ship to an assembly station. These escape routes shall be arranged so as to provide the most direct route possible to the assembly station and shall be marked with relevant symbols.

12.7.3 Where enclosed spaces adjoin an open deck, openings from the enclosed space to the open deck shall, where practicable, be capable of being used as an emergency exit.

12.7.4 Decks shall be sequentially numbered, starting with "1" at the tank top or lowest deck. These numbers shall be prominently displayed at stair landings and lift lobbies. Decks may also be named, but the deck number shall always be displayed with the name.

12.7.5 Simple "mimic" plans showing the "you are here" position and escape routes marked by arrows, shall be prominently displayed on the inside of each cabin door and in public spaces. The plan shall show the directions of escape, and shall be properly oriented in relation to its position on the ship.

12.7.6 Cabin and stateroom doors shall not require keys to unlock them from inside the room. Neither shall there be any doors along any designed escape route which require keys to unlock them when moving in the direction of escape.

12.7.7 The lowest 0.5 m of bulkheads and other partitions forming vertical divisions along escape routes shall be able to sustain a load of 750 N/m to allow them to be used as walking surfaces from the side of the escape route with the ship at large angles of heel.

12.7.8 The escape route from cabins to stairway enclosures shall be as direct as possible, with a minimum number of changes in direction. It shall not be necessary to cross from one side of the ship to the other to reach an escape route. It shall not be necessary to climb more than two decks up or down in order to reach an assembly station or open deck from any passenger space.

12.7.9 External routes shall be provided from open decks, referred to in paragraph 12.7.8, to the survival craft embarkation stations.
12.7.10 Escape routes are to be evaluated by an evacuation analysis early in the design process.\(^{(17)}\).

The analysis shall be used to identify and eliminate, as far as practicable, congestion which may develop during an abandonment, due to normal movement of passengers and crew along escape routes, including the possibility that crew may need to move along these routes in a direction opposite the movement of passengers. In addition, the analysis shall be used to demonstrate the escape arrangements are sufficiently flexible to provide for the possibility that certain escape routes, assembly stations, embarkation stations or survival craft may not be available as a result of a casualty.

12.7.11 Designated walkways to the means of escape with a breadth of at least 600 mm shall be provided in special category and open ro-ro spaces to which any passengers carried have access.

12.7.12 At least two means of escape shall be provided in ro-ro spaces where the crew are normally employed. The escape routes shall provide safe escape to the lifeboat and liferaft embarkation decks and shall be located at the fore and aft ends of the space.

13. Fixed fire detection and fire alarm systems and automatic sprinkler, fire detection and fire alarm systems.

13.1 Any ship shall be equipped with:

13.1.1 An automatic sprinkler, fire detection and fire alarm system in all service spaces, control stations and accommodation spaces, including corridors and stairways (see also Rules for Machinery Installations, Volume III, Section 12); and

13.1.2 A fixed fire detection and alarm system so installed and arranged as to provide smoke detection in service spaces, control stations and accommodation spaces, including corridors and stairways (see also Rules for Machinery Installations, Volume III, Section 12).

13.2 Control stations where water may cause damage to essential equipment may be fitted with a fixed fire-extinguishing system of another type (see also Rules for Machinery Installations, Volume III, Section 12).

13.3 Cabin balconies shall be equipped with a fixed fire detection and fire alarm system and a fixed pressure water-spraying system (see also Rules for Machinery Installations, Volume III, Section 12), when furniture and furnishings on such balconies are not complying with 10.7.

13.4 Smoke detectors need not be fitted in private bathrooms and galleys. Spaces having little or no fire risk such as voids, public toilets and similar spaces need not be fitted with an automatic sprinkler, or fixed fire detection and alarm system.

14. Protection of vehicle, special category and ro-ro spaces

14.1 The subdivision of such spaces in main vertical zones would defeat their intended purpose. Therefore equivalent protection shall be obtained in such spaces on the basis of a horizontal zone concept. A horizontal zone may include special category and ro-ro spaces on more than one deck provided that the total overall clear height for vehicles does not exceed 10 m, whereas the total overall clear height is the sum of distances between deck and web frames of the decks forming the horizontal zone.

14.2 Structural Protection

The boundary bulkheads and decks of special category spaces and ro-ro spaces shall be insulated to "A-60" class standard. However, where a category 4.3 [5], 4.3 [9] or 4.3 [10] space is on one side of the division the standard may be reduced to "A-0". Where fuel oil tanks are below a special category space, the integrity of the deck between such spaces may be reduced to "A-0" standard. Indicators shall be provided on the navigating bridge which shall indicate when any fire door leading to or from the special category space is closed.

14.3 Fixed fire-extinguishing system

14.3.1 Vehicle spaces and ro-ro spaces which are not special category spaces and are capable of being sealed from a location outside of the cargo spaces shall be fitted with a fixed gas fire-extinguishing system of an approved type (see also Rules for Machinery Installations, Volume III, Section 12).

14.3.2 Ro-ro and vehicle spaces not capable of being sealed and special category spaces shall be fitted with a fixed pressure

\(^{(17)}\) Reference is made to the Interim Guidelines for evacuation analyses for new and existing passenger ships adopted by IMO by MSC/Circ. 1238.
water spraying system for manual operation of an approved type (see also Rules for Machinery Installations, Volume III, Section 12).

14.4 Ventilation system

There shall be provided an effective power ventilation system for the special category spaces and closed ro-ro and vehicle spaces sufficient to give at least 10 air changes per hour. Beyond this, a higher air exchange rate is required during the period of loading and unloading. The system for such spaces shall be entirely separated from other ventilation systems and shall be operating at all times when vehicles are in such spaces.

Ventilation ducts serving such spaces capable of being effectively sealed shall be separated for each such space. The system shall be capable of being controlled from a position outside such spaces.

The ventilation shall be such as to prevent air stratification and the formation of air pockets.

Means shall be provided to indicate on the navigating bridge any loss or reduction of the required ventilating capacity.

Arrangements shall be provided to permit a rapid shut-down and effective closure of the ventilation system in case of fire, taking into account the weather and sea conditions.

Ventilation ducts, including dampers, within a common horizontal zone shall be made of steel.

Ducts passing through other horizontal zones or machinery spaces shall be "A-60" class steel ducts complying with 9.11.1 and 9.11.2.

Permanent openings in the side plating, the ends or deckhead of the space shall be so situated that a fire in the cargo space does not endanger stowage areas and embarkation stations for survival craft and accommodation spaces, service spaces and control stations in superstructures and deckhouses above the cargo space.

14.5 Fire detection

There shall be provided a fixed fire detection and fire alarm system of an approved type (see also Rules for Machinery Installations, Volume III, Section 12).

A sample extraction smoke detection system of an approved type (see also Rules for Machinery Installations, Volume III, Section 12) may be accepted as equivalent, except for open ro-ro spaces, open vehicle spaces and special category spaces.

An efficient fire patrol system shall be maintained in special category spaces. In case of a continuous fire watch at all times during the voyage, a fixed fire detection and alarm system is not required therein.

15. Special arrangements in machinery spaces of category A

15.1 The number of skylights, doors, ventilators, openings in funnels to permit exhaust ventilation and other openings to machinery spaces shall be reduced to a minimum consistent with the needs of ventilation and the proper and safe working of the ship.

15.2 Skylights shall be of steel and shall not contain glass panels. Suitable arrangements shall be made to permit the release of smoke in the event of fire, from the space to be protected. The normal ventilation systems may be acceptable for this purpose.

15.3 Means of control shall be provided for permitting the release of smoke and such controls shall be located outside the space concerned so that, in the event of fire, they will not be cut off from the space they serve. The controls shall be situated at one control position or grouped in as few positions as possible. Such positions shall have safe access from the open deck.

15.4 Such doors other than power-operated watertight doors shall be arranged so that positive closure is assured in case of fire in the space, by power-operated closing arrangements or by the provision of self-closing doors capable of closing against an inclination of 3,5° opposing closure and having a fail-safe hook-back facility, provided with a remotely operated release device. Doors for emergency escape trunks need not be fitted with a fail-safe hold-back facility and a remotely operated release device.

15.5 Means of control shall be provided for closing power-operated doors or actuating release mechanism on doors other than power-operated watertight doors. The control shall be located outside the space concerned, where they will not be cut off in the event of fire in the space it serves. The means of control shall be situated at one control position or grouped in as few positions as possible having direct access and safe access from the open deck.

15.6 Windows shall not be fitted in machinery space boundaries. This does not preclude the use of glass in control rooms within the machinery spaces.
15.7 The floor plating of normal passageways shall be made of steel.

16. Special requirements for ships carrying dangerous goods

16.1 Ventilation
Adequate power ventilation shall be provided in enclosed cargo spaces. The arrangement shall be such as to provide for at least six air changes per hour in the cargo space based on an empty cargo space and for removal of vapour from the upper or lower parts of the cargo space, as appropriate.

The fans shall be such as to avoid the possibility of ignition of flammable gas air mixtures. Suitable wire mesh guards shall be fitted over inlet and outlet ventilation openings.

16.2 Insulation of machinery space boundaries
Bulkheads forming boundaries between cargo spaces and machinery spaces of category A shall be insulated to "A-60" standard, unless the dangerous goods are stowed at least 3 m horizontally away from such bulkheads. Other boundaries between such spaces shall be insulated to "A-60" standard.

16.3 Miscellaneous items
The kind and extent of the fire extinguishing equipment are defined in Rules for Machinery Installations, Volume III, Section 12.
Electrical apparatus and cabling are to meet the requirements of Rules for Electrical Installations, Volume IV, Section 16.

C. Regulations on Fire Protection for Passenger Ships carrying not more than 36 Passengers

1. Materials

1.1 The hull, decks, structural bulkheads, superstructures and deckhouses are to be of steel or other equivalent materials (aluminium alloy suitably insulated).

1.2 Components made from aluminium alloys require special treatment, with regard to the mechanical properties of the material in case of temperature increase. In principle, the following is to be observed:

1.2.1 The insulation of "A" or "B" class divisions shall be such that the temperature of the structural core does not rise more than 200°C above the ambient temperature at any time during the applicable fire exposure to the standard fire test.

1.2.2 Special attention shall be given to the insulation of aluminium alloy components of columns, stanchions and other structural members required to support lifeboat and liferaft stowage, launching and embarkation areas, and "A" and "B" class divisions to ensure:
that for such members supporting lifeboat and liferaft areas and "A" class divisions, the temperature rise limitation specified in 1.2.1 shall apply at the end of one hour; and that for such members required to support "B" class divisions, the temperature rise limitation specified in 1.2.1 shall apply at the end of half an hour.

1.2.3 Crowns and casings of machinery spaces of category A shall be of steel construction and be insulated as required by Table 22.3 as appropriate. Openings therein, if any, shall be suitably arranged and protected to prevent the spread of fire.

2. Main vertical zones and horizontal zones

2.1 The hull, superstructure and deckhouses in way of accommodation and service spaces are to be subdivided into main vertical zones the average length and width of which on any deck is generally not to exceed 40 m.
Subdivision is to be effected by "A" class divisions.

As far as practicable, the bulkheads forming the boundaries of the main vertical zones above the bulkhead deck shall be in line with watertight subdivision bulkheads situated immediately below the bulkhead deck. The length and width of main vertical zones may be extended to a maximum of 48 m in order to bring the ends of main vertical zones to coincide with subdivision watertight bulkheads or in order to accommodate a large public space extending for the whole length of the main vertical
zone provided that the total area of the main vertical zone is not greater than 1600 m² on any deck. The length or width of a main vertical zone is the maximum distance between the furthermost points of the bulkheads bounding it. The divisions are to extend from deck to deck and to the shell or other boundaries and shall have insulation values in accordance with Table 22.3. At the edges insulating bridges are to be provided where required.

2.2 Where a main vertical zone is subdivided by horizontal "A" class divisions into horizontal zones for the purpose of providing an appropriate barrier between sprinklered and non-sprinklered zones of the ship the divisions shall extend between adjacent main vertical zone bulkheads and to the shell or exterior boundaries of the ship and shall be insulated in accordance with the fire insulation and integrity values given in Table 22.4.

2.3 On ships designed for special purposes (automobile or railroad car ferries), where the provision of main vertical zone bulkheads would defeat the purpose for which the ships is intended, equivalent means for controlling and limiting a fire are to be provided and specifically approved. Service spaces and ship stores shall not be located on ro-ro decks unless protected in accordance with the applicable regulations.

3. Bulkheads within main vertical zones

3.1 All bulkheads within accommodation and service spaces which are not required to be "A" class divisions shall be at least "B" class or "C" class divisions as prescribed in Table 22.3. All such divisions may be faced with combustible materials.

3.2 All corridor bulkheads where not required to be "A" class shall be "B" class divisions which shall extend from deck to deck. Exceptions may be permitted when continuous "B" class ceilings are fitted on both sides of the bulkhead or when the accommodations are protected by an automatic sprinkler system.

3.3 All bulkheads required to be "B" class division, except corridor bulkheads prescribed in 3.2, shall extend from deck to deck and to the shell or other boundaries unless the continuous "B" class ceilings or linings fitted on both sides of the bulkheads are at least of the same fire resistance as the bulkhead, in which case the bulkhead may terminate at the continuous ceiling or lining.

4. Fire integrity of bulkheads and decks

4.1 In addition to complying with the specific provisions for fire integrity of bulkheads and deck mentioned elsewhere in this Section, the minimum fire integrity of all bulkheads and decks shall be as prescribed in Tables 22.3 to 22.4.

4.2 The following requirements shall govern application of the tables:

Table 22.3 shall apply to bulkheads, separating adjacent spaces.

Table 22.4 shall apply to deck, separating adjacent spaces.

4.3 For the purpose of determining the appropriate fire integrity standards to be applied to boundaries between adjacent spaces, such spaces are classified according to their fire risk as shown in the following categories [1] to [11]. Where the contents and use of a space are such that there is a doubt as to its classification for the purpose of this regulation, or where it is possible to assign two or more classifications to a space, it shall be treated as a space within the relevant category having the most stringent boundary requirements. Smaller, enclosed rooms within a spopenings to that space are to be considered separate spaces. The fire integrity of the boundary bulkheads of such smaller rooms shall be as prescribed in Tables 22.3 and 22.4. The title of each column is intended to be typical rather than restrictive.

The number in parentheses preceding each category refers to the applicable column or row number in the Tables.
Table 22.3 Fire integrity of bulkheads separating adjacent spaces

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corridors</td>
<td>C⁵</td>
<td>B-0⁵</td>
<td>A-0⁵</td>
<td>B-0³</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td></td>
<td>A-15</td>
<td>A-0⁴</td>
<td>A-15</td>
</tr>
<tr>
<td>Service spaces (low risk)</td>
<td>C⁵</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td></td>
<td>A-0</td>
<td></td>
<td>A-0</td>
<td></td>
</tr>
<tr>
<td>Machinery spaces of category A</td>
<td>⁷</td>
<td>A-0</td>
<td>A-0</td>
<td>A-60</td>
<td>⁷</td>
<td>A-60</td>
<td></td>
<td>A-0</td>
<td></td>
<td>A-0</td>
<td></td>
</tr>
<tr>
<td>Other machinery spaces</td>
<td>A-0⁴</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>⁷</td>
<td>A-0</td>
<td></td>
<td>A-0</td>
<td></td>
<td>A-0</td>
<td></td>
</tr>
<tr>
<td>Cargo spaces</td>
<td>⁷</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>⁷</td>
<td>A-0</td>
<td></td>
<td>A-30</td>
<td></td>
<td>A-0</td>
<td></td>
</tr>
<tr>
<td>Service spaces (high risk)</td>
<td>⁷</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>⁷</td>
<td>A-30</td>
<td></td>
<td>A-0</td>
<td></td>
<td>A-0</td>
<td></td>
</tr>
<tr>
<td>Open decks</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes to be applied to Tables 22.3 and 22.4, as appropriate

1. For clarification as to which applies see 3 and 5
2. Where spaces are of the same numerical category and superscript 2 appears, a bulkhead or deck of the ratings shown in the tables in only required when the adjacent spaces are for a different purpose, e.g. in category [9]. A galley next to a galley does not require a bulkhead but a galley next to a paint room requires an "A-0" bulkhead.
3. Bulkheads separating the wheelhouse and chartroom from each other may be "B-0" rating.
4. In determining the applicable fire integrity standard of a boundary between two spaces which are protected by an automatic sprinkler system, the lesser of the two values given in the tables shall apply.
5. For the application of 2.1 "B-0" and "C", where appearing in Table 22.3 shall be read as "A-0".
6. Fire insulation need not be fitted if the machinery space of category [7], in the opinion of the Administration, has little or no fire risk.
7. Where a 7 appears in the tables, the division is required to be of steel or other equivalent material but is not required to be of "A" class standard.

For the application of 2.1 a 7, where appearing in Table 22.4 except for categories 8 and 10, shall be read as "A-0".
Table 22.4 Fire integrity of decks separating adjacent spaces

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control stations</td>
<td>[1]</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-30</td>
<td></td>
</tr>
<tr>
<td>Stairways</td>
<td>[4]</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td></td>
</tr>
<tr>
<td>Cargo spaces</td>
<td>[8]</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td></td>
</tr>
</tbody>
</table>

See note under Table 22.3

[1] Control stations
Spaces containing emergency sources of power and lighting. Wheelhouse and chart-room. Spaces containing the ship’s radio equipment. Fire control stations. Control room for propulsion machinery when located outside the propulsion machinery space. Spaces containing centralized fire alarm equipment.

[2] Corridors
Passenger and crew corridors and lobbies.

Spaces used for public spaces, lavatories, cabins, offices, hospitals, cinemas, games and hobby rooms, barber ships, pantries containing no cooking appliances and similar spaces.

[4] Stairways
Interior stairways, lifts, totally enclosed emergency escape trunks and escalators (other than those wholly contained within machinery spaces) and enclosures thereto. In this connection, a stairways which is enclosed only at one level shall be regarded as part of the space from which it is not separated by a fire door.

[5] Service spaces (low risk)
Lockers and store-rooms not having provisions for the storage of flammable liquids and having areas less than 4 m² and drying rooms and laundries.

[6] Machinery spaces of category A
Spaces and trunks to such spaces which contain:
internal combustion machinery used for main propulsion; or
internal combustion machinery used for purposes other than main propulsion where such machinery has in the aggregate a total power output of not less than 375 kW; or any oil-fired boiler or oil fuel unit.

[7] Other machinery spaces

Spaces, other than machinery spaces of category A, containing propulsion machinery, boilers, oil fuel units, steam and internal combustion engines, generators and major electrical machinery, oil filling stations, refrigerating, stabilizing, ventilation and air conditioning machinery, and similar spaces, and trunks to such spaces. Electrical equipment rooms (auto-telephone exchange, air-conditioning duct spaces)

[8] Cargo spaces

All spaces used for cargo (including cargo oil tanks) and trunkways and hatchways to such spaces, other than special category spaces.

[9] Service spaces (high risk)

Galleys, pantries containing cooking appliances, paint and lamp rooms, lockers and store-rooms having areas of 4 m² or more, spaces for the storage of flammable liquids, saunas and workshops other than those forming part of the machinery spaces.

[10] Open decks

Open deck spaces and enclosed promenades having little or no fire risk. Enclosed promenades shall have no significant fire risk, meaning that furnishing should be restricted to deck furniture. In addition, such spaces shall be naturally ventilated by permanent openings. Air spaces (the space outside superstructures and deckhouses).

4.4 Continuous "B" class ceilings or linings, in association with the relevant decks or bulkheads, may be accepted as contributing wholly or in part, to the required insulation and integrity of a division.

4.5 See B.4.5.

5. Protection of stairways and lifts in accommodation and service spaces.

5.1 All stairways in accommodation and service spaces are to be of steel frame or other approved equivalent construction; they are to be arranged within enclosures formed by "A" Class divisions, with effective means of closure for all openings. The following exceptions are admissible:

5.1.1 A stairway connecting only two decks need not be enclosed, provided that the integrity of the pierced deck is maintained by suitable bulkheads or doors at one of the two decks. When a stairway is closed at one 'tweendeck space, the stairway enclosed shall be protected in accordance with the tables for decks.

5.1.2 Stairways fitted within a closed public space need not be enclosed.

5.2 Stairway enclosures are to be directly accessible from the corridors and of sufficient area to prevent congestion, having in mind the number of persons likely to use them in an emergency. Within the perimeter of such stairway enclosures, only public spaces, lockers of non-combustible material providing storage for safety equipment and open information counters are permitted. Only public spaces, corridors, public toilets, special category spaces, other escape stairways required by 12.1.3 and external areas are permitted to have direct access to these stairway enclosures. Small corridors or lobbies used to separate an enclosed stairway from galleys or main laundries may have direct access to the stairway provided they have a minimum deck area of 4.5 m², a width of no less than 900 mm and contain a fire hose station.

5.3 Lift trunks shall be so fitted as to prevent the passage of smoke and flame from one ‘ween deck to another and shall be provided with means of closing so as to permit the control of draught and smoke.

6. Openings in "A" class divisions

6.1 Where "A" class divisions are penetrated for the passage of electric cables, pipes, trunks, ducts, etc, or for girders,
beams or other structural members, arrangements shall be made to ensure that the fire resistance is not impaired, subject to the provisions of 6.6.

6.2 All openings in the divisions are to be provided with permanently attached means of closing which shall be at least as effective for resisting fire as the divisions. This does not apply for hatches between cargo, special category, store and baggage spaces and between such spaces and the weather decks.

6.3 The construction of all doors and door frames in "A" class divisions, with the means of securing them when closed, shall provide resistance to fire as well as to the passage of smoke and flame, equivalent to that of the bulkheads in which the doors are situated. Such doors and door frames shall be approved by BKI and constructed of steel or other equivalent material. Watertight doors need not be insulated.

6.4 It shall be possible for each door to be opened and closed from each side of the bulkhead by one person only.

6.5 Fire doors in main vertical zone bulkheads, galley boundaries and stairway enclosures other than power-operated watertight doors and those which are normally locked, shall satisfy the following requirements:

6.5.1 The doors shall be self-closing and be capable of closing against an angle of inclination of up to 3.5° opposing closure.

6.5.2 The approximate time of closure for hinged fire doors shall be no more than 40 s and no less than 10 s from the beginning of their movement with the ship in upright position. The approximate uniform rate of closure for sliding fire doors shall be of no more than 0.2 m/s and no less than 0.1 m/s with the ship in the upright position.

6.5.3 The doors, except those for emergency escape trunks shall be capable of remote release from the continuously manned central control station, either simultaneously or in groups and shall be capable of release also individually from a position at both sides of the door. Release switches shall have an on-off function to prevent automatic resetting of the system.

6.5.4 Hold-back hooks not subject to central control station release are prohibited.

6.5.5 A door closed remotely from the central control station shall be capable of being re-opened at both sides of the door by local control. After such local opening, the door shall automatically close again (see also Rules for Electrical Installations, Volume IV, Section 9)

6.5.6 Indication shall be provided at the fire door indicator panel in the continuously manned central control station whether each of the remote-released doors are closed.

6.5.7 The release mechanism shall be so designed that the door will automatically close in the event of disruption of the control system or main source of electric power.

6.5.8 Local power accumulators for power-operated doors shall be provided in the immediate vicinity of the doors to enable the doors to be operated after disruption of the control system or main source of electric power at least ten times (fully opened and closed) using the local controls (see also Rules for Machinery Installations, Volume III, Section 14).

6.5.9 Disruption of the control system or main source of electric power at one door shall not impair the safe functioning of the other doors.

6.5.10 Remote-released sliding or power-operated doors shall be equipped with an alarm that sounds for at least 5 s but no more than 10 s after the door is released from the central control station and before the door begins to move and continue sounding until the door is completely closed.

6.5.11 A door designed to re-open upon contacting an object in its path shall re-open not more than 1 m from the point of contact.

6.5.12 Double-leaf doors equipped with a latch necessary to their fire integrity shall have a latch that is automatically activated by the operation of the doors when released by the control system.

6.5.13 Doors giving direct access to special category spaces which are power-operated and automatically closed need not be equipped with the alarms and remote release mechanisms required in 6.5.3 and 6.5.10.

Reference is made to the Fire Test Procedure Code, Annex 1, Part 3, adopted by IMO by Resolution MSC 61/67.
6.5.14 The components of the local control system shall be accessible for maintenance and adjusting.

6.5.15 Power-operated doors shall be provided with a control system of an approved type which shall be able to operate in case of fire\(^{19}\). This system shall satisfy the following requirements:

6.5.15.1 the control system shall be able to operate the door at the temperature of at least 200 °C for at least 60 min, served by the power supply;

6.5.15.2 the power supply for all other doors not subject to fire shall nor be impaired; and

6.5.15.3 at temperatures exceeding 200 °C the control system shall be automatically isolated from the power supply and shall be capable of keeping the door closed up to at least 945 °C.

6.6 Where a space is protected by an automatic sprinkler system or fitted with a continuous "B" class ceiling, openings in decks not forming steps in main vertical zones nor bounding horizontal zones shall be closed reasonably tight and such decks shall meet the "A" class integrity requirements in so far as is reasonable and practicable.

6.7 The requirements for "A" class integrity of the outer boundaries of a ship shall not apply to glass partitions, windows and sidescuttles, provided that there is no requirement for such boundaries to have "A" class integrity in 8.3. The requirements for "A" class integrity of the outer boundaries of the ship shall not apply to exterior doors, except for those in superstructures and deckhouses facing life-saving appliances, embarkation and external muster station areas, external stairs and open decks used for escape routes. Stairway enclosure doors need not meet this requirement.

6.8 Except for watertight, weathertight doors (semi-watertight doors), doors leading to the open deck and doors which need reasonably gastight, all "A" class doors located in stairways, public spaces and main vertical zone bulkheads in escape routes shall be equipped with a self-closing hose port of material, construction and fire resistance which is equivalent to the door into which it is fitted, and shall be a 150 mm square clear opening with the door closed and shall be inset into the lower edge of the door, opposite the door hinges, or in the case of sliding doors, nearest the opening.

7. Openings in "B" class divisions

7.1 Where "B" class divisions are penetrated for the passage of electric cables, pipes, trunks, ducts, etc, or for the fitting of ventilation terminals, lighting fixtures and similar devices, arrangement shall be made to ensure that the fire resistance is not impaired. See also B.7.1.

7.2 Doors and door frames in "B" class divisions and means of securing them shall provide a method of closure which shall have resistance to fire equivalent to that of divisions\(^{20}\) except that ventilation openings may be permitted in the lower portion of such doors. Where such opening is in or under a door the total net area of any such opening or openings shall not exceed 0,05 m². Alternatively, a non-combustible air balance duct between the cabin and the corridor, and located below the sanitary unit is permitted where the cross-sectional area of the duct does not exceed 0,05 m². All ventilation openings shall be fitted with a grill made of non-combustible material. Doors shall be non-combustible and approved by BKI.

7.3 Cabin doors in "B" class division shall be of a self closing type. Hold-backs are not permitted.

7.4 The requirements for "B" class integrity of the outer boundaries of a ship shall not apply to glass partitions, windows and sidescuttles. Similarly, the requirements for "B" class integrity shall not apply to exterior doors in superstructures and deckhouses.

7.5 Where an automatic sprinkler system is fitted:

7.5.1 Openings in decks not forming steps in main vertical zones nor bounding horizontal zones shall be closed reasonably tight and such decks shall meet the "B" class integrity requirements in so far as is reasonable and practicable and

7.5.2 Openings in corridor bulkheads of "B" class materials shall be protected in accordance with the provisions of 3.2.

\(^{19}\) Reference is made to the Fire Test Procedure Code, Annex 1, Part 3, adopted by IMO by Resolution MSC 61(67).

\(^{20}\) Reference is made to the Fire Test Procedure Code, Annex 1, Part 3, adopted by IMO by Resolution MSC 61(67).
8. **Windows and side scuttles**

8.1 All windows and sidescuttles in bulkheads within accommodation and service spaces and control stations other than those to which the provisions of 6.7 and 7.4 apply, shall be so constructed as to preserve the integrity requirements of the type of bulkheads in which they are fitted.

8.2 Notwithstanding the requirements of the Tables 22.3 and 22.4, all windows and sidescuttles in bulkheads separating accommodation and service spaces and control stations from weather shall be constructed with frames of steel or other suitable material. The glass shall be retained by a metal glazing bead or angle.

8.3 Windows facing life-saving appliances, embarkation and muster areas, external stairs and open decks used for escape routes, and windows situated below liferaft and escape slide embarkation areas shall have the fire integrity as required in the Tables 22.1 and 22.2. Where automatic dedicated sprinkler heads are provided for windows (see also Rules for Machinery Installations, Volume III, Section 12), A-0 windows may be accepted as equivalent. Windows located in the ship's side below the lifeboat embarkation areas shall have the fire integrity at least equal to "A-0" class.

9. **Ventilation systems**

9.1 Ventilation ducts shall be of non-combustible material. Short ducts, however, not generally exceeding 2 m in length and with a cross-section not exceeding 0.02 m² need not be non-combustible, subject to the following conditions:

9.1.1 These ducts shall be of a material having low flame spread characteristics which is type approved;

9.1.2 They may only be used at the end of the ventilation device;

9.1.3 They shall not be situated less than 600 mm, measured along the duct, from an opening in an "A" or "B" class division including continuous "B" class ceilings.

9.2 Where a thin plated duct with a free cross-sectional area equal to or less than 0.02 m² pass through "A" class bulkheads or decks, the opening shall be lined with a steel sheet sleeve having a thickness of at least 3 mm and a length of at least 200 mm, divided preferably into 100 mm on each side of the bulkhead or, in the case of the deck, wholly laid on the lower side of the decks pierced. Where ventilation ducts with a free cross-sectional area exceeding 0.02 m² pass through "A" class bulkheads or decks, the opening shall be lined with a steel sheet sleeve. However, where such ducts are of steel construction and pass through a deck or bulkhead, the ducts and sleeves shall comply with the following:

9.2.1 The sleeves shall have a thickness of at least 3 mm and a length of at least 900 mm. When passing through bulkheads, this length shall be divided preferably into 450 mm on each side of the bulkhead. These ducts, or sleeves lining such ducts, shall be provided with fire insulation. The insulation shall have at least the same fire integrity as the bulkhead or deck through which the duct passes.

9.2.2 Ducts with a free cross-sectional area exceeding 0.075 m² shall be fitted with fire dampers in addition to the requirements of 9.2.1. The fire damper shall operate automatically but shall also be capable of being closed manually from both sides of the bulkhead or deck. The damper shall be provided with an indicator which shows whether the damper is open or closed. Fire dampers are not required, however, where ducts pass through spaces surrounded by "A" class division, without serving those spaces, provided those ducts have the same fire integrity as the divisions which they pierce.

The fire dampers should be easily accessible. Where they are placed behind ceilings and linings, these latter should be provided with an inspection door on which a plate reporting the identification number of the fire damper. Such plate and identification number should be placed also on any remote control required.

9.2.3 The following arrangement shall be of an approved type.

9.2.3.1 Fire dampers, including relevant means of operation

9.2.3.2 Duct penetrations through "A" class divisions. Where steel sleeves are directly joined to ventilation ducts by means of riveted or screwed flanges or by welding, the test is not required.

9.3 The main inlets and outlets of all ventilation systems shall be capable of being closed from outside the respective
Where they pass through accommodation spaces or spaces containing combustible materials, the exhaust ducts from galley ranges shall be constructed of insulated "A" class divisions. Each exhaust duct shall be fitted with:

9.4.1 A grease trap readily removable for cleaning;
9.4.2 A fire damper located in the lower end of the duct;
9.4.3 Arrangements, operable from within the galley, for shutting off the exhaust fan; and
9.4.4 Fixed means for extinguishing a fire within the duct (see Rules for Machinery Installations, Volume III, Section 12).

Such measures as are practicable shall be taken in respect of control stations outside machinery spaces in order to ensure that ventilation, visibility and freedom from smoke are maintained, so that in the event of fire the machinery and equipment contained therein may be supervised and continue to function effectively. Alternative and separate means of air supply shall be provided; air inlets of the two sources of supply shall be so disposed that the risk of both inlets drawing in smoke simultaneously is minimized. Such requirements need not apply to control stations situated on, and opening on to, an open deck.

The ventilation systems for machinery spaces of category A, vehicle spaces, ro-ro spaces, galleys, special category spaces and cargo spaces shall, in general, be separated from each other and from the ventilation system serving other spaces. Except, that the galley ventilation systems need not be completely separated, but may be served by separate ducts from a ventilation unit serving other spaces. In any case, an automatic fire damper shall be fitted in the galley ventilation duct near the ventilation unit.

Ducts provided for the ventilation of machinery spaces of category A, galleys, vehicle spaces, ro-ro cargo spaces or special category spaces shall not pass through accommodation spaces, service spaces or control stations unless the ducts are either complying with 9.7.1 or 9.7.2:

9.7.1 Constructed of steel having a thickness of at least 3 mm and 5 mm for ducts the widths or diameters of which are up to and including 300 mm and 760 mm and over respectively and, in the case of such ducts, the widths or diameters of which are between 300 mm and 760 mm having a thickness to be obtained by interpolation;

fitted with automatic fire dampers close to the boundaries penetrated; and

insulated to "A-60" standard from the machinery spaces, galleys, vehicle spaces, ro-ro cargo spaces or special category spaces to a point at least 5 m beyond each fire damper; or

9.7.2 Constructed of steel suitable supported and stiffened in accordance with 9.7.1 and insulated to "A-60" standard throughout the accommodation spaces, service spaces or control stations;

except that penetrations of main zone divisions shall also comply with the requirements of 9.11.

Ducts provided for the ventilation to accommodation spaces, service spaces or control stations shall not pass through machinery spaces of category A, galleys, vehicle spaces, ro-ro cargo spaces or special category spaces unless either complying with 9.8.1 or 9.8.2:

9.8.1 The ducts where they pass through a machinery space of category A, galley, vehicle space, ro-ro cargo space or special category space are constructed of steel, suitable supported and stiffened in accordance with 9.7.1; and automatic fire dampers are fitted close to the boundaries penetrated; and

integrity of the machinery space, galley, vehicle space, ro-ro cargo space or special category space boundaries is maintained at the penetrations; or

9.8.2 The ducts where they pass through a machinery space of category A, galley, vehicle space, ro-ro cargo space or special category space are constructed of steel, suitable supported and stiffened in accordance with 9.7.1 and are insulated to "A-60" standard within the machinery space, galley, vehicle space, ro-ro cargo space or special category space;

except that penetrations of main zone division shall also comply with the requirements of 9.11.
9.9 Ventilation ducts with a free cross-sectional area exceeding 0.02 m² passing through "B" class bulkheads shall be lined with steel sheet sleeves of 900 mm in length divided preferably into 450 mm on each side of the bulkheads unless the duct is of steel for this length.

9.10 Power ventilation of accommodation spaces, service spaces, cargo spaces, control stations and machinery spaces shall be capable of being stopped from an easily accessible position outside the space being served. This position should not be readily cut off in the event of a fire in the spaces served. The means provided for stopping the power ventilation of the machinery spaces shall be entirely separate from the means provided for stopping ventilation of other spaces.

9.11 Where in a passenger ship it is necessary that a ventilation duct passes through a main vertical zone division, a fail-safe automatic closing fire damper shall be fitted adjacent to the division. The damper shall also be capable of being manually closed from each side of the division. The operating position shall be readily accessible and be marked in red light-reflecting colour. The duct between the division and the damper shall be of steel or other equivalent material and, if necessary, insulated to comply with the requirements of 6.1. The damper shall be fitted on at least one side of the division with a visible indicator showing whether the damper is in the open position.

10. Restriction of combustible materials

10.1 Except in cargo spaces, mail rooms, baggage rooms, saunas23) or refrigerated compartments of service spaces, all linings, grounds, draughts stops, ceilings and insulations shall be of non-combustible materials. Partial bulkheads or decks used to subdivide a space for utility or artistic treatment shall also be of non-combustible material.

10.2 Vapour barriers and adhesives used in conjunction with insulation, as well as insulation of pipe fittings, for cold service systems need not be non-combustible but they shall be kept to the minimum quantity practicable and their exposed surfaces shall have low flame spread characteristics

10.3 The following surfaces shall have low flame spread characteristics24):

10.3.1 Exposed surfaces in corridors and stairway enclosures, and of bulkheads, wall and ceiling linings in all accommodation and service spaces (except saunas) and control stations;

10.3.2 Concealed or inaccessible spaces in accommodation, service spaces and control stations.

10.3.3 Exposed surfaces of cabin balconies, except for natural hard wood decking systems.

10.4 The total volume of combustible facings, mouldings, decorations and veneers in any accommodation and service space shall not exceed a volume equivalent to 2.5 mm veneer on the combined area of the walls and ceilings. Furniture fixed to linings, bulkheads or decks need not be included in the calculation of the total volume of combustible materials. This applies also to traditional wooden benches and wooden linings on bulkheads and ceilings in saunas. In the case of ships fitted with an automatic sprinkler system, the above volume may include some combustible material used for erection of "C" class divisions.

10.5 Combustible materials used on surfaces and linings covered by the requirements of 10.3 shall have a calorific value25) not exceeding 45 MJ/m² of the area for the thickness used. This does not apply to surfaces of furniture fixed to linings or bulkheads as well as to traditional wooden benches and wooden linings on bulkheads and ceilings in saunas.

10.6 Furniture in stairway enclosures shall be limited to seating. It shall be fixed, limited to six seats on each deck in each stairway enclosure, be of restricted fire risk, and shall not restrict the passenger escape route. Furniture shall not be permitted in passenger and crew corridors forming escape routes in cabin areas. Locker of non-combustible material, providing storage for safety equipment, may be permitted within these areas.

Drinking water dispensers and ice cube machines may be permitted in corridors provided they are fixed and do not restrict the width of the escape route. This applies as well to decorative flower arrangements, statues or other objects d’art such as paintings and tapestries in corridors and stairways.

23) Insulation material in saunas shall be non-combustible.
10.7 Furniture and furnishings on cabin balconies shall comply with the following, unless such balconies are protected by a fixed pressure water-spraying and fixed fire detection and fire alarm systems (see B.10.7).

10.8 Paints, varnishes and other finishes used on exposed interior surfaces, including cabin balconies with the exclusion of natural hard wood decking systems, shall not be capable of producing excessive quantities of smoke and toxic products.

10.9 Primary deck coverings, if applied within accommodation and service spaces and control stations, or if applied on cabin balconies, shall be of approved material which will not readily ignite, or give rise to smoke or toxic or explosive hazards at elevated temperatures.

10.10 Waste receptacles (see B.10.10).

11. Details of construction

11.1 In accommodation and service spaces, control stations, corridors and stairways:

- air spaces enclosed behind ceilings, panelling or linings shall be suitably divided by close fitting draught stops not more than 14 m apart;
- in the vertical direction, such enclosed air spaces, including those behind linings of stairways, trunks, etc shall be closed at each deck.

11.2 The construction of ceilings and bulkheads shall be such that it will be possible, without impairing the efficiency of the fire protection, for the fire patrols to detect any smoke originating in concealed and inaccessible spaces.

11.3 Non-load bearing partial bulkheads separating adjacent cabin balconies shall be capable of being opened by the crew from each side for the purpose of fighting fires.

11.4 The cargo holds and machinery spaces shall be capable of being effectively sealed such as to prevent the inlet of air.

Doors leading to machinery spaces of group A are to be provided with self-closing devices and 2 securing devices. All other machinery spaces, which are protected by a gas fire extinguishing system, are to be equipped with self-closing doors.

11.5 Construction and arrangement of saunas. See B.11.6.

12. Means of escape

12.1 Unless expressly provided otherwise in this regulation, at least two widely separated and ready means of escape shall be provided from all spaces or group of spaces. Lifts shall not be considered as forming one of the required means of escape.

12.2 Doors in escape routes shall, in general, open in-way of the direction of escape, except that

12.2.1 individual cabin doors may open into the cabins in order to avoid injury to persons in the corridor when the door is opened, and

12.2.2 doors in vertical emergency escape trunks may open out of the trunk in order to permit the trunk to be used both for escape and access.

12.3 Stairways and ladders shall be arranged to provide ready means of escape to the lifeboat and liferaft embarkation deck from all passenger and crew spaces and from spaces in which the crew is normally employed, other than machinery spaces. In particular, the following provisions shall be complied with:

12.3.1 Below the bulkhead deck, two means of escape, at least one of which shall be independent of watertight doors, shall be provided from each watertight compartment or similarly restricted space or group of spaces.

26) Reference is made to the Fire Test Procedure Code, Annex 1, Part 2, adopted by IMO by Resolution MSC 61(67).

27) Reference is made to the Fire Test Procedure Code, Annex 1, Part 6, adopted by IMO by Resolution MSC 61(67).
Due regard being paid to the nature and location of spaces and to the number of persons who normally might be employed there, exceptions are possible, however, stairways shall not be less than 800 mm in clear width with handrails on both sides.

12.3.2 Above the bulkhead deck, there shall be at least two means of escape from each main vertical zone or similarly restricted space or group of spaces at least one of which shall give access to a stairway forming a vertical escape.

12.3.3 At least one of the means of escape required by paragraphs 12.3.1 and 12.3.2 shall consist of a readily accessible enclosed stairway, which shall provide continuous fire shelter from the level of its origin to the appropriate lifeboat and liferaft embarkation decks, or to the uppermost weather deck if the embarkation deck does not extend to the main vertical zone being considered. In the latter case, direct access to the embarkation deck by way of external open stairways and passageways shall be provided and shall have emergency lighting (see also Rules for Electrical Installations, Volume IV, Section 3 and 11) and slip-free surfaces under foot. Boundaries facing external open stairways and passageways forming part of an escape route and boundaries in such a position that their failure during a fire would impede escape to the embarkation deck shall have fire integrity, including insulation values, in accordance with the Tables 22.3 and 22.4. The widths, number and continuity of escapes shall be as follows:

12.3.3.1 Stairways shall not be less than 900 mm in clear width. Stairways shall be fitted with handrails on each side. The minimum clear width of stairways shall be increased by 10 mm for every one person provided for in excess of 90 persons. The maximum clear width between handrails where stairways are wider than 900 mm shall be 1800 mm. The total number of persons to be evacuated by such stairways shall be assumed to be two thirds of the crew and the total number of passengers in the areas served by such stairways.

12.3.3.2 All stairways sized for more than 90 persons shall be aligned fore and aft.

12.3.3.3 Doorways and corridors and intermediate landings included in means of escape shall be sized in the same manner as stairways.

12.3.3.4 Stairways shall not exceed 3.5 m in vertical rise without the provision of a landing and shall not have an angle of inclination greater than 45°.

12.3.3.5 Landings at each deck level shall be not less than 2 m² in area and shall increase by 1 m² for every 10 persons provided for in excess of 20 persons but need not exceed 16 m², except for those landings servicing public spaces having direct access onto the stairway enclosure.

12.3.4 Stairways serving only a space and a balcony in that space shall not be considered as forming one of the means of escape.

12.3.5 A corridor, lobby, or part of a corridor from which there is only one route of escape shall be prohibited. Dead-end corridors used in service areas which are necessary for the practical utility of the ship, such as fuel oil stations and athwartship supply corridors, shall be permitted, provided such dead-end corridors are separated from crew accommodation areas and are inaccessible from passenger accommodation areas. Also, a part of the corridor that has a depth not exceeding its width is considered a recess or local extension and is permitted.

12.3.6 In addition to the emergency lighting (see also Rules for Electrical Installations, Volume IV, Section 3 and 11) the means of escape including stairways and exits, shall be marked by lighting or photoluminescent strip indicators placed not more than 0.3 m above the deck at all points of the escape route including angles and intersections. The marking shall enable passengers to identify all the routes of escape and readily identify the escape exits. If electric illumination is used, it shall be supplied by the emergency source of power and it shall be so arranged that the failure of any single light or cut in a lighting strip, will not result in the marking being ineffective. Additionally, all escape route signs and fire equipment location markings shall be of photoluminescent material or marked by lighting. Such lighting or photoluminescent equipment shall be of an approved type.

12.3.7 Public Spaces spanning three or more decks and contain combustibles such as furniture and enclosed spaces such as shops, offices and restaurants shall have at each level within the space two means of escape, one of which shall have direct access to an enclosed vertical means of escape as mentioned under 12.3.3.

12.4 If a radiotelegraph station has no direct access to the open deck, two means of escape from or access to such station

28) Reference is made to the Fire Safety Systems Code, adopted by IMO by Resolution MSC 98 (73).
29) Reference is made to the Fire Safety Systems Code, adopted by IMO by Resolution MSC 98(73).
shall be provided, one of which may be a porthole or window of sufficient size or another means.

12.5 In special category spaces the number and disposition of the means of escape both below and above the bulkhead deck shall be satisfactory as mentioned under 12.3.1, 2 and 3.

12.6 Two means of escape shall be provided from each machinery space. In particular, the following provisions shall be complied with:

12.6.1 Where the space is below the bulkhead deck the two means of escape shall consist of either:

12.6.1.1 two sets of steel ladders as widely separated as possible, leading to doors in the upper part of the space similarly separated and from which access is provided to the appropriate lifeboat and liferaft embarkation decks. One of these ladders shall be located within a protected enclosure having fire integrity, including insulation values, in accordance with the Tables 22.3 and 22.4 for a category [4] space, from the lower part of the space to a safe position outside the space. Self-closing doors of the same fire integrity standards shall be fitted in the enclosure. The ladder shall be fixed in such a way that heat is not transferred into the enclosure through non-insulated fixing points. The protected enclosure shall have minimum internal dimensions of at least 800 mm × 800 mm, and shall have emergency lighting provisions.

12.6.1.2 or one steel ladder leading to a door in the upper part of the space from which access is provided to the embarkation deck and in a position well separated from the ladder referred to, a steel door capable of being operated from each side and which provides access to a safe escape route from the lower part of the space to the embarkation deck.

12.6.2 Where the space is above the bulkhead deck, two means of escape shall be as widely separated as possible and the doors leading from such means of escape shall be in a position from which access is provided to the appropriate lifeboat and liferaft embarkation decks. Where such escapes require the use of ladders these shall be of steel.

12.6.3 A ship of a gross tonnage less than 1000 may be dispensed with one of the means of escape, due regard being paid to the width and disposition of the upper part of the space; and a ship of a gross tonnage of 1000 and above, may be dispensed with one means of escape from any such space so long as either a door or a steel ladder provides a safe escape route to the embarkation deck, due regard being paid to the nature and location of the space and whether persons are normally employed in that space.

12.6.4 In the steering gear room, a second means of escape shall be provided when the emergency steering position is located in that space unless there is direct access to the open deck.

12.6.5 One of the escape routes from the machinery spaces where the crew is normally employed shall avoid direct access to any special category space.

12.6.6 Two means of escape shall be provided from a machinery control room within a machinery space, at least one of which shall provide continuous fire shelter to a safe position outside the machinery space.

12.7 Additional requirements for ro-ro passenger ships

See B.12.7.

13. Fixed fire detection and fire alarm systems and automatic sprinkler, fire detection and fire alarm systems

In any ship there shall be installed throughout each separate zone, whether vertical or horizontal, in all accommodation and service spaces and, where it is considered necessary, in control stations, except spaces which afford no substantial fire risk (such as void spaces, sanitary spaces, etc.) either:

13.1 a fixed fire detection and fire alarm system (see also Rules for Machinery Installations, Volume III, Section 12); or

13.2 an automatic sprinkler, fire detection and fire alarm system and in addition a fixed fire detection and fire alarm system so installed and arranged as to provide smoke detection in corridors, stairways and escape routes within accommodation spaces.

14. Protection of vehicle, special category and ro-ro spaces

14.1 The subdivision of such spaces in main vertical zones would defeat their intended purpose. Therefore equivalent protection shall be obtained in such spaces on the basis of a horizontal zone concept. A horizontal zone may include special
category and ro-ro spaces on more than one deck provided that the total overall clear height for vehicles does not exceed 10 m, whereas the total overall clear height is the sum of distances between deck and web frames of the decks forming the horizontal zone.

14.2 Structural protection

The boundary bulkheads and decks of special category spaces shall be insulated as required for category [11] spaces in Tables 22.3 and 22.4, whereas the boundary bulkheads and decks of closed and open ro-ro spaces shall have fire integrity as required for category [8] spaces in Tables 22.3 and 22.4. Indicators shall be provided on the navigating bridge which shall indicate when any fire door leading to or from the special category space is closed.

14.3 Fixed fire-extinguishing system

14.3.1 Vehicle spaces and ro-ro spaces which are not special category spaces and are capable of being sealed from a location outside of the cargo spaces shall be fitted with a fixed gas fire-extinguishing system of an approved type (see also Rules for Machinery Installations, Volume.III, Section 12).

14.3.2 Ro-ro and vehicle spaces not capable of being sealed and special category spaces shall be fitted with a fixed pressure water spraying system for manual operation of an approved type (see also Rules for Machinery Installations, Volume III, Section 12).

14.4 Ventilation system

There shall be provided an effective power ventilation system for the special category spaces sufficient to give at least 10 air changes per hour and for closed ro-ro and vehicle spaces sufficient to give at least 6 air changes per hour. Beyond this, a higher air exchange rate is required during the period of loading and unloading. The system for such spaces shall be entirely separated from other ventilation systems and shall be operating at all times when vehicles are in such spaces.

Ventilation ducts serving such spaces capable of being effectively sealed shall be separated for each such space. The system shall be capable of being controlled from a position outside such spaces.

The ventilation shall be such as to prevent air stratification and the formation of air pockets.

Means shall be provided to indicate on the navigating bridge any loss or reduction of the required ventilating capacity.

Arrangements shall be provided to permit a rapid shut-down and effective closure of the ventilation system in case of fire, taking into account the weather and sea conditions.

Ventilation ducts, including dampers, within a common horizontal zone shall be made of steel.

Ducts passing through other horizontal zones or machinery spaces shall be "A-60" class steel ducts complying with 9.11. Permanent openings in the side plating, the ends or deckhead of the spaces shall be so situated that a fire in the cargo space does not endanger stowage areas and embarkation stations for survival craft and accommodation spaces, service spaces and control stations in superstructures and deckhouses above the cargo spaces.

14.5 Fire detection

There shall be provided a fixed fire detection and fire alarm system of an approved type (see also Rules for Machinery Installations, Volume III, Section 12).

A sample extraction smoke detection system of an approved type (see also Rules for Machinery Installations, Volume III, Section 12) may be accepted as equivalent, except for open ro-ro spaces, open vehicle spaces and special category spaces. An efficient fire patrol system shall be maintained in special category spaces. In case of a continuous fire watch at all times during the voyage, a fixed fire detection and alarm system is not required therein.

15. Special arrangements in machinery spaces of category A

15.1 The number of skylights, doors, ventilators, openings in funnels to permit exhaust ventilation and other openings to machinery spaces shall be reduced to a minimum consistent with the needs of ventilation and the proper and safe working of the ship.

15.2 Skylights shall be of steel and shall not contain glass panels. Suitable arrangements shall be made to permit the release of smoke in the event of fire, from the space to be protected. The normal ventilation systems may be acceptable for this purpose.

15.3 Means of control shall be provided for permitting the release of smoke and such controls shall be located outside the space concerned so that, in the event of fire, they will not be cut off from the space they serve. The controls shall be situated...
at one control position or grouped in as few positions as possible. Such positions shall have safe access from the open deck.

15.4 Such doors other than power-operated watertight doors shall be arranged so that positive closure is assured in case of fire in the space, by power-operated closing arrangements or by the provision of self-closing doors capable of closing against an inclination of 3.5° opposing closure and having a fail-safe hook-back facility, provided with a remotely operated release device. Doors for emergency escape trunks need not be fitted with a fail-safe hold-back facility and a remotely operated release device.

15.5 Means of control shall be provided for closing power-operated doors or actuating release mechanism on doors other than power-operated watertight doors. The control shall be located outside the space concerned, where they will not be cut off in the event of fire in the space it serves. The means of control shall be situated at one control position or grouped in as few positions as possible having direct access and safe access from the open deck.

15.6 Windows shall not be fitted in machinery space boundaries. This does not preclude the use of glass in control rooms within the machinery spaces.

15.7 The floor plating of normal passageways shall be made of steel.

16. Special requirements for ships carrying dangerous goods

16.1 Ventilation

Adequate power ventilation shall be provided in enclosed cargo spaces. The arrangement shall be such as to provide for at least six air changes per hour in the cargo space based on an empty cargo space and for removal of vapours from the upper or lower parts of the cargo space, as appropriate.

The fans shall be such as to avoid the possibility of ignition of flammable gas air mixtures. Suitable wire mesh guard shall be fitted over inlet and outlet ventilation openings.

16.2 Insulation of machinery space boundaries

Bulkheads forming boundaries between cargo spaces and machinery spaces of category A shall be insulated to "A-60" standard, unless the dangerous goods are stowed at least 3 m horizontally away from such bulkheads. Other boundaries between such spaces shall be insulated to "A-60" standard.

16.3 Miscellaneous items

The kind and extent of the fire extinguishing equipment are defined in Rules for Machinery Installations, Volume III, Section 12.

Electrical apparatus and cabling are to meet the requirements of Rules for Electrical Installations, Volume IV, Section 14.

D. Regulations on Fire Protection for Cargo Ships of 500 GT and over

1. Materials

1.1 The hull, decks, structural bulkheads, superstructures and deckhouses are to be of steel except where in special cases the use of other suitable material may be approved, having in mind the risk of fire.

1.2 Components made from aluminium alloys require special treatment, with regard to the mechanical properties of the material in case of temperature increase. In principle, the following is to be observed:

1.2.1 The insulation of "A" or "B" class divisions shall be such that the temperature of the structural core does not rise more than 200 °C above the ambient temperature at anytime during the applicable fire exposure to the standard fire test.

1.2.2 Special attention shall be given to the insulation of aluminium alloy components of columns, stanchions and other structural members required to support lifeboat and liferaft stowage, launching and embarkation areas, and "A" and "B" class divisions to ensure:

that for such members supporting lifeboat and liferaft areas and "A" class divisions, the temperature rise limitation specified in 1.2.1 shall apply at the end of one hour; and
that for such members required to support "B" class divisions, the temperature rise limitation specified in 1.2.1 shall apply at the end of half an hour.

1.2.3 Crowns and casings of machinery spaces of category A shall be of steel construction and be insulated as required by Table 22.5 as appropriate. Openings therein, if any, shall be suitably arranged and protected to prevent the spread of fire.

2. Accommodation and service spaces

2.1 One of the following methods of protection shall be adopted in accommodation and service areas:

2.1.1 Method IC The construction of all internal divisional bulkheading of non-combustible "B" or "C" class divisions generally without the installation of an automatic sprinkler, fire detection and fire alarm system in the accommodation and service spaces, except as required by 10.1; or

2.1.2 Method IIC The fitting of an automatic sprinkler, fire detection and fire alarm system, as required by 10.2 for the detection and extinction of fire in all spaces in which fire might be expected to originate, generally with no restriction on the type of internal divisional bulkheading; or

2.1.3 Method IICC The fitting of a fixed fire detection and fire alarm system, as required by 10.3, in all spaces in which a fire might be expected to originate, generally with no restriction on the type of internal divisional bulkheading, except that in no case shall the area of any accommodation space or spaces bounded by an "A" or "B" class division exceed 50 m². Consideration may be given to increasing this area for public spaces.

2.2 The requirements for the use of non-combustible materials in construction and insulation of the boundary bulkheads of machinery spaces, control stations, service spaces, etc., and the protection of stairway enclosures and corridors will be common to all three methods.

3. Bulkheads within the accommodation and service spaces

3.1 All bulkheads required to be "B" class divisions shall extend from deck to deck and to the shell or other boundaries, unless continuous "B" class ceiling or linings are fitted on both sides of the bulkhead in which case the bulkhead may terminate at the continuous ceiling or lining.

3.2 Method IC All bulkheads not required by this or other requirements of this Section to be "A" or "B" class divisions, shall be of at least "C" class construction.

3.3 Method IIC There shall be no restriction on the construction of bulkheads not required by this or other requirements of this Section to be "A" or "B" class divisions except in individual cases where "C" class bulkheads are required in accordance with Table 22.5.

3.4 Method IICC There shall be no restriction on the construction of bulkheads not required by this Section to be "A" or "B" class divisions except that area of any accommodation space or space bounded by a continuous "A" or "B" class division shall in no case exceed 50 m² except in individual cases where "C" class bulkheads are required in accordance with Table 22.5. Consideration may be given to increasing this area for public spaces.

4. Fire integrity of bulkheads and decks

4.1 In addition to complying with the specific provisions for fire integrity of bulkheads and decks mentioned elsewhere in this Section, the minimum fire integrity of bulkheads and decks shall be as prescribed in Tables 22.5 and 22.6

4.2 On ships intended for the carriage of dangerous goods the bulkheads forming boundaries between cargo spaces and machinery spaces of category A shall be insulated to "A-60" standard, unless the dangerous goods are stowed at least 3 m horizontally away from such bulkheads. Other boundaries between such spaces shall be insulated to "A-60" standard.

4.3 Continuous "B" class ceiling or linings, in association with the relevant decks or bulkheads may be accepted as contributing, wholly or in part, to the required insulation and integrity of a division.
4.4 External boundaries which are required in 1.1 to be of steel or other equivalent material may be pierced for the fitting of windows and sidescutles provided that there is no requirement for such boundaries to have "A" class integrity elsewhere in these requirements. Similarly, in such boundaries which are not required to have "A" class integrity, doors may be of materials to meet the requirements of their application.

4.5 The following requirements shall govern application of the Tables:

Tables 22.5 and 22.6 shall apply respectively to the bulkheads and decks separating adjacent spaces.

4.6 For determining the appropriate fire integrity standards to be applied to divisions between adjacent spaces, such spaces are classified according to their fire risk as shown in the following categories [1] to [11]. Where the contents and use of a space are such that there is a doubt as to its classification for the purpose of this regulation, or where it is possible to assign two or more classifications to a space, it shall be treated as a space within the relevant category having the most stringent boundary requirements. Smaller, enclosed room within a space that have less than 30% communicating openings to that space are to be considered separate spaces. The fire integrity of the boundary bulkheads of such smaller rooms shall be as prescribed in Tables 22.5 and 22.6. The title of each category is intended to be typical rather than restrictive. The number in parentheses preceding each category refers to the applicable column or row number in the tables.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control stations</td>
<td>A-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>A-15</td>
<td>A-60</td>
<td>A-15</td>
<td>A-60</td>
<td>A-60</td>
<td>10</td>
<td>A-60</td>
</tr>
<tr>
<td>Corridors</td>
<td>C</td>
<td>B-0</td>
<td>A-0</td>
<td>A-0</td>
<td>B-0</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>10</td>
<td>A-30</td>
</tr>
<tr>
<td>Accommodation spaces</td>
<td>C</td>
<td>B-0</td>
<td>A-0</td>
<td>A-0</td>
<td>B-0</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>10</td>
<td>A-30</td>
</tr>
<tr>
<td>Stairways</td>
<td>B-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>10</td>
<td>A-30</td>
</tr>
<tr>
<td>Service spaces (low risk)</td>
<td>C</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>10</td>
<td>A-0</td>
</tr>
<tr>
<td>Machinery spaces of category A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-60</td>
<td>10</td>
<td>A-60</td>
</tr>
<tr>
<td>Other machinery spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>10</td>
<td>A-0</td>
</tr>
<tr>
<td>Cargo spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>A-0</td>
<td>10</td>
<td>A-0</td>
<td>10</td>
<td>A-0</td>
</tr>
<tr>
<td>Service spaces (high risk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>A-0</td>
</tr>
<tr>
<td>Open decks</td>
<td></td>
<td>10/8</td>
</tr>
<tr>
<td>Ro-ro and vehicle spaces</td>
<td></td>
<td>10/8</td>
</tr>
</tbody>
</table>

Notes to be applied to Tables 22.5 and 22.6, as appropriate

1. No special requirements are imposed upon bulkheads in methods IIC and IIIC fire protection.
2. In case of method IIC "B" class bulkheads of "B-0" rating shall be provided between spaces or groups of spaces of 50 m² and over in area.
3. For clarification as to which applies, see 3 and 5.
4. Where spaces are of the same numerical category and superscript 4 appears, a bulkhead or deck of the rating shown in the Tables in only required when the adjacent spaces are for a different purpose, e.g. in category [9]. A galley next to a paint room requires an "A-0" bulkhead but a galley next to a paint room requires an "A-0" bulkhead.
5. Bulkheads separating the wheelhouse, chartroom and radio room from each other may be "B-0" rating.
6. "A-0" rating may be used if no dangerous goods are intended to be carried or if such goods are stowed not less than 3 m horizontally from such bulkhead.
7. For cargo spaces in which dangerous goods are intended to be carried 4.2 applies.
8. Bulkheads and decks separating ro-ro cargo spaces shall be capable of being closed reasonably gastight and such divisions shall have "A" class integrity in so far as is reasonable and practicable.
9. Fire insulation need not be fitted if the machinery spaces in category [7], has little or no fire risk.
10. Where a 10 appears in the Tables, the division is required to be of steel or other equivalent material but is not required to be of "A" class standard.
Table 22.6 Fire integrity of decks separating adjacent spaces

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control stations</td>
<td>[1] A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>10 A-60</td>
<td></td>
</tr>
<tr>
<td>Cargo spaces</td>
<td>[8] A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>10</td>
<td>A-0</td>
<td>10 A-0</td>
<td>A-0</td>
</tr>
<tr>
<td>Service spaces (high risk)</td>
<td>[9] A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>10 A-60</td>
<td></td>
</tr>
<tr>
<td>Open decks</td>
<td>[10] 10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

See notes under Table 22.5

[1] Control stations
Spaces containing emergency sources of power and lighting. Wheelhouse and chart-room. Spaces containing the ship’s radio equipment. Fire control stations. Control room for propulsion machinery when located outside the machinery space. Spaces containing centralized fire alarm equipment.

[2] Corridors
Corridors and lobbies.

Spaces used for public spaces, lavatories, cabins, offices, hospitals, cinemas, games and hobby rooms, barber ships, pantries containing no cooking appliances and similar spaces.

[4] Stairways
Interior stairways, lifts, totally enclosed emergency escape trunks and escalators (other than those wholly contained within the machinery spaces) and enclosures thereto.
In this connection, a stairway which is enclosed only at one level shall be regarded as part of the space from which it is not separated by a fire door.

[5] Service spaces (low risk)
Lockers and store-rooms not having provision for the storage of flammable liquids and having areas less than 4 m² and drying rooms and laundries.

[6] Machinery spaces of category A
Spaces and trunks to such spaces which contain:
internal combustible machinery used for main propulsion; or
internal combustible machinery used for purposes other than main propulsion where such machinery has in the aggregate a total power output of not less than 375 kW; or
any oil-fired boiler or oil fuel unit.

[7] Other machinery spaces
Spaces, other than machinery spaces of category A, containing propulsion machinery, boilers, oil fuel units, steam and internal combustion engines, generators and major electrical machinery, oil filling stations, refrigerating, stabilizing, ventilation and air conditioning machinery, and similar spaces, and trunks to such spaces. Electrical equipment rooms (auto-telephone exchange, air-conditioning duct spaces).
[8] Cargo spaces

All spaces used for cargo (including cargo oil tanks) and trunkways and hatchways to such spaces.

[9] Service spaces (high risk)

Galley, pantries containing cooking appliances, saunas, paint and lamp rooms, lockers and store-rooms having areas of 4 m² or more, spaces for the storage of flammable liquids, and workshops other than those forming part of the machinery spaces.

[10] Open decks

Open deck spaces and enclosed promenades having no fire risk. Enclosed promenades shall have no significant fire risk, meaning that furnishing should be restricted to deck furniture. In addition, such spaces shall be naturally ventilated by permanent openings. Air spaces (the space outside superstructures and deckhouses).

5. Protection of stairways and lift trunks in accommodation spaces, service spaces and control stations

5.1 Stairways which penetrate only a single deck shall be protected at least at one level by at least "B-0" class divisions and self-closing doors. Lifts which penetrate only a single deck shall be surrounded by "A-0" class divisions with steel doors at both levels. Stairways and lift trunks which penetrate more than a single deck shall be surrounded by at least "A-0" class divisions and be protected by self-closing doors at all levels.

5.2 On ships having accommodation for 12 persons or less, where stairways penetrate more than a single deck and where there are at least two escape routes direct to the open deck at every accommodation level, consideration may be given reducing the "A-0" requirements of 5.1 to "B-0".

5.3 All stairways shall be of steel frame construction or of other equivalent material.

6. Openings in fire resisting divisions

6.1 Where "A" or "B" class division are penetrated for the passage of electric cables, pipes, trunks, ducts, etc. or for girders, beams or other structural members, arrangements shall be made to ensure that the fire resistance is not impaired.

6.2 Except for hatches between cargo, special category, store, and baggage spaces, and between such spaces and the weather decks, all openings shall be provided with permanently attached means of closing which shall be at least as effective for resisting fires as the divisions in which they are fitted 30).

6.3 The fire resistance of doors shall be equivalent to that of the division in which they are fitted. Doors and door frames in "A" class divisions shall be constructed of steel. Doors in "B" class divisions shall be non-combustible. Doors fitted in boundary bulkheads of machinery spaces of category A shall be reasonably gastight and self-closing. In ships constructed according to method IC the use of combustible materials in doors separating cabins from individual interior sanitary accommodation such as showers may be permitted.

6.4 Doors required to be self-closing shall not be fitted with hold-back hooks. However, hold-back arrangements fitted with remote release devices of the fail-safe type may be utilized.

6.5 In corridor bulkheads ventilation openings may be permitted only in and under class B-doors of cabins and public spaces. Ventilation openings are also permitted in B-doors leading to lavatories, offices, pantries, lockers and store rooms. Except as permitted below, the openings shall be provided only in the lower half of a door. Where such opening is in or under a door the total net area of any such opening or openings shall not exceed 0,05 m². Alternatively, a non-combustible air balance duct routed between the cabin and the corridor, and located below the sanitary unit is permitted where the cross-sectional area of the duct does not exceed 0,05 m². Ventilation openings, except those under the door, shall be fitted with a grille made of non-combustible material.

6.6 Watertight doors need not be insulated.

30) Reference is made to the Fire Test Procedure Code, Annex 1, Part 3, adopted by IMO by Resolution MSC 61(67).
7. **Ventilation systems**

7.1 **Ventilation ducts** shall be of non-combustible material. Short ducts, however, not generally exceeding 2 m in length and with a cross-section not exceeding 0.02 m² need not be non-combustible, subject to the following conditions:

7.1.1 these ducts shall be of a material having low flame spread characteristics which is type approved 31).

7.1.2 they may only be used at the end of the ventilation device;

7.1.3 they shall not be situated less than 600 mm, measured along the duct, from an opening in an "A" or "B" class division including continuous "B" class ceilings.

7.2 Where a thin plated duct with a free cross-sectional area equal to, or less than, 0.02 m² passes through "A" class bulkheads or decks, the opening shall be lined with a steel sheet sleeve having a thickness of at least 3 mm and a length of at least 200 mm, divided preferably into 100 mm on each side of the bulkhead or, in the case of the deck, wholly laid on the lower side of the decks pierced. Where ventilation ducts with a free cross-sectional area exceeding 0.02, m² pass through "A" class bulkheads or decks, the opening shall be lined with a steel sheet sleeve. However, where such ducts are of steel construction and pass through a deck or bulkhead, the ducts and sleeves shall comply with the following:

7.2.1 The sleeves shall have a thickness of at least 3 mm and a length at least 900 mm. When passing through bulkheads, this length shall be divided preferably into 450 mm on each side of the bulkhead. These ducts, or sleeves lining such ducts, shall be provided with fire insulation. The insulation shall have at least the same fire integrity as the bulkhead or deck through which the duct passes.

7.2.2 Ducts with a free cross-sectional area exceeding 0.075 m² shall be fitted with the fire dampers in addition to the requirements of 7.2.1. The fire dampers shall also be capable of being closed manually from both sides of the bulkhead or deck. The damper shall be provided with an indicator which shows whether the damper is open or closed. Fire dampers are not required, however, where ducts pass through spaces surrounded by "A" class divisions, without serving those spaces, provided those ducts have the same fire integrity as the divisions which they pierce.

7.2.3 The following arrangement shall be of an approved type 32).

7.2.3.1 fire dampers, including relevant means of operation

7.2.3.2 duct penetrations through "A" class divisions. Where steel sleeves are directly joined to ventilation ducts by means of riveted or screwed flanges or by welding, the test is not required.

7.3 The main inlets and outlets of all ventilation systems shall be capable of being closed from outside the respective spaces in the event of a fire.

7.4 Where they pass through accommodation spaces or spaces containing combustible materials, the exhaust ducts from galley ranges shall be constructed of insulated "A" class divisions. Each exhaust duct shall be fitted with:

7.4.1 a grease trap readily removable for cleaning;

7.4.2 a fire damper located in the lower end of the duct;

7.4.3 arrangements, operable from within the galley, for shutting off the exhaust fan; and

7.4.4 fixed means for extinguishing a fire within the duct (see Rules for Machinery Installations, Volume III, Section 12).

7.5 Such measures as are practicable shall be taken in respect of control stations outside machinery spaces in order to ensure that ventilation, visibility and freedom from smoke are maintained, so that in the event of fire the machinery and equipment contained therein may be supervised and continue to function effectively. Alternative and separate means of air supply shall be provided; air inlets of two sources of supply shall be so disposed that the risk of both inlets drawing in smoke simultaneously is minimized. Such requirements need not apply to control stations situated on, and opening on to, an open deck.

31) Reference is made to the Fire Test Procedure Code, Annex 1, Part 5, adopted by IMO by Resolution MSC 61(67).
32) Reference is made to the Fire Test Procedure Code, Annex 1, Part 3, adopted by IMO by Resolution MSC 61(67).
7.6 The ventilation system for machinery spaces of category A, vehicle spaces, ro-ro spaces, galleys, special category spaces and cargo spaces shall, in general, be separated from each other and from the ventilation systems serving other spaces. Except that galley ventilation on cargo ships of less than 4000 gross tonnage need not be completely separated, but may be served by separate ducts from a ventilation unit serving other spaces. In any case, an automatic fire damper shall be fitted in the galley ventilation ducts near the ventilation unit.

7.7 Ducts provided for the ventilation of machinery spaces of category A, galleys, vehicle spaces, ro-ro cargo spaces or special category spaces shall not pass through accommodation spaces, service spaces or control stations unless the ducts are either:

7.7.1 constructed of steel having a thickness of at least 3 mm and 5 mm for ducts the widths or diameters of which are up to and including 300 mm and 760 mm and over respectively and, in the case of such ducts, the widths or diameters of which are between 300 mm and 760 mm having a thickness to be obtained by interpolation;

suitably supported and stiffened;

insulated to "A-60" standard from the machinery spaces, galleys, vehicle spaces, ro-ro cargo spaces or special category spaces to a point at least 5 m beyond each fire damper; or

7.7.2 constructed of steel suitable supported and stiffened and insulated to "A-60" standard throughout the accommodation spaces, service spaces or control stations.

7.8 Ducts provided for the ventilation to accommodation spaces, service spaces or control stations shall not pass through machinery spaces of category A, galleys, vehicle spaces, ro-ro cargo spaces or special category spaces unless either:

7.8.1 the ducts where they pass through a machinery space of category A, galley, vehicle space, ro-ro cargo space or special category space are constructed of steel, suitably supported and stiffened and automatic fire dampers are fitted close to the boundaries penetrated; and

the integrity of the machinery space, galley, vehicle space, ro-ro cargo space or special category space boundaries is maintained at the penetrations; or

7.8.2 the ducts where they pass through a machinery space of category A, galley, vehicle space, ro-ro cargo space or special category space are constructed of steel, suitably supported and stiffened, and

are insulated to "A-60" standard throughout the accommodation spaces, service spaces or control stations.

7.9 Ventilation ducts with a free cross-sectional area exceeding 0.02 m² passing through "B" class bulkheads shall be lined with steel sheet sleeves of 900 mm in length divided preferably into 450 mm on each side of the bulkheads unless the duct is of steel for this length.

7.10 Power ventilation of accommodation spaces, service spaces, cargo spaces, control stations and machinery spaces shall be capable of being stopped from an easily accessible position outside the space being served. This position should not be readily cut off in the event of a fire in the spaces served. The means provided for stopping the power ventilation of the machinery spaces shall be entirely separate from the means provided for stopping ventilation of other spaces.

8. Restricted use of combustible materials

8.1 All exposed surfaces in corridors and stairway enclosures and surfaces including grounds in concealed or inaccessible spaces in accommodation and service spaces and control stations shall have low flame-spread characteristics. Exposed surfaces of ceilings in accommodation and service spaces (except saunas) and control stations shall have low flame-spread characteristics.\(^{33}\).

8.2 Paints, varnishes and other finished used on exposed interior surfaces shall not offer an undue fire hazard and shall not be capable of producing excessive quantities of smoke \(^{34}\).

8.3 Primary deck coverings, if applied, in accommodation and service spaces and control stations shall be of an approved

\(^{33}\) Reference is made to the Fire Test Procedure Code, Annex 1, Part 5, adopted by IMO by Resolution MSC 61(67).

\(^{34}\) Reference is made to the Fire Test Procedure Code, Annex 1, Part 2, adopted by IMO by Resolution MSC 61(67).
material which will not readily ignite, or give rise to toxic or explosive hazardous at elevated temperatures\textsuperscript{35).

8.4 Waste receptacles (see B.10.10)

9. Details of construction

9.1 Method IC

In accommodation and service spaces and control stations all linings, draught stops, ceilings and their associated grounds shall be of non-combustible materials.

9.2 Method IIC and IIIC

In corridors and stairway enclosures serving accommodation and service spaces and control stations, ceilings, linings, draught stops and their associated grounds shall be of non-combustible materials.

9.3 Methods IC, IIC and IIIC

9.3.1 Except in cargo spaces or refrigerated compartments of service spaces, insulating materials shall be non-combustible. Vapour barriers and adhesives used in conjunction with insulation, as well as the insulation of pipe fittings, for cold service systems, need not be of non-combustible materials, but they shall be kept to the minimum quantity practicable and their exposed surfaces shall have low flame-spread characteristics.

9.3.2 Where non-combustible bulkheads, linings and ceilings are fitted in accommodation and service spaces they may have a combustible veneer with a calorific value36 not exceeding 45 MJ/m2 of the area for the thickness used.

9.3.3 The total volume of combustible facings, moulding, decorations and veneers in any accommodation and service space bounded by non-combustible bulkheads, ceilings and linings shall not exceed a volume equivalent to a 2.5 mm veneer on the combined area of the walls and ceilings.

9.3.4 Air spaces enclosed behind ceilings, panellings, or linings, shall be divided by close fitting draught stops spaced not more than 14 m apart. In the vertical direction, such air spaces, including those behind linings of stairways, trunks, etc., shall be closed at each deck.

10. Fixed fire detection and fire alarm systems, automatic sprinkler, fire detection and fire alarm systems

10.1 In ships in which method IC is adopted, a smoke detection system shall be so installed and arranged as to protect all corridors, stairways and escape routes within accommodation spaces.

10.2 In ships in which method IIC is adopted, an automatic sprinkler, fire detection and fire alarm system shall be so installed and arranged as to protect accommodation spaces, galleys, and other service spaces, except spaces which afford no substantial fire risk such as void spaces, sanitary spaces, etc. In addition, a fixed fire detection and fire alarm system shall be so arranged and installed as to provide smoke detection in all corridors, stairways and escape routes within accommodation spaces.

10.3 In ships in which method IIIC is adopted, a fixed fire detection and fire alarm system shall be so installed and arranged as to detect the presence of fire in all accommodation spaces and service spaces, except spaces which afford no substantial fire risk such as void spaces, sanitary spaces, etc. In addition, a fixed fire detection and fire alarm system shall be so arranged and installed as to provide smoke detection in all corridors, stairways and escape routes within accommodation spaces.

11. Means of escape

11.1 Unless expressly provided otherwise in this regulation, at least two widely separated and ready means of escape shall be provided from all spaces and group of spaces. Lifts shall not be considered as forming one of the required means of escape.

35) Reference is made to the Fire Test Procedure Code, Annex 1, Part 6, adopted by IMO by Resolution MSC 61(67).

36) The gross calorific value measured in accordance with ISO Standard 1716 - “Building Materials - Determination of Calorific Potential”, should be quoted.
11.2 Doors in escape routes shall, in general, open in-way of the direction of escape, except that

11.2.1 Individual cabin doors may open into the cabins in order to avoid injury to persons in the corridor when the door is opened, and

11.2.2 Doors in vertical emergency escape trunks may open out of the trunk in order to permit the trunk to be used both for escape and access.

11.3 Stairways and ladders shall be so arranged as to provide, from all accommodation spaces and from spaces in which the crew is normally employed, other than machinery spaces, ready means of escape to the open deck and thence to the lifeboats and liferafts. In particular the following general provisions shall be complied with:

11.3.1 At all levels of accommodation there shall be provided at least two widely separated means of escape from each restricted space or group of spaces.

11.3.2 Below the lowest open deck the main means of escape shall be a stairway and the second escape may be a trunk or stairway.

11.3.3 Above the lowest open deck the means of escape shall be stairways or doors to an open deck or a combination thereof.

11.4 Stairways and corridors used as means of escape shall be not less than 700 mm in clear width and shall have a handrail on one side. Stairways and corridors with a clear width of 1800 mm and above shall have handrails on both sides. The angle of inclination of stairways shall be, in general, 45°, but not greater than 50°, and in machinery spaces and small spaces not more than 60°. Doorways which give access to a stairway shall be of the same size as the stairway 37).

11.5 Dispense may be given with one of the means of escape, due regard being paid to the nature and location of spaces and to the numbers of persons who normally might be quartered or employed there.

11.6 No dead-end corridors having a length of more than 7 m shall be accepted. A dead-end corridor is a corridor or part of a corridor from which there is only one escape route.

11.7 If a radiotelegraph station has no direct access to the open deck, two means of access to or egress from such station shall be provided, one of which may be a porthole or window of sufficient size or other means to provide an emergency escape.

11.8 At least two means shall be provided in ro-ro cargo spaces where the crew are normally employed. The escape routes shall provide safe escape to the lifeboat and liferaft embarkation decks and shall be located at the fore and aft ends of the space.

11.9 Two means of escape shall be provided from each machinery space of category A. In particular, one of the following provisions shall be complied with:

11.9.1 Two sets of steel ladders as widely separated as possible leading to doors in the upper part of the space similarly separated and from which access is provided to the open deck. One of these ladders shall be located within a protected enclosure having fire integrity, including insulation values, in accordance with the Tables 22.5 and 22.6 for category [4] space from the lower part of the space to a safe position outside the space. Self-closing fire doors having the same fire integrity shall be fitted in the enclosure. The ladder shall be fixed in such a way that heat is not transferred into the enclosure through non-insulated fixing points. The enclosure shall have minimum internal dimensions of at least 800 mm × 800 mm, and shall have emergency lighting provisions; or

11.9.2 One steel ladder leading to a door in the upper part of the space from which access is provided to the open deck and additionally, in the lower part of the space and in a position well separated from the ladder referred to, a steel door capable of being operated from each side and which provides access to a safe escape route from the lower part of the space to the open deck.

11.9.3 For a ship of a gross tonnage less than 1000, dispense may be given with one of the means of escape due regard being paid to the dimension and disposition of the upper part of the space.

37) Reference is made to the Fire Safety Systems Code adopted by IMO by Resolution MSC 98(73).
11.9.4 In the steering gear room, a second means of escape shall be provided when the emergency steering position is located in that space unless there is direct access to the open deck.

11.10 From machinery spaces other than those of category A; two escape routes shall be provided except that a single escape route may be accepted for spaces that are entered only occasionally, and for spaces where the maximum travel distance to the door is 5 m or less.

12. Miscellaneous items

12.1 The cargo holds and machinery spaces shall be capable of being effectively sealed such as to prevent the inlet of air. Doors fitted in boundary bulkheads of machinery spaces of category A shall be reasonably gastight and self-closing.

12.2 Construction and arrangement of saunas, see B.11.6

13. Protection of cargo spaces

13.1 Fire-extinguishing arrangements in cargo spaces

Fire-extinguishing arrangements according to Rules for Machinery Installations, Volume III, Section 12 are to be provided for cargo spaces.

14. Protection of vehicle and ro-ro spaces

14.1 Fire detection

There shall be provided a fixed fire detection and fire alarm system of an approved type (see also Rules for Machinery Installations, Volume III, Section 12).

A sample extraction smoke detection system of an approved type (see also Rules for Machinery Installations, Volume III, Section 12) may be accepted as equivalent, except for open ro-ro and vehicle spaces.

14.2 Fire-extinguishing arrangements

14.2.1 Vehicle spaces and ro-ro spaces which are capable of being sealed from a location outside of the cargo spaces shall be fitted with a fixed gas fire-extinguishing system of an approved type (see also Rules for Machinery Installations, Volume III, Section 12).

14.2.2 Ro-ro and vehicle spaces not capable of being sealed shall be fitted with a fixed pressure water spraying system for manual operation of an approved type (see also Rules for Machinery Installations, Volume III, Section 12).

14.3 Ventilation system

Closed vehicle and ro-ro spaces shall be provided with an effective power ventilation system sufficient to give at least 6 air changes per hour.

Beyond this, a higher air exchange rate may be required during the period of loading and unloading and/or depending on the electrical installation.

The system for such cargo spaces shall be entirely separate from other ventilation systems and shall be operating at all times when vehicles are in such spaces. Ventilation ducts serving such cargo spaces capable of being effectively sealed shall be separated for each such space. The system shall be capable of being controlled from a position outside such spaces.

The ventilation shall be such as to prevent air stratification and the formation of air pockets.

Means shall be provided to indicate on the navigating bridge any loss of the required ventilating capacity.

Arrangements shall be provided to permit a rapid shut-down and effective closure of the ventilation system in case of fire, taking into account the weather and sea conditions.

Ventilation duct, including dampers, shall be made of steel.

Permanent openings in the side plating, the ends or deckhead of the spaces shall be so situated that a fire in the cargo space does not endanger stowage areas and embarkation stations for survival craft and accommodation spaces, service spaces and control stations in superstructures and deckhouses above the cargo spaces.
15. Special requirements for ships carrying dangerous goods

15.1 Ventilation

Adequate power ventilation shall be provided in enclosed cargo spaces. The arrangement shall be such as to provide for at least six air changes per hour in the cargo space based on an empty cargo space and for removal of vapours from the upper or lower parts of the cargo space, as appropriate.

The fans shall be such as to avoid the possibility of ignition of flammable gas air mixtures. Suitable wire mesh guard shall be fitted over inlet and outlet ventilation openings.

Natural ventilation shall be provided in enclosed cargo spaces intended for the carriage of solid dangerous goods in bulk, where there is no provision for mechanical ventilation.

15.2 Insulation of machinery space boundaries

Bulkheads forming boundaries between cargo spaces and machinery spaces of category A shall be insulated to "A-60" standard, unless the dangerous goods are stowed at least 3 m horizontally away from such bulkheads. Other boundaries between such spaces shall be insulated to "A-60" standard.

15.3 Separation of spaces

15.3.1 In ships having ro-ro spaces, a separation shall be provided between a closed ro-ro space and an adjacent open ro-ro space. The separation shall be such as to minimize the passage of dangerous vapours and liquids between such spaces. Alternatively, such separation need not be provided if the ro-ro space is considered to be a closed cargo space over its entire length and shall fully comply with requirements of 14.

15.3.2 In ships having ro-ro spaces, a separation shall be provided between a closed ro-ro space and the adjacent weather deck. The separation shall be such as to minimize the passage of dangerous vapours and liquids between such spaces. Alternatively, a separation need not be provided if the closed ro-ro spaces are in accordance with those required for the dangerous goods carried on the adjacent weather deck.

15.4 Miscellaneous items

The kind and extent of the fire extinguishing equipment are to meet the requirements of Rules for Machinery Installations, Volume III, Section 12.

Electrical apparatus and cablings are to meet the requirements of Rules for Electrical Installations, Volume IV, Section 17.

E. Regulations on Fire Protection for Cargo Ships of less than 500 GT

In general the requirements stated under D are to be observed for cargo ships of less than 500 GT.

Deviations from the requirements of this subsection may be approved considering the ship's size and ship's type.

F. Regulations on Fire Protection for Oil Tankers of 500 GT and over

(These requirements are additional to those of D except as provided otherwise in 3 and 4).

1. Application

1.1 Unless expressly provided otherwise, this Section shall apply to tankers carrying crude oil and petroleum products having a flashpoint not exceeding 60 °C (closed-cup test), as determined by an approved flashpoint apparatus, and a Reid vapour pressure which is below atmospheric pressure and other liquid products having a similar fire hazard.

1.2 Where liquid cargoes other than those referred to in 1.1 or liquefied gases which introduce additional fire hazard are intended to be carried the requirements for Ships Carrying Liquefied Gases in Bulk (Volume IX) and the requirements for Ships Carrying Dangerous Chemicals in Bulk (Volume X) are to be taken into account.

1.3 Tankers carrying petroleum products having a flashpoint exceeding 60 °C (closed cup test) as determined by an approved flashpoint apparatus shall comply with the provisions of D.
1.4 Chemical tankers and gas carriers shall comply with the requirements of this Section, unless other and additional safety precautions according the requirements for Ships Carrying Liquefied Gases in Bulk (Volume IX) and the requirements for Ships Carrying Dangerous Chemicals in Bulk (Volume X) apply.

2. Construction

2.1 Exterior boundaries of superstructures and deckhouses enclosing accommodation and including any overhanging decks which support such accommodation, shall be constructed of steel and insulated to "A-60" standard for the whole of the portions which face the cargo area and on the outward sides for a distance of 3 m from the end boundary facing the cargo area. In the case of the sides of those superstructures and deckhouses, such insulation shall be carried up to the underside of the bridge deck.

2.2 Entrances, air inlets and openings to accommodation spaces, service spaces and control stations shall not face the cargo area. They shall be located on the end bulkhead not facing the cargo area and/or on the outboard side of the superstructure or deckhouse at a distance of at least 4% of the length of the ships but not less than 3 m from the end of the superstructure or deckhouse facing the cargo area. This distance, however, need not exceed 5 m.

In this area doors to those spaces not having access to accommodation spaces, service spaces and control stations, such as cargo control stations, provision rooms, store-rooms and engine rooms may be permitted provided that the boundaries of the spaces are insulated to "A-60" standard. Bolted plates for the removal of machinery may be fitted within the limits of such areas. Navigating bridge doors and wheelhouse windows may be located within this area, so long as they are so designed that a rapid and efficient gas and vapour tightening of the navigating bridge can be ensured.

2.3 Windows and side scuttles facing the cargo area and on the sides of the superstructures and deck-houses within the limits specified in 2.2 shall be of the fixed (non-opening) type 38).

Such windows and side scuttles, except wheelhouse windows, shall be constructed to "A-60" class standard and shall be of an approved type, except the "A-0" class standard is acceptable for windows and sidescuttles outside the limits specified in 2.1.

2.4 Skylights to cargo pump rooms shall be of steel, shall not contain any glass and shall be capable of being closed from outside the pump room.

2.5 Furthermore the requirements of Section 24, Paragraph A.4 are to be observed.

3. Structure, bulkheads within accommodation and service spaces and details of construction

For the application of the requirements of D.2, D.3 and D.9 to tankers, only method IC as defined in D.2.1.1 shall be used.

4. Fire integrity of bulkheads and decks

4.1 In lieu of D.4 and in addition to complying with the specific provisions for fire integrity of bulkheads and decks mentioned elsewhere in this Section the minimum fire integrity of bulkheads and decks shall be as prescribed in Tables 22.7 and 22.8.

4.2 The following requirements shall govern application of the Tables:

Tables 22.7 and 22.8 shall apply respectively to the bulkhead and deck separating adjacent spaces.

4.3 For determining the appropriate fire integrity standards to be applied to divisions between adjacent spaces, such spaces are classified according to their fire risk as shown in categories [1] to [10] below. Where the contents and use of a space are such that there is a doubt as to its classification for the purpose of this regulation, or where it is possible to assign two or more classifications to a space, it shall be treated as a space within the relevant category having the most stringent boundary requirements. Smaller, enclosed rooms within a space that have less than 30% communicating openings to that space are considered separate spaces. The fire integrity of the boundary bulkheads of such smaller rooms shall be as prescribed in Tables 22.7 and 22.8. The title of each category is intended to be typical rather than restrictive. The number in parentheses preceding each category refers to the applicable column or row in the Tables.

[1] Control stations

Spaces containing emergency sources of power and lighting, Wheelhouse and chartroom. Spaces containing the ship’s

38) Reference is made to the Fire Test Procedure Code, Annex 1, Part 3, adopted by IMO by Resolution MSC 61(67).
radio equipment. Fire control stations. Control room for propulsion machinery when located outside the machinery space. Spaces containing centralized fire alarm equipment.

[2] **Corridors**
Corridors and lobbies.

[3] **Accommodation spaces**
Spaces used for public spaces, lavatories, cabins, offices, hospitals, cinemas, games and hobbies rooms, barber shops, pantries containing no cooking appliances and similar spaces.

[4] **Stairways**
Interior stairways, lifts, totally enclosed emergency escape trunks and escalators (other than those wholly contained within the machinery spaces) and enclosures thereto.

In this connection, a stairway which is enclosed only at one level shall be regarded as part of the space from which it is not separated by a fire door.

[5] **Service spaces (low risk)**
Lockers and store-rooms not having provisions for the storage of flammable liquids and having areas less than 4 m² and drying rooms and laundries.

[6] **Machinery spaces of category A**
Spaces and trunks to such spaces which contain:
- internal combustion machinery used for main propulsion; or
- internal combustion machinery used for purposes other than main propulsion where such machinery has in the aggregate a total power output of not less than 375 kW; or
- any oil-fired boiler or oil fuel unit.

[7] **Other machinery spaces**
Spaces, other than machinery spaces of category A, containing propulsion machinery, boilers, oil fuel units, steam and internal combustion engines, generators and major electrical machinery, oil filling stations, refrigerating, stabilizing, ventilation and air conditioning machinery, and similar spaces, and trunks to such spaces. Electrical equipment rooms (auto-telephone exchange and air-conditioning duct spaces).

[8] **Cargo pump rooms**
Spaces containing cargo pumps and entrances and trunks to such spaces.

[9] **Service spaces (high risk)**
Galley, pantries containing cooking appliances, saunas, paint and lamp rooms, lockers and store-rooms having areas of 4 m² or more, spaces for the storage of flammable liquids, and workshops other than those forming part of the machinery spaces.

[10] **Open decks**
Open deck spaces and enclosed promenades having little or no fire risk. Air spaces (the space outside superstructures and deckhouses).

4.4 Continuous "B" class ceilings or linings, in association with the relevant decks or bulkheads, may be accepted as contributing wholly or in part, to the required insulation and integrity of a division.

4.5 External boundaries which are required in D.3.1 to be of steel or other equivalent material may be pierced for the fitting of windows and sidescuttles provided that there is not requirement for such boundaries to have "A" class integrity elsewhere in these requirements. Similarly, in such boundaries which are not required to have "A" class integrity, doors may be of materials to meet the requirements of their application.

4.6 Permanent approved gastight lighting enclosures for illuminating cargo pump rooms may be permitted in bulkheads
and decks separating cargo pump rooms and other spaces provided they are of adequate strength and the integrity and gastightness of the bulkhead or deck is maintained.

4.7 Construction and arrangement of saunas.

See B.11.6.

Table 22.7 Fire integrity of bulkheads separating adjacent spaces

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control stations</td>
<td>A-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>A-15</td>
<td>A-60</td>
<td>A-15</td>
<td>A-60</td>
<td>A-60</td>
<td>6</td>
</tr>
<tr>
<td>Corridors</td>
<td>C</td>
<td>B-0</td>
<td>B-0</td>
<td>A-0</td>
<td>B-0</td>
<td>A-60</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>6</td>
</tr>
<tr>
<td>Accommodation spaces</td>
<td>C</td>
<td>B-0</td>
<td>B-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Stairways</td>
<td></td>
<td></td>
<td>B-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Service spaces (low risk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A-0</td>
<td>6</td>
</tr>
<tr>
<td>Machinery spaces of category A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A-0</td>
<td>6</td>
</tr>
<tr>
<td>Other machinery spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A-0</td>
<td>6</td>
</tr>
<tr>
<td>Cargo pump rooms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>A-60</td>
<td>6</td>
</tr>
<tr>
<td>Service spaces (high risk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Open decks</td>
<td></td>
</tr>
</tbody>
</table>

Notes to be applied to Tables 22.7 and 22.8 as appropriate

1. For clarification as to which applies, see D.3 and D.5

2. Where spaces are of the same numerical category and superscript 2 appears, a bulkhead or deck of the rating shown in the Tables in only required when the adjacent spaces are for a different purpose, e.g. in category [9]. A galley next to a galley does not require a bulkhead but a galley next to a paint room requires an "A-0" bulkhead.

3. Bulkheads separating the wheelhouse, chartroom and radio room from each other may be "B-0" rating.

4. Bulkheads and decks between cargo pump rooms and machinery spaces of category A may be penetrated by cargo pump shaft glands and similar glanded penetrations, provided that gastight seals with efficient lubrication or other means of ensuring the permanence of the gas seal are fitted in way of the bulkhead or deck.

5. Fire insulation need not be fitted if the machinery space in category [7] has little or no fire risk.

6. Where a 6 appears in the Tables, the division is required to be of steel or other equivalent material but is not required to be of "A" class standard.
Table 22.8 Fire integrity of decks separating adjacent spaces

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control stations</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>-</td>
<td>A-0</td>
<td>6</td>
</tr>
<tr>
<td>Corridors</td>
<td>A-0</td>
<td>6</td>
<td>6</td>
<td>A-0</td>
<td>6</td>
<td>A-60</td>
<td>A-0</td>
<td>-</td>
<td>A-0</td>
<td>6</td>
</tr>
<tr>
<td>Accommodation spaces</td>
<td>A-60</td>
<td>A-0</td>
<td>6</td>
<td>A-0</td>
<td>6</td>
<td>A-60</td>
<td>A-0</td>
<td>-</td>
<td>A-0</td>
<td>6</td>
</tr>
<tr>
<td>Stairways</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>6</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>-</td>
<td>A-0</td>
<td>6</td>
</tr>
<tr>
<td>Machinery spaces of category A</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
<td>A-60</td>
<td>6</td>
<td>A-60</td>
<td>6</td>
<td>A-0</td>
<td>6</td>
</tr>
<tr>
<td>Other machinery spaces</td>
<td>A-15</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>6</td>
<td>A-0</td>
<td>6</td>
</tr>
<tr>
<td>Cargo pump rooms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A-0</td>
<td>A-0</td>
<td>6</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Service spaces (high risk)</td>
<td>A-60</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-0</td>
<td>A-60</td>
<td>A-0</td>
<td>-</td>
<td>A-0</td>
<td>6</td>
</tr>
<tr>
<td>Open decks</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

See notes under Table 22.7
Section 23

Bulk Carriers, Ore Carriers and Ships with Strengthenings for Bulk Cargo and Heavy Cargo

A. Strengthenings for Bulk Cargo and Heavy Cargo

1. General

1.1 For ships, occasionally or regularly carrying heavy cargo, such as iron, ore, phosphate etc., and not intended to get the notation "BULK CARRIER" (see B.) or "ORE CARRIER" (see C.) affixed to their character of classification, Strengthenings according to the following regulations are recommended.

1.2 Ships complying with these requirements will get the following notation affixed to their character of classification "STRENGTHENED FOR HEAVY CARGO".

1.3 It is recommended to provide adequate strengthening or protection of structural elements within the working range of grabs.

Note

Multi-purpose vessels which occasionally carry dry cargoes in bulk and are not determined as bulk carriers in accordance with SOLAS, Ch. IX, Reg. 1.6 have to fulfil the regulations of resolution MSC.277 (85).

2. Double bottom

2.1 Where longitudinal framing is adopted for the double bottom, the spacing of plate floors should, in general, not be greater than the height of the double bottom. The scantlings of the inner bottom longitudinals are to be determined for the load of the cargo according to Section 9, B.

For the longitudinal girder system, see Section 8, B.7.5.

2.2 Where transverse framing is adopted for the double bottom, plate floors according to Section 8, B.6. are to be fitted at every frame in way of the cargo holds.

2.3 For strengthening of inner bottom, deep tank tops etc. in way of grabs, see B.4.3.

2.4 In the drawings to be submitted, details are to be given regarding the loads resulting from the cargo, upon which the calculations are based.

3. Longitudinal strength

The longitudinal strength of the ship is to comply with the requirements of Section 5 irrespective of the ship's length.

B. Bulk Carriers

1. General

1.1 Bulk carriers built in accordance with the following requirements will get the Notation "BULK CARRIER" affixed to their Character of Classification. Entries will be made into the certificate as to whether specified cargo holds may be empty in case of alternating loading. Additional indications of the types of cargo for which the ship is strengthened may be entered into the Certificate.

Such a ship is considered in this Section a "Single Side Skin Bulk Carrier" when one or more cargo holds are bound by the side shell only or by two watertight boundaries, one of which is the side shell, which are less than 1000 mm apart.

The distance between the watertight boundaries is to be measured perpendicular to the side shell.

When the distance is 1000 mm or above in cargo length area, such a ship is considered a "Double Side Skin Bulk Carrier".
For accessibility see Section 1, D.1.

1.2 The requirements of Sections 1 to 22 apply to bulk carriers unless otherwise mentioned in A.1.1 is also to be observed.

1.3 For hull structural design of bulk carriers with \(L \geq 90 \text{ m} \), contracted for construction on or after 1 April 2006 and in accordance with the definition in 1.4, the IACS Common Structural Rules for Bulk Carrier are applicable. In addition to BULK CARRIER these ships will be assigned the Notation CSR.

1.4 Bulk carrier according to the IACS Common Structural Rules means a ship which is constructed generally with single deck, double bottom, top-side tanks and hopper side tanks in cargo spaces, with single or double side skin construction in cargo length area and is intended primarily to carry dry cargo in bulk. Typical midship sections are given in Fig. 23.14.

1.5 For bulk carriers carrying also oil in bulk also Section 24, G. applies.

1.6 Where reduced freeboards according to ICLL shall be assigned, the respective requirements of the ICLL are to be observed.

1.7 The scantlings of the bottom construction are to be determined on the basis of direct calculations according to Section 8, B.8.

For ships according to Section 5, G., D. has to be observed in addition.

1.8 For corrosion protection for cargo hold spaces see Section 38, G.

1.9 For dewatering requirements of forward spaces of bulk carrier, see Rules for Machinery Installations, Volume III Section 11, N.

1.10 For water ingress detection system of bulk carrier, see Rules for Electrical Installations, Volume IV Section 18.

2. Longitudinal strength

The requirements of A.3. apply.

For alternate loading conditions Section 8, B.8.2.2 is to be observed.

For ships of 150 m in length and above, Section 5, G. is to be considered.

3. Definitions

\[
\begin{align*}
k & = \text{material factor according to Section 2, B.2.} \\
t_c & = \text{corrosion addition according to Section 3, K} \\
p_{bc} & = \text{bulk cargo pressure as defined in Section 4, C.1.4.}
\end{align*}
\]

4. Scantlings of bottom structure

4.1 General

The scantlings of double bottom structures in way of the cargo holds are to be determined by means of direct calculations according to Section 8, B.8.

For ships according to Section 5, G., D. has to be observed in addition.

4.2 Floors under corrugated bulkheads Plate floors are to be fitted under the face plate strips of corrugated bulkheads. A sufficient connection of the corrugated bulkhead elements to the double bottom structure is to be ensured. Under the inner bottom, scallops in the above mentioned plate floors are to be restricted to those required for crossing welds. The plate floors as well as the face plate strips are to be welded to the inner bottom according to the stresses to be transferred. In general, full or partial penetration welding is to be used, see also E.4.1.1.

4.3 Inner bottom and tank side slopes

4.3.1 The thickness of the inner bottom plating is to be determined according to Section 8, B.4.
When determining the load on inner bottom p_i, a cargo density of not less than 1 t/m3 is to be used.

For determining scantlings of tank side slopes the load p_i is not to be taken less than the load which results from an angle of heel of 20°.

4.3.2 Where the plating has been designed according to the following formula, in connection with 9. the Notation “G” may be entered into the Certificate behind the Character of Classification:

$$t_G = (0,1 \cdot L + 5) \sqrt{K} \ [\text{mm}]$$

The thickness, however, need not exceed 30 mm.

Note

The stressing of the inner bottom plating depends mainly on the use of grabs, therefore, damage of plating cannot be excluded, even in case of compliance with the above recommendation.

4.3.3 Sufficient continuity of strength is to be provided for between the structure of the bottom wing tanks and the adjacent longitudinal structure.

5. Side Structures

5.1 Side longitudinals, longitudinal stiffeners, main frames

The scantlings of side longitudinals are to be determined according to Section 9, B. The longitudinal stiffeners at the lower tank side slopes are to have the same section modulus as the side longitudinals. Their scantlings are also to be checked for the load according to 4.3.1. For the longitudinal stiffeners of the topside tanks within the upper flange Section 9, B.1.5 is to be observed.

5.2 Main frames and end connection

The section modulus of main frames of single side skin bulk carrier is to be increased by at least 20% above the value required by Section 9, A.2.1.1.

The section modulus W of the frame and bracket or integral bracket, and associated shell plating, at the locations shown in Fig. 23.1, is not to be less than twice the section modulus W_f required for the frame midspan area.

The dimensions of the lower and upper brackets are not to be less than those shown in Fig. 23.2.

Structural continuity with the upper and lower end connections of side frames is to be ensured within topsides and hopper tanks by connecting brackets as shown in Fig. 23.3.

Frames are to be fabricated symmetrical sections with integral upper and lower brackets and are to be arranged with soft toes.

The side frame flange is to be curved (not knuckled) at the connection with the end brackets. The radius of curvature is not to be less than r [mm], given by:

$$r = 0,4 \frac{b_f^2}{t_f}$$

where b_f and t_f are the flange width and thickness of the brackets, respectively [mm]. The end of the flange is to be sniped.

In ships with $L < 190 \text{ m}$, mild steel frames may be asymmetric and fitted with separate brackets. The face plate or flange of the bracket is to be sniped at both ends. Brackets are to be arranged with soft toes.

The web depth to thickness ratio of frames is not to exceed the following values:

$$\frac{h_w}{t_w} = 60 \cdot \sqrt{K} \quad \text{for symmetrically flanged frames}$$

$$\frac{h_w}{t_w} = 50 \cdot \sqrt{K} \quad \text{for asymmetrically flanged frames}$$

The outstanding flange b_1 is not to exceed 10 \sqrt{K} times the flange thickness, see Fig. 23.1.

In way of the foremost hold, side frames of asymmetrical section are to be fitted with tripping brackets at every two frames according to Section 9, A.5.5.
Where proof of fatigue strength according to Section 20 is carried out for the main frames, this proof is to be based on the scantlings which do not include the 20% increase in section modulus.

For bulk carrier ship configurations which incorporate hopper and topside tanks the minimum thickness of frame webs in cargo holds and ballast holds is not to be less than:

\[t_{w,\text{min}} = C \left(7.0 + 0.03 \, L \right) \text{ [mm]} \]

\[C = \begin{cases}
1.15 & \text{for the frame webs in way of the foremost hold} \\
1.00 & \text{for the frame webs in way of other holds}
\end{cases} \]

where \(L \) need not be taken greater than 200 m.

The thickness of the brackets at the lower frame ends is not to be less than the required web thickness \(t_w \) of the frames or \(t_{w,\text{min}} + 2.0 \text{ mm} \), whichever is the greater value.

The thickness of the frame upper bracket is not to be less than the greater of \(t_w \) and \(t_{w,\text{min}} \).

5.3 Minimum thickness of side shell plating

The thickness of side shell plating located between hopper and upper wing tanks is not to be less than \(t_{p,\text{min}} \) [mm], given by:

\[t_{p,\text{min}} = \sqrt{L} \text{ [mm]} \]

5.4 Weld connections of frames and end brackets

Double continuous welding is to be adopted for the connections of frames and brackets to side shell, hopper and upper wing tank plating and web to face plates.

For this purpose, the weld throat is to be (see Fig. 23.1):

\[- 0.44 \cdot t \text{ in zone “a”} \\
- 0.40 \cdot t \text{ in zone “b”} \]

where \(t \) is the plate thickness of thinner of the two connected members.

Where the hull form is such to prohibit an effective fillet weld, edge preparation of the web of frame and bracket may be required, in order to ensure the same efficiency as the weld connection stated above.

6. Topside tanks

6.1 The plate thickness of the topside tanks is to be determined according to Section 12.

6.2 Where the transverse stiffening system is applied for the longitudinal walls of the topside tanks and for the shell plating in way of topside tanks, the stiffeners of the longitudinal walls are to be designed according to Section 12, the transverse frames at the shell according to Section 9, A.3.

6.3 The buckling strength of top side tank structures is to be examined in accordance with Section 3, F.

6.4 Sufficient continuity of strength is to be provided for between the structure of the topside tanks and the adjacent longitudinal structure.

7. Transverses in the wing tanks

Transverses in the wing tanks are to be determined according to Section 12, B.3. for the load resulting from the head of water or for the cargo load. The greater load is to be considered.

The scantlings of the transverses in the lower wing tanks are also to be examined for the loads according to 4.3.1.

8. Cargo hold bulkheads

The following requirement apply to cargo hold bulkheads on the basis of the loading conditions according to Section 5, A.4.

For vertically corrugated transverse cargo hold bulkheads on ships according to Section 5, G. the requirements of E. apply in addition, where the strength in the hold flooded condition has to be ensured.

BKI - Rules for Hull - 2014
8.1 The scantlings of cargo hold bulkheads are to be determined on the basis of the requirements for tank structures according to Section 12, B., where the load p_w according to Section 4, C.1.4 is to be used for the load p.

Fig. 23.1 Side frame of single side skin bulk carrier

Fig. 23.2 Dimensions of the upper and lower bracket of the side frames

Fig. 23.3 Connecting bracket in the hopper tank
8.2 The scantlings are not to be less than those required for a watertight bulkhead according to Section 11. The plate thickness is in no case to be taken less than 9,0 mm.

8.3 The scantlings of the cargo hold bulkheads are to be verified by direct calculations.

8.4 Above vertically corrugated bulkheads, transverse girders with double webs are to be fitted below the deck, to form the upper edge of the corrugated bulkheads. They are to have the following scantlings:

- web thickness = thickness of the upper plate strake of the bulkhead
- depth of web = \(\frac{B}{22} \)
- face plate (thickness) = 1,5 times the thickness of the upper plate strake of the bulkhead.

See also E.4.1.3.

8.5 Vertically corrugated transverse cargo hold bulkheads are to have a plane stiffened strip of plating at the ship's sides. The width of this strip of plating is to be 0,15 \(H \) where the length of the cargo hold is 20 m. Where the length of the cargo hold is greater/smaller, the width of the strip of plating is to be increased/reduced proportionally.

9. Hatchway coamings, longitudinal bulkheads

9.1 Coamings

The scantlings of the hatchway coaming plates are to be determined such as to ensure efficient protection against mechanical damage by grabs. The coaming plates are to have a minimum thickness of 15 mm. Stays shall be fitted at every alternate frame. The longitudinal hatchway coamings are to be extended in a suitable manner beyond the hatchway corners.

In way of the hatchway corners full penetration welding by means of double bevel T-joints or single bevel T-joints may be required for connecting the coaming with the deck plating.

See also Section 17.

9.2 Longitudinal bulkheads

Where longitudinal bulkheads exposed to grabs have got a general corrosion addition according to Section 3, K.2. of \(t_k = 2,5 \text{ mm} \) in connection with 4.3.2 and 9.1 the Notation G may be entered into the Certificate behind the Character of Classification.

10. Loading information for Bulk Carriers, Ore Carriers and Combination Carriers

10.1 General, definitions

10.1.1 These requirements are additional to those specified in Section 5, A.4.3 and apply to Bulk Carriers, Ore Carriers and Combination Carriers of 150 m length and above, and are minimum requirements for loading information.

10.1.2 All ships falling into the category of this Section are to be provided with an approved loading manual and an approved computer-based loading instrument.

10.1.3 The following definition apply:

Loading manual is a document which in addition to the definition given in Section 5, A.4.1.3 describes:

- for bulk carriers, envelope results and permissible limits of still water bending moments and shear forces in the hold flooded condition according to Section 5, G.
- which cargo hold(s) or combination of cargo holds might be empty at full draught. If no cargo hold is allowed to be empty at full draught, this is to be clearly stated in the loading manual.
- maximum allowable and minimum mass required of cargo and double bottom contents of each hold as a function of the draught at mid hold position.
- maximum allowable and minimum required mass of cargo and double bottom contents of any two adjacent holds as a function of the mean draught in way of these holds. This mean draught may be calculated by averaging the draught of the two mid-hold positions.
- maximum allowable tank top loading together with specification of the nature of cargo for cargoes other than bulk
cargoes.
- maximum allowable load on deck and hatch covers.
 If the vessel is not approved to carry load on deck or hatch covers, this is to be clearly stated in the loading manual.
- the maximum rate of ballast change together with the advice that a load plan is to be agreed with the terminal on the basis of the achievable rates of change of ballast.

Loading instrument is an approved computer system which in addition to the requirements given in Section 5, A.4.1.3 shall be capable to ascertain that:
- allowable mass of cargo and double bottom contents in way of each cargo hold as a function of the ship's draught at mid-hold position
- allowable mass of cargo and double bottom contents in any two adjacent cargo holds as a function of the mean draught in way of these holds, and
- the still water bending moments and shear forces in the hold flooded condition according to Section 5, G. are within permissible values.

10.2 Conditions of approval of loading manuals In addition to the requirements given in Section 5, A.4.2 the following loading conditions, subdivided into departure and arrival conditions as appropriate, are to be included in the Loading Manual:
- alternate light- and heavy cargo loading conditions at maximum draught, where applicable.
- homogeneous light and heavy cargo loading conditions at maximum draught.
- ballast conditions including those conditions, where ballast holds are filled when the adjacent topwing-, hopper- and double bottom tanks are empty.
- short voyage conditions where the vessel is to be loaded to maximum draught but with limited amount of bunkers.
- multiple port loading/unloading conditions.
- deck cargo conditions, where applicable.
- typical loading sequences where the vessel is loaded from commencement of cargo loading to reaching full dead weight capacity, for homogeneous conditions, the relevant part load conditions and alternate conditions, where applicable. Typical unloading sequences for these conditions shall also be included. The typical loading/unloading sequences shall also be developed to not exceed applicable strength limitations. The typical loading sequences shall also be developed paying due attention to loading rate and the deballasting capability 1).
- typical sequences for change of ballast at sea, where applicable.

10.3 Condition of approval of loading instruments The loading instrument and its operation manual are subjected to approval. In addition to the requirements given in Section 5, A.4.5.1 the approval is to include:
- acceptance of actual hull girder bending moment limits for all read out points.
- acceptance of actual hull girder shear force limits for all read out points.
- acceptance of limits for each mass of cargo and double bottom contents of hold as a function of draught.
- acceptance of limits for mass of cargo and double bottom contents in any two adjacent holds as a function of the mean draught in way of these holds.

C. Ore Carriers

1. General

1.1 Ore carriers are generally single-deck vessels with the machinery aft and two continuous longitudinal bulkheads

1) Reference is made to IACS recommendation no. 83 (August 2003), “Note to Annexes to IACS unified Requirements S1A on Guidance for Loading/ Unloading Sequence for Bulk Carriers."
with the ore cargo holds fitted between them, a double bottom through out the cargo length area and intended primary to carry ore cargoes in the centre hold only.

1.2 Ships built in accordance with the following requirements will get the Notation "ORE CARRIER" affixed to their Character of Classification. Entries will be made into the Certificate as to whether specified cargo holds may be empty in case of alternating loading. Additional indications of the types of cargo for which the ship is strengthened may be entered into the Certificate.

1.3 For ships subject to the provisions of this paragraph the requirements of B. are applicable unless otherwise mentioned in this sub-section.

1.4 For ore carriers carrying also oil in bulk also Section 24, G. applies.

1.5 Where reduced freeboards according to ICLL shall be assigned, the respective requirements of the ICLL are to be observed.

2. Double bottom

2.1 For achieving good stability criteria in the loaded condition the double bottom between the longitudinal bulkheads should be as high as possible.

2.2 The strength of the double bottom structure is to comply with the requirements given in B.4.

3. Transverse and longitudinal bulkheads

3.1 The spacing of transverse bulkheads in the side tanks which are to be used as ballast tanks is to be determined according to Section 24, as for tankers. The spacing of transverse bulkheads in way of the cargo hold is to be determined according to Section 11.

3.2 The scantlings of cargo hold bulkheads exposed to the load of the ore cargo are to be determined according to B.8. The scantlings of the side longitudinal bulkheads are to be at least equal to those required for tankers.

D. Allowable hold loading, considering flooding

1. General

These requirements apply to all bulk carriers, defined in Section 5, G.

The loading in each hold is not to exceed the allowable loading according to 4. and shall not exceed the design hold loading in intact condition.

2. Load model

2.1 General

The loads to be considered as acting on the double bottom are those given by the external sea pressures and the combination of the cargo loads with those induced by the flooding of the hold to which the double bottom belongs to.

The most severe combinations of cargo induced loads and flooding loads are to be used, depending on the loading conditions included in the loading manual:

- homogeneous loading conditions
- non-homogeneous loading conditions
- packed cargo conditions (such as steel mill products) For each loading condition, the maximum bulk cargo density to be carried is to be considered in calculating the allowable hold loading limit.

2.2 Inner bottom flooding head

The flooding head h_f (see Fig. 23.4) is the distance [m], measured vertically with the ship in the upright position, from the inner bottom to a level located at a distance d_f [m], from the baseline.
\(d_f \) is in general:
- \(H \) for the foremost hold
- \(0.9 \cdot H \) for the other holds

For ships less than 50,000 tdw with Type B freeboard, \(d_f \) is:
- \(0.95 \cdot H \) for the foremost hold
- \(0.85 \cdot H \) for the other holds

3. **Shear capacity of the double bottom**

The shear capacity \(C \) of the double bottom is defined as the sum of the shear strength at each end of:
- all floors adjacent to both hoppers, less one half of the strength of the two floors adjacent to each stool, or transverse bulkhead if no stool is fitted, see Fig. 23.5
- all double bottom girders adjacent to both stools, or transverse bulkheads if no stool is fitted

Where in the end holds, girders or floors run out and are not directly attached to the boundary stool or hopper girder, their strength is to be evaluated for the one end only.

The floors and girders to be considered are those inside the hold boundaries formed by the hoppers and stools (or transverse bulkheads if no stool is fitted). The hopper side girders and the floors directly below the connection of the bulkhead stools (or transverse bulkheads if no stool is fitted) to the inner bottom are not to be included.

When the geometry and/or the structural arrangement of the double bottom are such to make the above assumptions inadequate, the shear capacity \(C \) of double bottom is to be calculated by direct calculations.

In calculating the shear strength, the net thickness of floors and girders is to be used. The net thickness \(t_{net} \) [mm] is given by:

\[
t_{net} = t - 2.5 \quad \text{[mm]}
\]

\(t \) = thickness [mm], of floors and girders

![Fig. 23.4 Flooding head \(h_r \) of the inner bottom](image)
3.1 Floor shear strength

The floor shear strength in way of the floor panel adjacent to hoppers S_f [kN], and the floor shear strength in way of the openings in the outmost bay (i.e. that bay which is adjacent to the hopper) S_{f2} [kN], are given by the following expressions:

$$S_f = 10^{-3} \cdot A_f \cdot \frac{\tau_a}{\eta_1}$$

$$S_{f2} = 10^{-3} \cdot A_{fh} \cdot \frac{\tau_a}{\eta_2}$$

where:

- A_f = sectional area [mm2], of the floor panel adjacent to hoppers
- A_{fh} = net sectional area [mm2], of the floor panel in way of the openings in the outmost bay (i.e. that bay which is adjacent to the hopper)
- τ_a = allowable shear stress [N/mm2], to be taken equal to the lesser of:

 $$\tau_a = \frac{162 \cdot R_{stl}^{0.6}}{a^{0.4}} \cdot \frac{R_{stl}}{\sqrt{3}}$$

For floors adjacent to the stools or transverse bulkheads, as identified in 3., τ_a may be taken as

$$\frac{R_{stl}}{\sqrt{3}}$$

where:

- R_{stl} = minimum upper yield stress [N/mm2], of the hull structural steel
- a = spacing of stiffening members [mm], of panel under consideration
- $\eta_1 = 1.10$
- $\eta_2 = 1.20$
- $= 1.10$, where appropriate reinforcements are fitted
3.2 Girder shear strength

The girder shear strength in way of the girder panel adjacent to stools (or transverse bulkheads, if no stool is fitted) S_{g1} [kN], and the girder shear strength in way of the largest opening in the outmost bay (i.e. that bay which is closer to stool, or transverse bulkhead, if no stool is fitted) S_{g2} [kN], are given by

$$S_{g1} = 10^{-3} \cdot A_g \cdot \frac{\tau_s}{\eta_1}$$

$$S_{g2} = 10^{-3} \cdot A_{gh} \cdot \frac{\tau_s}{\eta_2}$$

$A_g = \text{minimum sectional area [mm}^2\text{], of the girder panel adjacent to stools (or transverse bulkheads, if no stool is fitted)}$

$A_{gh} = \text{net sectional area [mm}^2\text{], of the girder panel in way of the largest opening in the outmost bay (i.e. that bay which is closer to stool, or transverse bulkhead, if no stool is fitted)}$

$\eta_1 = 1,10$

$\tau_s = \text{allowable shear stress [N/mm}^2\text{], as given in 3.1}$

$\eta_2 = 1,20$

$\tau_s = 1,10, \text{where appropriate reinforcements are fitted}$

4. Allowable hold loading

Calculating the allowable hold loading HL [t], the following condition are to be complied with:

$$HL = \text{the lesser of } HL_1 \text{ and } HL_2$$

$$HL_1 = \frac{\rho_c \cdot V}{F}$$

$$HL_2 = HL_{int}$$

$HL_{int} = \text{max. perm. hold loading for intact condition}$

$F = 1,10 \text{ in general}$

$= 1,05 \text{ for steel mill products}$

$\rho_c = \text{cargo density [t/m}^3\text{], for bulk cargoes see 2.1; for steel products, } \rho_c \text{ is to be taken as the density of steel}$

$V = \text{volume [m}^3\text{], occupied by cargo assumed flattened at a level } h_1$

$h_1 = \frac{X}{\rho_c \cdot g}$

For bulk cargoes, X is the lesser of X_1 and X_2 given by:

$$X_1 = \frac{Z + \rho \cdot g \cdot (E - h_f \cdot \text{perm})}{1 + \frac{\rho}{\rho_c} (\text{perm} - 1)}$$

$$X_2 = Z + \rho \cdot g \cdot (E - h_f \cdot \text{perm})$$

$\text{perm} = \text{cargo permeability, (i.e. the ratio between the voids within the cargo mass and the volume occupied by the cargo); need not be taken greater than 0,3.}$

For steel products, X may be taken as X_1 using a value for perm according to the type of products (pipes, flat bars, coils etc.) harmonized with BKI.

$\rho = 1,025 \text{ [t/m}^3\text{], sea water density}$

$g = 9,81 \text{ [m/s}^2\text{], gravitational acceleration}$

$E = (\text{nominal ship}) \text{ immersion [m] for flooded hold condition } = d_f - 0,1 H$

$Z = \text{the lesser of } Z_1 \text{ and } Z_2:$

$Z_i = \text{[kN/m}^2\text{]}$
D, E
Section 23 - Bulk Carriers, Ore Carriers and Ships with Strengthenings for Bulk Cargo and Heavy Cargo

\[Z_1 = \frac{C_h}{A_{DB,h}} \]
\[Z_2 = \frac{C_e}{A_{DB,e}} \]

- \(C_h \) = shear capacity of the double bottom [kN], as defined in 3., considering, for each floor, the lesser of the shear strengths \(S_{f1} \) and \(S_{f2} \) (see 3.1) and, for each girder, the lesser of the shear strengths \(S_{g1} \) and \(S_{g2} \) (see 3.2)
- \(C_e \) = shear capacity of the double bottom [kN], as defined in 3., considering, for each floor, the shear strength \(S_{f1} \) (see 3.1) and, for each girder, the lesser of the shear strengths \(S_{g1} \) and \(S_{g2} \) (see 3.2)

\[A_{DB,h} = \sum_{i} S_i \cdot B_{DB,i} \]
\[A_{DB,e} = \sum_{i} S_i \left(B_{DB} - a_i \right) \]

- \(n \) = number of floors between stools (or transverse bulkheads, if no stool is fitted)
- \(S_i \) = spacing of \(i\)-th floor [m]
- \(B_{DB,i} \) = \(B_{DB} - a_i \) for floors whose shear strength is given by \(S_{f1} \), see 3.1
- \(B_{DB,h} \) = \(B_{DB} \) for floors whose shear strength is given by \(S_{f2} \), see 3.1
- \(B_{DB} \) = breadth of double bottom [m] between hoppers, see Fig. 23.6
- \(B_{DB,h} \) = distance [m] between the two considered openings, see Fig. 23.6
- \(a_i \) = spacing [m], of double bottom longitudinals adjacent to hoppers.

Fig. 23.6 Effective distance \(B_{DB} \) and \(B_{DB,h} \) for the calculation of shear capacity

E. Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Bulk Carriers Considering Hold Flooding

1. Application and definitions

These requirements apply to all bulk carriers with \(L \geq 150 \) m, intended for the carriage of solid bulk cargoes having bulk density of 1,0 [t/m³], or above, with vertically corrugated transverse watertight bulkheads.

The net thickness \(t_{net} \) is the thickness obtained by applying the strength criteria given in 4.

The required thickness is obtained by adding the corrosion addition \(t_{K} \), given in 6., to the net thickness \(t_{net} \)

In this requirement, homogeneous loading condition means a loading condition in which the ratio between the highest and the lowest filling ratio, evaluated for each hold, does not exceed 1.20, to be corrected for different cargo densities

2. Load model

2.1 General

The loads to be considered as acting on the bulkheads are those given by the combination of the cargo loads with those
induced by the flooding of one hold adjacent to the bulkhead under examination. In any case, the pressure due to the flooding water alone is to be considered.

The most severe combinations of cargo induced loads and flooding loads are to be used for the check of the scantlings of each bulkhead, depending on the loading conditions included in the loading manual:

- homogeneous loading conditions
- non-homogeneous loading conditions

considering the individual flooding of both loaded and empty holds.

The specified design load limits for the cargo holds are to be represented by loading conditions defined in the loading manual.

Non-homogeneous part loading conditions associated with multiport loading and unloading operations for homogeneous loading conditions need not to be considered according to these requirements.

Holds carrying packed cargoes (e.g. steel products) are to be considered as empty holds for this application.

Unless the ship is intended to carry, in nonhomogeneous conditions, only iron ore or cargo having bulk density equal to or greater than 1,78 [t/m³], the maximum mass of cargo which may be carried in the hold shall also be considered to fill that hold up to the upper deck level at centre line.

2.2 Bulkhead corrugation flooding head

The flooding head \(h_f \) (see Fig. 23.7) is the distance [m], measured vertically with the ship in the upright position, from the calculation point to a level located at a distance \(d_f \) [m], from the baseline.

\(d_f \) is in general:

- \(H \) for the aft transverse corrugated bulkhead of the foremost hold
- \(0,9 \cdot H \) for the other bulkheads

Where the ship is to carry cargoes having bulk density less than 1,78 t/m³ in non-homogeneous loading conditions, the following values can be assumed for \(d_f \):

- \(0,95 \cdot H \) for the aft transverse corrugated bulkhead of the foremost hold
- \(0,85 \cdot H \) for the other bulkheads

For ships less than 50.000 tdw with Type B freeboard \(d_f \) is:

- \(0,95 \cdot H \) for the aft transverse corrugated bulkhead of the foremost hold
- \(0,85 \cdot H \) for the other bulkheads

Where the ship is to carry cargoes having bulk density less than 1,78 [t/m³] in non-homogeneous loading conditions, the following values can be assumed:

- \(0,9 \cdot H \) for the aft transverse corrugated bulkhead of the foremost hold
- \(0,8 \cdot H \) for the other bulkheads.
Section 23 - Bulk Carriers, Ore Carriers and Ships with Strengthenings for Bulk Cargo and Heavy Cargo

23-14/27

2.3 Pressure in the non-flooded bulk cargo loaded holds

At each point of the bulkhead, in way of length \(l \) according to Fig. 23.8 and Fig. 23.9 the pressure \(p_c \) \([kN/m^2]\) is given by:

\[
p_c = \rho_c \cdot g \cdot h_1 \cdot n
\]

\(\rho_c = \) bulk cargo density \([t/m^3]\)

\(g = 9.81 \) \([m/s^2]\), gravitational acceleration

\(h_1 \) = vertical distance \([m]\), from the calculation point to the horizontal plane corresponding to the level height of the cargo (see Fig. 23.7), located at a distance \(d_1 \) \([m]\), from the baseline

\(n = \tan^2 \left(\frac{45^\circ - \gamma}{2} \right) \)

\(\gamma = \) angle of repose of the cargo, that may generally be taken as 35° for iron ore and 25° for cement.

The force \(F_c \) \([kN]\), acting on a corrugation is given by:

\[
F_c = \rho_c \cdot g \cdot e_1 \cdot \frac{(d_1 - h_{DB} - h_{LS})}{2} \cdot n
\]

\(e_1 \) = spacing of corrugations \([m]\), see Fig. 23.8

\(h_{LS} \) = mean height of the lower stool \([m]\), from the inner bottom

\(h_{DB} \) = height of the double bottom \([m]\)

2.4 Pressure in the flooded holds

2.4.1 Bulk cargo holds

Two cases are to be considered, depending on the values of \(d_1 \) and \(d_f \).

a) \(d_f \geq d_1 \)

At each point of the bulkhead located at a distance between \(d_1 \) and \(d_f \) from the baseline, the pressure \(p_{cf} \) \([kN/m^2]\), is given by:

\[
p_{cf} = \rho \cdot g \cdot h_f
\]

\(\rho = 1.025 \) \([t/m^3]\), sea water density

At each point of the bulkhead located at a distance lower than \(d_1 \) from the baseline, the pressure \(p_{cf} \) \([kN/m^2]\), is given by:

\[
p_{cf} = \rho \cdot g \cdot h_f + [\rho_c - \rho (1 - \text{perm})] \cdot g \cdot h_1 \cdot n
\]

\(\text{perm} = \) permeability of cargo, to be taken as 0.3 for ore (corresponding bulk cargo density for iron ore may generally be taken as 3.0 \([t/m^3]\)), coal cargoes and for cement (corresponding bulk cargo density for cement may generally be taken as 1.3 \([t/m^3]\))
The force $F_{c,f}$ [kN], acting on a corrugation is given by:

$$F_{c,f} = \sigma_1 \cdot \left[\rho \cdot g \cdot \frac{(d_f - d_i)^2}{2} + \rho \cdot g \cdot \frac{(d_f - d_i)^2}{2} + p_{c,f,l} \cdot (d_i - h_{DB} - h_{LS}) \right]$$

$p_{c,f,l}$ = pressure [kN/m2], at the lower end of the corrugation

b) $d_f < d_i$

At each point of the bulkhead located at a distance between d_f and d_i from the baseline, the pressure $p_{c,f}$ [kN/m2], is given by:

$$p_{c,f} = \rho_c \cdot g \cdot h_1 \cdot n$$

At each point of the bulkhead located at a distance lower than d_f from the baseline, the pressure $p_{c,f}$ [kN/m2], is given by:

$$p_{c,f} = \rho_c \cdot g \cdot h_f + \left[\rho_c \cdot h_f - \rho (1 - \text{perm}) \cdot h_f \right] g \cdot n$$

The force $F_{c,f}$ [kN], acting on a corrugation is given by:

$$F_{c,f} = \sigma_1 \cdot \left[\rho_c \cdot g \cdot \frac{(d_i - d_f)^2}{2} \cdot n + \rho_c \cdot g \cdot \frac{(d_i - d_f)^2}{2} \cdot n + p_{c,f,l} \cdot (d_f - h_{DB} - h_{LS}) \right]$$

2.4.2 Pressure in empty holds due to flooding water alone

At each point of the bulkhead, the hydrostatic pressure p_f induced by the flooding head h_f is to be considered.

The force F_f [kN], acting on a corrugation is given by:

$$F_f = \sigma_1 \cdot \rho \cdot g \cdot \frac{(d_f - h_{DB} - h_{LS})^2}{2}$$

2.5 Resultant pressure and force

2.5.1 Homogeneous loading conditions At each point of the bulkhead structures, the resultant pressure p [kN/m2], to be considered for the scantlings of the bulkhead is given by:

$$p = p_{c,f} - 0.8 \cdot p_c$$

The resultant force F [kN], acting on a corrugation is given by:

$$F = F_{c,f} - 0.8 \cdot F_c$$
Section 23 - Bulk Carriers, Ore Carriers and Ships with Strengthenings for Bulk Cargo and Heavy Cargo

Fig. 23.8 Span \(t \) of the corrugation (longitudinal section)

Note
For the definition of \(t \), the internal end of the upper stool is not to be taken more than a distance from the deck at the centre line equal to:

- 3 times the depth of corrugations, in general
- 2 times the depth of corrugations, for rectangular stool

Fig 23.9 Span \(t \) of the corrugation (transverse section)
2.5.2 Non homogeneous loading conditions

At each point of the bulkhead structures, the resultant pressure \(p \) \([\text{kN/m}^2]\), to be considered for the scantlings of the bulkhead is given by:

\[
p = p_{c,f}
\]

The resultant force \(F \) \([\text{kN}]\), acting on a corrugation is given by:

\[
F = F_{c,f}
\]

3. Bending moment and shear force in the bulkhead corrugations

The bending moment \(M \) and the shear force \(Q \) in the bulkhead corrugations are obtained using the formulae given in 3.1 and 3.2. The \(M \) and \(Q \) values are to be used for the checks in 4.2.

3.1 Bending moment

The design bending moment \(M \) \([\text{kN} \cdot \text{m}]\), for the bulkhead corrugations is given by:

\[
M = \frac{F \cdot \ell}{8}
\]

\(F \) = resultant force \([\text{kN}]\), as given in 2.5

\(\ell \) = span of the corrugation \([\text{m}]\), to be taken according to Fig. 23.8 and 23.9

3.2 Shear force

The shear force \(Q \) \([\text{kN}]\), at the lower end of the bulkhead corrugations is given by:

\[
Q = 0.8 \cdot F
\]

\(F \) = as given in 2.5

4. Strength criteria

4.1 General

The following criteria are applicable to transverse bulkheads with vertical corrugations, see Fig. 23.8. For ships of 190 m of length and above, these bulkheads are to be fitted with a lower stool, and generally with an upper stool below deck. For smaller ships, corrugations may extend from inner bottom to deck. However, if any stools are fitted, they are to comply with the requirements in 4.1.1 and 4.1.2. See also B.8.4.

The corrugation angle \(\phi \) shown in Fig. 23.8 is not to be less than 55°.

Requirements for local net plate thickness are given in 4.7.

In addition, the criteria as given in 4.2 and 4.5 are to be complied with.

The thicknesses of the lower part of corrugations considered in the application of 4.2 and 4.3 are to be maintained for a distance from the inner bottom (if no lower stool is fitted) or the top of the lower stool not less than 0,15 \(\ell \).

The thicknesses of the middle part of corrugations as considered in the application of 4.2 and 4.4 are to be maintained to a distance from the deck (if no upper stool is fitted) or the bottom of the upper stool not greater than 0,3 \(\ell \).

The section modulus of the corrugation in the remaining upper part of the bulkhead is not to be less than 75% of that required for the middle part, corrected for different yield stresses.

4.1.1 Lower stool

The height of the lower stool is generally to be not less than 3 times the depth of the corrugations. The thickness and material of the stool top plate is not to be less than those required for the bulkhead plating above. The thickness and material of the upper portion of vertical or sloping stool side plating within the depth equal to the corrugation flange width from the stool top is not to be less than the required flange plate thickness and material to meet the bulkhead stiffness requirement at lower end of corrugation. The thickness of the stool side plating and the section modulus of the stool side stiffeners is not to be less than those required according to Section 11, B. on the basis of the load model in 2. The ends of stool side vertical stiffeners are to be attached to brackets at the upper and lower ends of the stool.

The distance \(d \) from the edge of the stool top plate to the surface of the corrugation flange is to be not less than the corrugation flange plate thickness, measured from the intersection of the outer edge of corrugation flanges and the centre
line of the stool top plate, see Fig. 23.12. The stool bottom is to be installed in line with double bottom floors and is to have a width not less than 2.5 times the mean depth of the corrugation. The stool is to be fitted with diaphragms in line with the longitudinal double bottom girders for effective support of the corrugated bulkhead. Scallops in the brackets and diaphragms in way of the connections to the stool top plate are to be avoided.

Where corrugations are cut at the lower stool, corrugated bulkhead plating is to be connected to the stool top plate by full penetration welds. The stool side plating is to be connected to the stool top plate and the inner bottom plating by either full penetration or deep penetration welds, see Fig. 23.13. The supporting floors are to be connected to the inner bottom by either full penetration or deep penetration welds, see Fig. 23.13.

4.1.2 Upper stool

The upper stool, where fitted, is to have a height generally between 2 and 3 times the depth of corrugations. Rectangular stools are to have a height generally equal to 2 times the depth of corrugations, measured from the deck level and at hatch side girder. The upper stool is to be properly supported by girders or deep brackets between the adjacent hatch-end beams.

The width of the stool bottom plate is generally to be the same as that of the lower stool top plate. The stool top of non-rectangular stools is to have a width not less than 2 times the depth of corrugations. The thickness and material of the stool bottom plate are to be the same as those of the bulkhead plating below. The thickness of the lower portion of stool side plating is not to be less than 80% of that required for the upper part of the bulkhead plating where the same material is used. The thickness of the stool side plating and the section modulus of the stool side stiffeners is not to be less than required according to Section 11, B, on the basis of the load model in 2. The ends of stool side stiffeners are to be attached to brackets at the upper and lower ends of the stool. Diaphragms are to be fitted inside the stool in line with and effectively attached to longitudinal deck girders extending to the hatch end coaming girders for effective support of the corrugated bulkhead. Scallops in the brackets and diaphragms in way of the connection to the stool bottom plate are to be avoided.

4.1.3 Alignment

At deck, if no stool is fitted, two transverse reinforced beams are to be fitted in line with the corrugation flanges.

At bottom, if no stool is fitted, the corrugation flanges are to be in line with the supporting floors. Corrugated bulkhead plating is to be connected to the inner bottom plating by full penetration welds. The plating of supporting floors is to be connected to the inner bottom by either full penetration or deep penetration welds, see Fig. 23.13. The thickness and material properties of the supporting floors are to be at least equal to those provided for the corrugation flanges.

Moreover, the cut-outs for connections of the inner bottom longitudinals to double bottom floors are to be closed by collar plates. The supporting floors are to be connected to each other by suitably designed shear plates.

Stool side plating is to align with the corrugation flanges and stool side vertical stiffeners and their brackets in lower stool are to align with the inner bottom longitudinals to provide appropriate load transmission between these stiffening members. Stool side plating is not to be knuckled anywhere between the inner bottom plating and the stool top.

4.2 Bending capacity and shear stress

The bending capacity is to comply with the following relationship:

\[
M \cdot 10^3 = 0.5 \cdot W_{le} + \sigma_{a,le} + W_m + \sigma_{a,m}
\]

- \(M\) = bending moment [kN \cdot m], as given in 3.1
- \(W_{le}\) = section modulus of one half pitch corrugation [cm\(^3\)], at the lower end of corrugations, to be calculated according to 4.3
- \(W_m\) = section modulus of one half pitch corrugation [cm\(^3\)], at the mid-span of corrugations, to be calculated according to 4.4
- \(\sigma_{a,le}\) = allowable stress [N/mm\(^2\)], as given in 4.5, for the lower end of corrugations
- \(\sigma_{a,m}\) = allowable stress [N/mm\(^2\)], as given in 4.5, for the mid-span of corrugations

In no case is \(W_m\) to be taken greater than the lesser of \(1.15 \cdot W_{le}\) and \(1.15 \cdot W'_{le}\) for calculation of the bending capacity, \(W'_{le}\) being defined below.

In case shedders plates are fitted which:
- are not knuckled
- are welded to the corrugations and the top of the lower stool by one side penetration welds or equivalent
are fitted with a minimum slope of 45° and their lower edge is in line with the stool side plating
– have thicknesses not less than 75% of that provided by the corrugation flange
– and material properties at least equal to those provided by the flanges

or gusset plates are fitted which:
– are in combination with shedder plates having thickness, material properties and welded connections in accordance with the above requirements
– have a height not less than half of the flange width
– are fitted in line with the stool side plating
– are generally welded to the top of the lower stool by full penetration welds, and to the corrugations and shedder plates by one side penetration welds or equivalent
– have thickness and material properties at least equal to those provided for the flanges

the section modulus \(W_{le} \) [cm³], is to be taken not larger than the value \(W'_{le} \) [cm³], given by:

\[
W'_{le} = W_g + 10^3 \cdot \frac{Q \cdot h_g - 0,5 \cdot b_q \cdot e_1 \cdot p_g}{\sigma_s}
\]

\(W_g \) = section modulus of one half pitch corrugation [cm³], of the corrugations calculated, according to 4.4, in way of the upper end of shedder or gusset plates, as applicable

\(Q \) = shear force [kN], as given in 3.2

\(h_g \) = height [m], of shedders or gusset plates, as applicable (see Fig. 23.10 and 23.11)

\(e_1 \) = as given in 2.3

\(p_g \) = resultant pressure [kN/m²], as defined in 2.5, calculated in way of the middle of the shedders or gusset plates, as applicable

\(\sigma_s \) = allowable stress [N/mm²], as given in 4.5

Stresses are obtained by dividing the shear force \(Q \) by the shear area. The shear area is to be reduced in order to account for possible non-perpendicularity between the corrugation webs and flanges. In general, the reduced shear area may be obtained by multiplying the web sectional area by \((\sin k)\), \(k\) being the angle between the web and the flange (see Fig. 23.8).

When calculating the section modulus and the shear area, the net plate thicknesses are to be used.

The section modulus of corrugations are to be calculated on the basis of the following requirements given in 4.3 and 4.4.

4.3 Section modulus at the lower end of corrugations

The section modulus is to be calculated with the compression flange having an effective flange width, \(b_{ef} \), not larger than as given in 4.6.1.

If the corrugation webs are not supported by local brackets below the stool top (or below the inner bottom) in the lower part, the section modulus of the corrugations is to be calculated considering the corrugation webs 30% effective.

- Provided that effective shedder plates, as defined in 4.2, are fitted (see Fig. 23.10), when calculating the section modulus of corrugations at the lower end (cross-section 1 in Fig. 23.10), the area of flange plates [cm²], may be increased by

\[
\Delta A_f = \frac{2,5 \cdot b \cdot \sqrt{t_f \cdot t_{sh}}}{t_f} \quad \text{[cm}^2]\]

(not to be taken greater than 2,5 \(\cdot b \cdot t_f \))

\(b \) = width [m], of the corrugation flange, see Fig. 23.8

\(t_{sh} \) = net shedder plate thickness [mm]

\(t_f \) = net flange thickness [mm]

- Provided that effective gusset plates, as defined in 4.2, are fitted (see Fig. 23.11), when calculating the section modulus of corrugations at the lower end (cross-section 1 in Fig. 23.11), the area of flange plates [cm²], may be increased by

\[
\Delta A_f = 7 \cdot h_g \cdot t_f \quad \text{[cm}^2]\]
Section 23 - Bulk Carriers, Ore Carriers and Ships with Strengthenings for Bulk Cargo and Heavy Cargo

\[h_g = \text{height of gusset plate [m], see Fig. 23.11, not to be taken greater than:} \]
\[h_g = \frac{10}{7} \cdot a_{gu} \text{ [m]} \]

\[a_{gu} = \text{width of the gusset plates [m]} \]
\[= 2 \cdot e_1 - b \text{ [m]} \]
\[t_f = \text{net flange thickness [mm], based on the as built condition} \]

c) If the corrugation webs are welded to a sloping stool top plate which has an angle not less than 45° with the horizontal plane, the section modulus of the corrugations may be calculated considering the corrugation webs fully effective.

In case effective gusset plates are fitted, when calculating the section modulus of corrugations the area of flange plates may be increased as specified in b) above. No credit can be given to shedder plates only.

For angles less than 45°, the effectiveness of the web may be obtained by linear interpolation between 30% for 0° and 100% for 45°.

Fig. 23.10 Shedder plates

Fig. 23.11 Gusset plates and shedder plates
Section 23 - Bulk Carriers, Ore Carriers and Ships with Strengthenings for Bulk Cargo and Heavy Cargo

Fig. 23.12 Excess end d of the stool top plate

$d \geq t_f$
$t_f = \text{as-built flange thickness}$

Fig. 23.13 Connection by deep penetration welds

Root face $f : 3 \text{ mm to } t/3 \text{ mm}$
Groove angle $\alpha : 40^\circ \text{ to } 60^\circ$

Fig. 23.14 Single and double side skin bulk carrier
4.4 Section modulus of corrugations at cross-sections other than the lower end

The section modulus is to be calculated with the corrugation webs considered effective and the compression flange having an effective flange width, bef, not larger than as given in 4.6.1.

4.5 Allowable stress check

The normal and shear stresses s and t are not to exceed the allowable values s_a and t_a [N/mm²], given by:

$$
s_a = R_{efH}
$$

$$
t_a = 0.5 \cdot R_{efH}
$$

R_{efH} = the minimum upper yield stress [N/mm²], of the hull structural steel

4.6 Effective compression flange width and shear buckling check

4.6.1 Effective width of the compression flange of corrugations

The effective width b_{ef}, in m, of the corrugation flange is given by:

$$
b_{ef} = C_e \cdot q
$$

where:

$$C_e = \begin{cases}
2.25 & \text{for } \beta > 1.25 \\
1.0 & \text{for } \beta \leq 1.25
\end{cases}
$$

$$\beta = \frac{10^3 \cdot b}{t_f} \cdot \frac{R_{efH}}{E}
$$

L_c = net flange thickness, in mm

b = width, in m, of the corrugation flange (see Fig. 23.8)

R_{efH} = minimum upper yield stress, in N/mm², of the material

E = modulus of elasticity of the material, in N/mm², to be assumed equal to $2,06 \times 10^5$ for steel

4.6.2 Shear buckling

The buckling check for the web plates at the corrugation ends is to be performed according to Section 3, F. The buckling factor is to be taken as follows:

$$K = 6.34 \cdot \sqrt{3}
$$

The shear stress t has to be taken according to 4.2 and the safety factor S is 1.05.

4.7 Local net plate thickness

The bulkhead local net plate thickness t_{net} [mm], is given by:

$$t_{net} = 14.9 \cdot a_w \sqrt{\frac{1.05 \cdot p}{R_{efH}}}
$$

s_a = plate width [m], to be taken equal to the width of the corrugation flange or web, whichever is the greater, see Fig. 23.8

p = resultant pressure [kN/m²], as defined in 2.5, at the bottom of each strake of plating; in all cases, the net thickness of the lowest strake is to be determined using the resultant pressure at the top of the lower stool, or at the inner bottom, if no lower stool is fitted or at the top of shedders, if shedder or gusset/shedder plates are fitted

For built-up corrugation bulkheads, when the thicknesses of the flange and web are different, the net thickness of the narrower plating is to be not less than $t_{net,n}$ [mm], given by:

$$t_{net,n} = 14.9 \cdot a_n \sqrt{\frac{1.05 \cdot p}{R_{efH}}}
$$

a_n = the width [m], of the narrower plating, see Fig. 23.8

The net thickness of the wider plating [mm], is not to be taken less than the maximum of the following values t_{w1} and t_{w2}:
Section 23 - Bulk Carriers, Ore Carriers and Ships with Strengthenings E, F for Bulk Cargo and Heavy Cargo

\[
t_{w1} = 14,9 \cdot a_w \sqrt{\frac{1,05 \cdot p}{R_{ef}}} \\
\]
\[
t_{w2} = \sqrt{\frac{440 \cdot a^2_w \cdot 1,05 \cdot p}{R_{ef}}} - t_{np}
\]

where \(t_{np} \leq \) actual net thickness of the narrower plating and not to be greater than \(t_{w1} \).

5. Shedder and gussed plates

The thickness and stiffening of effective gusset and shedder plates, as defined in 4.3, is to determined according to Section 12, B. on the basis of the load model in 2.

6. Corrosion addition and steel renewal

The corrosion addition \(t_K \) is to be taken equal to 3,5 mm.

F. Harmonised Notations and Corresponding Design Loading Conditions for Bulk Carriers

1. Application

1.1 These requirements are applicable to bulk carriers as defined in B.1., see Fig. 23.14, having a length \(L \) of 150 m or above and contracted for new construction on or after 1st July 2003.

1.2 The loading conditions listed under 3. are to be checked regarding longitudinal strength as required by Section 5, local strength, capacity and disposition of ballast tanks and stability. The loading conditions listed under 4. are to be checked regarding local strength.

1.3 For the loading conditions given in this document, maximum draught is to be taken as moulded summer load line draught.

1.4 These requirement are not intended to prevent any other loading conditions to be included in the loading manual for which calculations are to be submitted see Section 5, nor is it intended to replace in any way the required loading manual/instrument.

1.5 A bulk carrier may in actual operation be loaded differently from the design loading conditions specified in the loading manual, provided limitations for longitudinal and local strength as defined in the loading manual and loading instrument onboard and applicable stability requirements are not exceeded.

2. Harmonized notations and annotations

2.1 Notations

Bulk Carriers are to be assigned one of the following Notations.

BC-C : for bulk carriers designed to carry dry bulk cargoes of cargo density less than 1,0 t/m³

BC-B : for bulk carriers designed to carry dry bulk cargoes of cargo density of 1,0 t/m³ and above with all cargo holds loaded in addition to BC-C conditions.

BC-A : for bulk carriers designed to carry dry bulk cargoes of cargo density of 1,0 t/m³ and above with specified holds empty at maximum draught in addition to BC-B conditions.

2.2 Additional Notations

The following additional Notations are to be provided giving further detailed description of limitations to be observed during operation as a consequence of the design loading condition applied during the design in the following cases:

- \{maximum cargo density ... t/m³\} for Notations BC-A and BC-B if the maximum cargo density is less than 3,0 tonnes/m³
2. Design loading conditions (General)

3.1 BC-C
Homogeneous cargo loaded condition where the cargo density corresponds to all cargo holds, including hatch-ways, being 100% full at maximum draught with all ballast tanks empty.

3.2 BC-B
As required for BC-C, plus:
Homogeneous cargo loaded condition with cargo density 3.0 tonnes/m³, and the same filling ratio (cargo mass/hold cubic capacity) in all cargo holds at maximum draught with all ballast tanks empty.

In cases where the cargo density applied for this design loading condition is less than 3.0 tonnes/m³, the maximum density of the cargo that the vessel is allowed to carry is to be indicated with the additional Notation \{
\text{maximum cargo density } t/m^3\}.

3.3 BC-A
As required for BC-B, plus:
At least one cargo loaded condition with specified holds empty, with cargo density 3.0 tonnes/m³, and the same filling ratio (cargo mass/hold cubic capacity) in all loaded cargo holds at maximum draught with all ballast tanks empty.

The combination of specified empty holds shall be indicated with the additional Notation \{
\text{holds a, b, ... may be empty; maximum cargo density } t/m^3\}.

3.4 Ballast conditions (applicable to all Notations)

3.4.1 Ballast tank capacity and disposition
All bulk carriers are to have ballast tanks of sufficient capacity and so disposed to at least fulfill the following requirements for normal and heavy ballast condition:

Normal ballast condition for the purpose of these requirements is a ballast (no cargo) condition where:

- the ballast tanks may be full, partially full or empty. Where partially full option is exercised, the conditions in Section 5, A.4.4.1 are to be complied with
- any cargo hold or holds adapted for the carriage of water ballast at sea are to be empty
- the propeller is to be fully immersed
- the trim is to be by the stern and is not to exceed 0.015 L, where L is the length between perpendiculars of the ship.

In the assessment of the propeller immersion and trim, the draughts at the forward and after perpendiculars may be used.

Heavy ballast condition for the purpose of these requirements is a ballast (no cargo) condition where:

- the ballast tanks may be full, partially full or empty. Where partially full option is exercised, the conditions in Section 5, A.4.4.1 are to be complied with,
- at least one cargo hold adapted for carriage of water ballast at sea, where required or provided, is to be full,
- the propeller immersion I/D is to be at least 60% where:
 - \(I\) = the distance from propeller centreline to the waterline
 - \(D\) = propeller diameter, and
- the trim is to be by the stern and is not to exceed 0.015 L, where L is the length between perpendiculars of the ship,
- the moulded forward draught in the heavy ballast condition is not to be less than the smaller of 0.03 L or 8 m.
3.4.2 Strength requirements

All bulk carriers are to meet the following strength requirements:

Normal ballast condition:
- the structures of bottom forward are to be strengthened in accordance with the BKI Rules against slamming for the condition at the lightest forward draught,
- the longitudinal strength requirements according to Section 5, B. are to be met for the condition of 3.4.1 for normal ballast, and
- in addition, the longitudinal strength requirements according to Section 5, B. are to be met with all ballast tanks 100% full.

Heavy ballast condition:
- the longitudinal strength requirements according to Section 5, B. are to be met for the condition of 3.4.1 for heavy ballast
- in addition, the longitudinal strength requirements according to Section 5, B. are to be met with all ballast tanks 100% full and any one cargo hold adapted for the carriage of water ballast at sea, where provided, 100% full
- where more than one hold is adapted and designated for the carriage of water ballast at sea, it will not be required that two or more holds be assumed 100% full simultaneously in the longitudinal strength assessment, unless such conditions are expected in the heavy ballast condition. Unless each hold is individually investigated, the designated heavy ballast hold and any/all restrictions for the use of other ballast hold(s) are to be indicated in the loading manual.

4. Departure and arrival conditions

Unless otherwise specified, each of the design loading conditions defined in 3.1 to 3.4 is to be investigated for the arrival and departure conditions as defined below.

Departure condition: with bunker tanks not less than 95% full and other consumables 100%

Arrival condition: with 10% of consumables

5. Design loading conditions (for local strength)

5.1 Definitions

The maximum allowable or minimum required cargo mass in a cargo hold, or in two adjacently loaded holds, is related to the net load on the double bottom. The net load on the double bottom is a function of draft, cargo mass in the cargo hold, as well as the mass of fuel oil and ballast water contained in double bottom tanks. The following definitions apply:

\[MH \] : the actual cargo mass in a cargo hold corresponding to a homogeneously loaded condition at maximum draught

\[M_{\text{Full}} \] : the cargo mass in a cargo hold corresponding to cargo with virtual density (homogeneous mass/hold cubic capacity, minimum 1.0 t/m³) filled to the top of the hatch coaming. \(M_{\text{Full}} \) is in no case to be less than \(MH \).

\[M_{\text{TBD}} \] : the maximum cargo mass allowed to be carried in a cargo hold according to design loading condition(s) with specified holds empty at maximum draught

5.2 General conditions applicable for all Notations

5.2.1 Any cargo hold is to be capable of carrying \(M_{\text{Full}} \) with fuel oil tanks in double bottom in way of the cargo hold, if any, being 100% full and ballast water tanks in the double bottom in way of the cargo hold being empty, at maximum draught.

5.2.2 Any cargo hold is to be capable of carrying minimum 50% of \(MH \), with all double bottom tanks in way of the cargo hold being empty, at maximum draught.

5.2.3 Any cargo hold is to be capable of being empty, with all double bottom tanks in way of the cargo hold being empty, at the deepest ballast draught.

5.3 Condition applicable for all Notations, except when Notation {no MP} is assigned

5.3.1 Any cargo hold is to be capable of carrying \(M_{\text{Full}} \) with fuel oil tanks in double bottom in way of the cargo hold, if any, being 100% full and ballast water tanks in the double bottom in way of the cargo hold being empty, at 67% of
maximum draught.

5.3.2 Any cargo hold is to be capable of being empty with all double bottom tanks in way of the cargo hold being empty, at 83% of maximum draught.

5.3.3 Any two adjacent cargo holds are to be capable of carrying M_{full} with fuel oil tanks in double bottom in way of the cargo hold, if any, being 100% full and ballast water tanks in the double bottom in way of the cargo hold being empty, at 67% of the maximum draught. This requirement to the mass of cargo and fuel oil in double bottom tanks in way of the cargo hold applies also to the condition where the adjacent hold is fitted with ballast, if applicable.

5.3.4 Any two adjacent cargo holds are to be capable of being empty, with all double bottom tanks in way of the cargo hold being empty, at 75% of maximum draught.

5.4 Additional conditions applicable for BC-A Notation only

5.4.1 Cargo holds, which are intended to be empty at maximum draught, are to be capable of being empty with all double bottom tanks in way of the cargo hold also being empty.

5.4.2 Cargo holds, which are intended to be loaded with high density cargo, are to be capable of carrying $M_{\text{HD}} + 10\%$ of M_{HD}, with fuel oil tanks in the double bottom in way of the cargo hold, if any, being 100% full and ballast water tanks in the double bottom being empty in way of the cargo hold, at maximum draught.

In operation the maximum allowable cargo mass shall be limited to M_{HD}.

5.4.3 Any two adjacent cargo holds which according to a design loading condition may be loaded with the next holds being empty, are to be capable of carrying 10% of M_{HD} in each hold in addition to the maximum cargo load according to that design loading condition, with fuel oil tanks in the double bottom in way of the cargo hold, if any, being 100% full and ballast water tanks in the double bottom being empty in way of the cargo hold, at maximum draught.

In operation the maximum allowable mass shall be limited to the maximum cargo load according to the design loading conditions.

5.5 Additional conditions applicable for ballast hold(s) only

Cargo holds, which are designed as ballast water holds, are to be capable of being 100% full of ballast water including hatchways, with all double bottom tanks in way of the cargo hold being 100% full, at any heavy ballast draught. For ballast holds adjacent to topside wing, hopper and double bottom tanks, it shall be strengthwise acceptable that the ballast holds are filled when the topside wing, hopper and double bottom tanks are empty.

5.6 Additional conditions applicable during loading and unloading in harbour only

5.6.1 Any single cargo hold is to be capable of holding the maximum allowable seagoing mass at 67% of maximum draught, in harbour condition.

5.6.2 Any two adjacent cargo holds are to be capable of carrying M_{full}, with fuel oil tanks in the double bottom in way of the cargo hold, if any, being 100% full and ballast water tanks in the double bottom in way of the cargo hold being empty, at 67% of maximum draught, in harbour condition.

5.6.3 At reduced draught during loading and unloading in harbour, the maximum allowable mass in a cargo hold may be increased by 15% of the maximum mass allowed at the maximum draught in seagoing condition, but shall not exceed the mass allowed at maximum draught in the seagoing condition.

The minimum required mass may be reduced by the same amount.

5.7 Hold mass curves

Based on the design loading criteria for local strength, as given in 5.2 to 5.6 (except 5.5.1) above, hold mass curves are to be included in the loading manual and the loading instrument, showing maximum allowable and minimum required mass as a function of draught in sea-going condition as well as during loading and unloading in harbour, see B.10.

At other draughts than those specified in the design loading conditions above, the maximum allowable and minimum required mass is to be adjusted for the change in buoyancy acting on the bottom. Change in buoyancy is to be calculated using water plane area at each draught.
Hold mass curves for each single hold, as well as for any two adjacent holds, are to be included.

G. Fitting of Forecastle of Bulk Carrier, Ore Carriers and Combination Carriers

1. Application

All bulk carriers, ore carriers and combination carriers are fitted with an enclosed fore castle on the freeboard deck. The structural arrangements and scantlings of the fore castle are to comply with the requirements of Section 16.

2. Dimensions

The forecastle is to be located on freeboard deck with its aft bulkhead fitted in way or aft of the forward bulkhead of the foremost hold (see Fig 23.15).

The forecastle height, H_F [m], above the main deck is not to be less than the greater of:
- the standard height of a superstructure as specified in the ICLL, or
- $H_F + 0.5$ [m]

H_C = height of the forward transverse hatch coaming of cargo hold No.1 [m]

In order to use the reduced design load for the forward transverse hatch coaming (see Section 17, B.1.1.4) and hatch cover stoppers (see Section 17, B.4.7) of the foremost cargo hold, the distances between all points of the aft edge of the forecastle deck and the hatch coaming plate, R_F [m], are to comply with the following (see Fig 23.15):

$$R_F = \sqrt{H_F^2 - H_C^2}$$ [m]

A breakwater is not to be fitted on the forecastle deck for the purpose of protecting the hatch coaming or hatch covers. If fitted for other purposes, the distance between its upper edge at centre line and the aft edge of the forecastle deck, H_B [m], is comply with the following (see Fig 23.15):

$$H_B \geq 2.75 \cdot H_B$$ [m]

H_B = is the water height of the breakwater above the forecastle.
Section 24 - Oil Tankers

Oil Tankers

A. General

1. Scope

1.1 The following regulations apply to tankers which are intended to carry oil in bulk having a flashpoint (closed cup test) not exceeding 60°C and whose Reid vapour pressure is below that of atmospheric pressure and other liquid products having a similar fire hazard.

Unless specially mentioned in this Section the regulations of Sections 1 - 22 apply.

For double hull oil tankers and product tankers with $L \geq 150 \text{ m}$ the IACS Common Structural Rules for Double Hull Oil Tankers are applicable in lieu of B. to F.

1.2 For the purpose of this Section "oil" means petroleum in any form including crude oil, refined products, sludge and oil refuse (see also Product List 1 at the end of this Section).

1.3 For the purpose of this Section "crude oil" means any liquid hydrocarbon mixture occurring naturally in the earth whether or not treated to render it suitable for transportation and includes:

- crude oil from which certain distillate fractions may have been removed, and
- crude oil to which certain distillate fractions may have been added.

1.4 Products listed in the Product List 2 (at the end of this Section) are permitted to be carried in tankers complying with the regulations of this Section. Products whose Reid vapour pressure is above that of atmospheric pressure may only be carried where the cargo tank vents are fitted with pressure/vacuum relief valves (see Rules for Machinery Installations, Volume III, Section 15) and the tanks have been dimensioned for the set pressure of the pressure relief valves.

Note

1. In accordance with the provisions of MARPOL 73/78, Annex II the carriage in bulk of category Z products is permitted only on vessels holding an "International Pollution Prevention Certificate for the Carriage of Noxious Liquid Substances in Bulk" issued by the Flag Administration.

2. The petrochemicals listed in the list of products of the IBC-Code, Chapter 17, and products of similar hazard are not subject to the provisions of this Section.

1.5 The regulations of this Section include the provisions of Chapter II-2 of SOLAS 74 applicable to tankers as far as provisions affecting the lay-out and structural design of the vessels are concerned.

For the remaining fire safety measures of the above mentioned provisions, see Section 22, F. and Rules for Machinery Installations, Volume III, Section 12 and 15.

1.6 Regulations for ships intended to carry dry cargo or oil in bulk see G.

1.7 For tankers intended to carry liquids in bulk having a flashpoint (closed cup test) above 60°C only, the requirements of this Section concerning safety, e.g. as per 4.4, 4.5, 9. etc., need not be complied with.

Where, however, these products are heated to a temperature above 15°C below their flashpoint the vessels will be specially considered.

1.8 Where cargo is intended to be heated Section 12, A.6. is also to be observed.

1.9 Oil or other flammable liquids are not permitted to be carried in fore- or afterpeak.

Note

It is assumed that the provisions of Annex I and, as far as applicable, of Annex II of MARPOL 73/78 will be complied with.

Upon application a declaration confirming the compliance with the provisions of MARPOL 73/78 will be issued.

Tankers not complying with the Annex I provisions will not be assigned the Notation "OIL TANKER" or "PRODUCT
24-2/32 A Section 24 - Oil Tankers

TANKER.

For a type "A" ship, if over 150 m length, to which a freeboard less than type "B" has been assigned the ICLL Regulation 27.3 has to be considered.

2. Character of Classification

2.1 Tankers, built in accordance with the requirements of this Section will have the following Notations affixed to their Character of Classification: OIL TANKER if engaged in the trade of carrying "oil" as defined in 1.2 or PRODUCT TANKER if engaged in the trade of carrying oil other than "crude oil" as defined in 1.3.

Oil tankers or product carriers will be assigned the symbol □ for characterizing proof of damage stability according to MARPOL 73/78 Annex I. The following data will be entered into an appendix to the Certificate:
– code for the specification of the proof of damage stability according to Vol. I – Rules for Classification and Surveys, Section 2, C.3.1.2.

2.2 Ships intended to alternatively carry dry cargo or liquids in bulk having a flashpoint (closed cup test) not exceeding 60°C may have one of the following Notations affixed to their Character of Classification: "BULK CARRIER OR OIL TANKER", "RO-RO SHIP OR OIL TANKER", "ORE CARRIER OR PRODUCT TANKER", etc. The regulations specified in G. are to be observed.

2.3 Tankers intended to carry liquids of different properties and presenting hazards different from the criteria of liquids mentioned in 1.2 will be specially considered as "tankers for special cargoes". These tankers may have the Notation: "SPECIAL TANKER", "ASPHALT TANKER", "EDIBLE OIL TANKER", "WINE TANKER", etc. affixed to their Character of Classification.

2.4 Where it is intended to carry liquids having a flash point (closed cup test) above 60°C only, the following remark will be entered in the Certificate:
"Not suitable for products with flashpoints of 60°C and less".

2.5 Where special structural measures (separation of piping, tank coating etc) permit simultaneous carriage of various oils and oil products, the following remark may be entered in the Certificate:
"Suitable for the carriage of various oil products".

2.6 Where the cargo tanks are not segregated from other spaces in fore and aft ship (see 4.3.6) the following remark will be entered in the Certificate:
"No cofferdams at the forward and/or aft ends".

3. Cargo Tank Arrangement

3.1 General

3.1.1 Every oil tanker of 600 tdw and above shall comply with the double hull requirements of MARPOL 73/78, Annex I, Reg. 19.

3.1.2 Tanks or spaces within the double hull required in accordance with the provisions of 3.2 and 3.3 are not to be used for the carriage of cargo and fuel oil.

3.1.3 For access to spaces in the cargo area A.13 is to be observed.

3.1.4 Concerning the definition of "deadweight" (tdw) reference is made to MARPOL 73/78, Annex I, Reg. 1.23.

Note
The aggregate capacity of wing tanks, double bottom tanks, forepeak tanks and afterpeak tanks shall not be less than the capacity of segregated ballast tanks necessary to meet the requirements of MARPOL 73/78, Annex I, Regulation 18. Wing tanks, spaces and double bottom tanks used to meet the requirements of MARPOL 73/78, Annex I, Regulation 18 shall be located as uniformly as practicable along the cargo tank length. For inerting, ventilation and gas measurement see Rules for Machinery Installations, Volume III, Section 15.
3.2 Double hull requirements for oil tankers of 5,000 tdw and above

3.2.1 The entire cargo tank length is to be protected by a double side (wing tanks or spaces) and double bottom tanks or spaces as outlined in the following paragraphs.

3.2.2 Double Side

Wing tanks or spaces are to extend for the entire cargo tank length and for the full depth of the ship's side or from the top of the double bottom to the uppermost deck, disregarding a rounded gunwale, where fitted. They are to be arranged such that the cargo tanks are located inboard of the moulded line of the side shell plating, nowhere less than the distance \(w \) which is measured at every cross section at right angles to the side shell, as specified below (see Fig.24.1):

\[
w = 0.5 + \frac{tdw}{20000} \quad [m] \quad \text{or} \\
= 2,0 \text{ m; whichever is the lesser} \\
w_{\text{min}} = 1,0 \text{ m.}
\]

![Fig. 24.1 Cargo Tank Boundary Lines](image)

3.2.3 Double Bottom

At any cross section the depth of each double bottom tank or space is to be such that the distance \(h \) between the bottom of the cargo tanks and the moulded line of the bottom shell plating measured at right angles to the bottom shell plating is not less than specified below (see Fig.24.2):

\[
h = \frac{B}{15} \quad [m] \quad \text{or} \\
= 2,0 \text{ m, whichever is the lesser} \\
h_{\text{min}} = 1,0 \text{ m}
\]

In the turn of bilge area or at locations without a clearly defined turn of bilge, where the distances \(h \) and \(w \) are different, the distance \(w \) shall have preference at levels exceeding 1,5 \(h \) above the baseline. For details see MARPOL 73/78, Annex I, Reg. 19.3.3

3.2.4 Suction wells in cargo tanks

Suction wells in cargo tanks may protrude into the double bottom below the boundary line defined by the distance \(h \) provided that such wells are as small as practicable and the distance between the well bottom and bottom shell plating is not less than 0,5 \(h \).

3.2.5 Alternative cargo tank arrangements

Double bottom tanks or spaces as required above may be dispensed with, if the provisions of MARPOL 73/78, Annex I, Reg. 19.4 or 19.5 are complied with.

3.2.6 Double bottom in pump room

The cargo pump room is to be provided with a double bottom, the distance \(h \) of which above the ship's base line is not less than the distances required in 3.2.3.
Note

For pump rooms, the bottom plate of which is above this minimum height, see 22.3 of \textit{MARPOL 73/78}, Annex II.

Fig. 24.2 Cargo Tank Boundary Lines

3.3 Double hull requirements for oil tankers of less than 5,000 tdw

3.3.1 Double Bottom

Oil tankers of less than 5,000 tdw are at least to be fitted with double bottom tanks or spaces having such a depth that the distance \(h \) specified in 3.2.3 complies with the following (see Fig. 24.3):

\[
 h = \frac{B}{15} \quad \text{[m]} \quad \text{or}
\]

\[
 h_{\text{min}} = 0.76 \, \text{m}
\]

3.3.2 Limitation of cargo tank capacity

The capacity of each cargo tank of ships of less than 5,000 tdw is limited to 700 m\(^3\), unless wing tanks or spaces are arranged in accordance with 3.2.2 complying with:

\[
 w = 0.4 + \frac{2.4 \cdot \text{tdw}}{20,000} \quad \text{[m]}
\]

\[
 w_{\text{min}} = 0.76 \, \text{m}
\]

Fig. 24.3

3.4 Limitation of cargo tank length

3.4.1 For oil and product tankers of less than 5000 tdw, the length of cargo tanks measured between oil tight bulkheads...
is not to exceed 10 m or the values listed in Table 24.1, whichever is greater.

3.4.2 Where the tank length exceeds 0,1 L and/or the tank breadth exceeds 0,6 B calculations have to be carried out in accordance with Section 12, C.1. to examine if the motions of liquids in partially filled tanks will be in resonance with the pitching or heeling motions of the vessel.

Note:

Reference is also made to MARPOL 73/78, Annex 1, Regulation 23, concerning limitation of cargo tank sizes

<table>
<thead>
<tr>
<th>Number of longitudinal bulkheads within the cargo tank</th>
<th>Permissible length</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>$\left(\frac{b_i}{2B} + 0,1 \right) L_C$, max 0,2 L_C</td>
</tr>
<tr>
<td>1</td>
<td>$\left(\frac{b_i}{4B} + 0,15 \right) L_C$, max 0,2 L_C</td>
</tr>
</tbody>
</table>
| 2 and more | Centre tanks : $0,2 L_C$, if $\frac{b_i}{B} \geq 0,2$
Wing cargo tanks : $0,2 L_C$, if $\frac{b_i}{B} < 0,2$ and where a centreline longitudinal bulkhead is provided. |

$\frac{b_i}{B} =$ minimum distance from the ship's side to inner hull of the tank in question measured inboard at right angles to the centreline at the level corresponding to the summer load line

4. Ship Arrangement

4.1 General

The requirements according to 4.3.2 - 4.3.4, 4.3.8 - 4.3.10 and 4.4.1 - 4.4.3 apply to ships of 500 tons gross tonnage and over.

4.2 Definitions

Unless expressly stated otherwise following definitions apply in the context of this Section.

4.2.1 Flashpoint

Flashpoint is the temperature in degrees Celsius [°C] at which a product will give off enough flammable vapour to be ignited.

4.2.2 Control stations

Control stations are those spaces in which ship's radio or main navigating equipment or the emergency source of power is located or where the fire-recording or fire-control equipment is centralized. This does not include special fire-control equipment which can be most practically located in the cargo area.

4.2.3 Cofferdam

Cofferdam is the isolating space between two adjacent steel bulkheads or decks. This space may be a void space or a ballast space.
The following space may also serve as cofferdams: oil fuel tanks as well as cargo pump rooms and pump rooms not having direct connection to the machinery space, passage ways and accommodation spaces. The clear spacing of cofferdam bulkheads is not to be less than 600 mm.

4.2.4 Cargo service spaces

Cargo service spaces are spaces within the cargo area used for workshops, lockers and storerooms of more than 2 m² in area used for cargo handling equipment.

4.2.5 Cargo deck

Cargo deck means an open deck within the cargo area,
- which forms the upper crown of a cargo tank or
- above which cargo tanks, tank hatches, tank cleaning hatches, tank gauging openings and inspection holes as well as pumps, valves and other appliances and fittings required for loading and discharging are fitted.

4.2.6 Cargo pump room

Cargo pump room is a space containing pumps and their accessories for the handling of products covered by this Section.

4.2.7 Hold space

Hold space is a space enclosed by the ship's structure in which an independent cargo tank is situated.

4.2.8 Cargo area

Cargo area is that part of the ship that contains cargo tanks, slop tanks, cargo pump rooms including pump rooms, cofferdams, ballast or void spaces adjacent to cargo tanks or slop tanks and also deck areas throughout the entire length and breadth of the part of the ship over the above mentioned spaces.

Where independent tanks are installed in hold spaces, cofferdams, ballast or void spaces at the after end of the aftermost hold space or at the forward end of the forward most hold space are excluded from the cargo area.

4.2.9 Void space

Void space is an enclosed space in the cargo area external to a cargo tank other than a hold space, ballast space, oil fuel tank, cargo pump room, pump room, or any space in normal use by personnel.

4.2.10 Machinery spaces

Machinery spaces are all machinery spaces of Category A and all other spaces containing propelling machinery, boilers, oil fuel units, steam and internal combustion engines, generators and major electrical machinery, oil filling stations, refrigerating, stabilizing, ventilation and air conditioning machinery, and similar spaces; and trunks to such spaces.

4.2.11 Machinery spaces of Category A

Machinery spaces of Category A are those spaces and trunks to such spaces which contain:
- internal combustion machinery used for main propulsion; or
- internal combustion machinery used for purposes other than main propulsion where such machinery has in the aggregate a total power output of not less than 375 kW; or
- any oil-fired boiler or oil fuel unit.

4.2.12 Oil fuel unit

Oil fuel unit is the equipment used for the preparation of oil fuel for delivery to an oil-fired boiler, or equipment used for the preparation for delivery of heated oil to an internal combustion engine and includes any oil pressure pumps, filters and heaters dealing with oil at a pressure of more than 1,8 bar (gauge).

4.2.13 Pump room

Pump room is a space, located in the cargo area, containing pumps and their accessories for the handling of ballast and oil fuel.

4.2.14 Service spaces
Service spaces are those spaces used for galleys, pantries containing cooking appliances, lockers, mail and specie rooms, store-rooms, workshops other than those forming part of machinery spaces and similar spaces and trunks to such spaces.

4.2.15 Accommodation spaces

Accommodation spaces are those spaces used for public spaces, corridors, lavatories, cabins, offices, hospitals, cinemas, games and hobbies rooms, barber shops, pantries containing no cooking appliances and similar spaces. Public spaces are those portions of the accommodation spaces which are used for halls, dining rooms, lounges and similar permanently enclosed spaces.

4.2.16 Slop tank

Slop tank is a tank for the retention of oil residues and oily wash water residues according to Reg. 1.16 of Annex I of MARPOL 73/78.

4.3 Location and separation of spaces

4.3.1 Cargo tanks are to be segregated by means of cofferdams from all spaces which are situated outside the cargo area (see also 4.3.5 - 4.3.7).

A cofferdam between the forward cargo tank and the forepeak may be dispensed with if the access to the forepeak is direct from the open deck, the forepeak air and sounding pipes are led to the open deck and portable means are provided for gas detection and inerting the forepeak.

4.3.2 Machinery spaces are to be positioned aft of cargo tanks and slop tanks; they are also to be situated aft of cargo pump-rooms and cofferdams, but not necessarily aft of the oil fuel tanks. Any machinery space is to be isolated from cargo tanks and slop tanks by cofferdams, cargo pump-rooms, oil fuel tanks or ballast tanks. Pump-rooms containing pumps and their accessories for ballasting those spaces situated adjacent to cargo tanks and slop tanks and pumps for oil fuel transfer may be considered as equivalent to a cargo pump-room within the context of this regulation, provided that such pump-rooms have the same safety standard as that required for cargo pump-rooms. However, the lower portion of the pump-room may be recessed into machinery spaces of category A to accommodate pumps, provided that the deck head of the recess is in general not more than one third of the moulded depth above the keel, except that in the case of ships of not more than 25,000 tdw, where it can be demonstrated that for reasons of access and satisfactory piping arrangements this is impracticable, a recess in excess of such height, but not exceeding one half of the moulded depth above the keel may be permitted.

4.3.3 Accommodation spaces, main cargo control stations and service spaces (excluding isolated cargo handling gear lockers) are to be positioned aft of all cargo tanks, slop tanks and spaces which isolate cargo or slop tanks from machinery spaces but not necessarily aft of the oil fuel bunker tanks and ballast tanks, but are to be arranged in such a way that a single failure of a deck or bulkhead will not permit the entry of gas or fumes from the cargo tanks or slop tanks into an accommodation space, main cargo control station, control station, or service space. A recess provided in accordance with 4.3.2 need not be taken into account when the position of these spaces is being determined.

4.3.4 However, where deemed necessary, accommodation spaces, main cargo control stations, control stations and service spaces may be permitted forward of the cargo tanks, slop tanks and spaces which isolate cargo and slop tanks from machinery spaces but not necessarily forward of oil fuel bunker tanks or ballast tanks. Machinery spaces, other than those of category A, may be permitted forward of the cargo tanks and slop tanks provided they are isolated from the cargo tanks and slop tanks by cofferdams, cargo pump-rooms, oil fuel bunker tanks or ballast tanks and subject to an equivalent standard of safety and appropriate availability of fire-extinguishing arrangements being provided. Accommodation spaces, main cargo control spaces, control stations and service spaces are to be arranged in such a way that a single failure of a deck or bulkhead will not permit the entry of gas or fumes from the cargo tanks or slop tanks into such spaces. In addition, where deemed necessary for the safety or navigation of the ship, machinery spaces containing internal combustion machinery not being main propulsion machinery having an output greater than 375 kW may be permitted to be located forward of the cargo area provided the arrangements are in accordance with the provisions of this paragraph.

4.3.5 Where a corner-to-corner situation occurs between a safe space and a cargo tank, the safe space is to be protected by a cofferdam. Subject to agreement by the owners this protection may be formed by an angle bar or a diagonal plate across the corner.

Such cofferdam if accessible is to be capable of being ventilated and if not accessible is to be filled with a suitable compound.

4.3.6 Where it is intended to carry products with a flashpoint (closed cup test) above 60°C only, the cofferdams according to 4.3.1 - 4.3.5 need not be arranged (see also 1.7 and 2.6).
4.3.7 On special tankers cofferdams may be required between cargo tanks and oil fuel tanks on account of the hazards presented by the special products intended to be carried.

4.3.8 Where the fitting of a navigation position above the cargo area is shown to be necessary, it is allowed for navigation purposes only and it is to be separated from the cargo tanks deck by means of an open space with a height of at least 2 m. The fire protection of such a navigation position is in addition to be as required for control spaces in Section 22, F.4. and other provisions, as applicable, of Section 22.

4.3.9 Means are to be provided to keep deck spills away from the accommodation and service areas. This may be accomplished by provision of a permanent continuous coaming of a suitable height (approx. 150 mm, however, not less than 50 mm above upper edge of sheer strake) extending from side to side. Special consideration is to be given to the arrangements associated with stern loading.

Note

Furthermore the corresponding Rules of the respective National Administrations are to be observed.

4.3.10 For exterior boundaries of superstructures, see Section 22, F.2.1.

4.4 Arrangement of doors windows and air inlets

4.4.1 Entrances, air inlets and outlets and openings to accommodation spaces, service spaces, control stations and machinery spaces shall not face the cargo area. They are to be located on the transverse bulkhead not facing the cargo area or on the outboard side of the superstructure or deckhouse at a distance of at least 0.04 \(L \) but not less than 3 m from the end of the superstructure or deckhouse facing the cargo area. This distance need not exceed 5 m.

4.4.2 Access doors may be permitted in boundary bulkheads facing the cargo area or within the limits specified in 4.4.1, to main cargo control stations and to such service spaces as provision rooms, store rooms and lockers, provided they do not give access directly or indirectly, to any other space containing or provided for accommodation, control stations or service spaces such as galleys, pantries or workshops, or similar spaces containing sources of vapour ignition. The boundaries of such space shall be insulated to "A-60" standard, with the exception of the boundary facing the cargo area. Bolted plates for removal of machinery may be fitted within the limits specified in 4.4.1. Wheelhouse doors and wheelhouse windows may be located within the limits specified in 4.4.1 so long as they are designed to ensure that the wheelhouse can be made rapidly and efficiently gas and vapour tight.

4.4.3 Windows and side scuttles facing the cargo area and on the sides of the superstructures and deckhouses within the limits specified in 4.4.1 shall be of the fixed (non-opening) type. Such windows and side scuttles, except wheelhouse windows, shall be constructed to "A-60" class standard and shall be of an approved type.

4.5 Pipe tunnels in double bottoms

4.5.1 Where pipe tunnels are arranged in double bottoms the following is to be observed:
 - Pipe tunnels are not permitted to have direct connections with machinery spaces neither through openings nor through piping.
 - At least two access openings with watertight covers are to be fitted and are to be spaced at maximum practicable distance. One of these openings may lead into the cargo pump room. Other openings shall lead to the open deck.
 - Adequate mechanical ventilation is to be provided for a pipe tunnel for the purpose of venting prior to entry (see also Rules for Machinery Installations, Volume III, Section 15).

4.6 Slop tanks

Subject to the provisions of paragraph 4 of Reg. 3 of Revised Annex I of MARPOL 73/78 in the followings is referred as Annex, oil tankers of 150 gross tonnage and above shall be provided with slop tank arrangements in accordance with the requirements of paragraphs 4.6.1 to 4.6.3 of this sub section. In oil tankers delivered on or before 31 December 1979 as defined in Reg. 1.28.1 of the Annex, any cargo tank may be designated as a slop tank.

4.6.1 Adequate means shall be provided for cleaning the cargo tanks and transferring the dirty ballast residue and tank washings from the cargo tanks into a slop tank approved by BKI.

4.6.2 In this system arrangements shall be provided to transfer the oily waste into a slop tank or combination of slop tanks in such a way that any effluent discharged into the sea will be such as to comply with the provisions of Reg. 34 of the
Annex.

4.6.3 The arrangements of the slop tank or combination of slop tanks shall have a capacity necessary to retain the slop generated by tank washings, oil residues and dirty ballast residues. The total capacity of the slop tank or tanks shall not be less than 3% of the oil carrying capacity of the ship, except that BKI may accept:

- 2% for such oil tankers where the tank washing arrangement are such that once the slop tank or tanks are charged with washing water, this water is sufficient for tank washing and, where applicable, for providing the driving fluid for eductors, without the introduction of additional water into the system;
- 2% where segregated ballast tanks or dedicated clean ballast tanks are provided in accordance with Reg. 18 of the Annex, or where a cargo tank cleaning system using crude oil washing is fitted in accordance with regulation 3 of this Annex. This capacity may be further reduced to 1.5% for such oil tankers where the tank washing arrangements are such that once the slop tank or tanks are charged with washing water, this water is sufficient for tank washing and, where applicable, for providing the driving fluid for eductors, without the introduction of additional water into the system; and
- 1% for combination carriers where oil cargo is only carried in tanks with smooth walls. This capacity may be further reduced to 0.8% where the tank washing arrangements are such that once the slop tank or tanks are charged with washing water, this water is sufficient for tank washing and, where applicable, for providing the driving fluid for eductors, without the introduction of additional water into the system.

4.6.4 Slop tanks shall be so designed particularly in respect of the position of inlets, outlets, baffles or weirs where fitted, so as to avoid excessive turbulence and entrainment of oil or emulsion with the water.

4.7 Oil tankers of 70,000 tonnes deadweight and above delivered after 31 December 1979, as defined in Reg. 1.28.2 of the Annex, shall be provided with at least two slop tanks.

5. Bow or stern loading and unloading arrangements

5.1 Subject to special approval, cargo piping may be fitted to permit bow or stern loading or unloading. Portable piping is not permitted.

5.2 Outside the cargo area bow and stern loading and unloading lines are to be arranged on the open deck.

5.3 When stern loading and unloading arrangements are in use, openings and air inlets to enclosed spaces within a distance of 10 m from the cargo shore connection are to be kept closed.

5.4. The provisions of 4.3.9, 4.3.10, 4.4.1, 4.4.2 and 4.4.3 apply to the exterior boundaries of superstructures and deckhouses enclosing accommodation spaces, main cargo control stations, control stations, service spaces and machinery spaces which face the cargo shore connection, the overhanging decks which support such spaces, and the outboard sides of the superstructures and deckhouses for the specified distances from the boundaries which face the cargo shore connection.

5.5. Tankers equipped for single point offshore mooring and bow loading arrangements should in addition to the provision of 5.1 to 5.4 comply with the following:

- Where a forward bridge control position is arranged on the fore deck, provisions are to be made for emergency escape from the bridge control position in the event of fire.
- An emergency quick release system is to be provided for cargo hose and mooring chain. Such systems are not to be installed within the fore ship.
- The mooring system is to be provided with a tension meter continuously indicating the tension in the mooring system during the bow loading operation. This requirement may be waived if the tanker has in operation equivalent equipment, e.g. a dynamic positioning system ensuring that the permissible tension in the mooring system is not exceeded
- An operation manual describing emergency procedures such as activation of the emergency quick release system and precautions in case of high tension in the mooring system, should be provided on board.

5.6. For piping details and for the fire extinguishing systems the provisions of Rules for Machinery Installations, Volume III, Section 15 apply.

6. Superstructures
6.1 According to Regulation 39 of ICLL, a minimum bow height above the waterline is required at the forward perpendicular. Where the bow height is obtained by freeboard and sheer, the sheer is to extend for at least 15% of the length L_c of the ship measured from the forward perpendicular. Where it is obtained by freeboard and fitting a forecastle, it is to extend from the stem to a point at least $0.07 L_c$ abaft the forward perpendicular.

6.2 Machinery and boiler casings are to be protected by an enclosed poop or bridge of not less than standard height, or by a deckhouse of not less than standard height and equivalent strength. Details shall be taken from ICLL, Reg.26. The end bulkheads are to have scantlings as required in Section 16.

Machinery and boiler casings may be exposed if there are no openings giving direct access from the freeboard deck to the machinery and boiler space. A weathertight door may, however, be permitted in the machinery and boiler casing, provided that it leads to a space or passageway which is as strongly constructed as the casing and is separated from the stairway to the engine room by a second weathertight door of steel or other equivalent material.

6.3 Openings in superstructure end bulkheads are to be provided with weathertight closing appliances. Their sills are not to be less than 380 mm in height. Reference is made to the respective requirements of the ICLL.

7. Gangways, bulwarks

7.1 Either a permanent and continuous walkway on the freeboard deck or a corresponding gangway of substantial strength (e.g. at the level of the superstructure deck) shall be provided between the deckhouse and the forecastle on or near the centre line of the ship.

For these the following conditions shall be observed:

- The clear width shall be between 1m and 1.5 m. For ships of less than 100 m in length the width may be reduced to 0,6 m.
- If the length of the deck to be traversed exceeds 70 m shelters of sufficient strength at intervals not exceeding 45 m shall be provided. Each shelter shall be capable of accommodating at least one person and be so constructed as to afford weather protection on the forward, port and starboard side.
- They shall be fitted with guard rails and a footstop on either side. The guard rails shall have a height of not less than 1 m and shall be fitted with two courses and with a handrail. The intermediate opening to the lowest course shall not exceed 230 mm and between the other courses it shall not exceed 380 mm. Stanchions shall be fitted at intervals of not more than 1,5 m. Every third stanchion shall be fitted with a support.
- At all the working areas, but at least every 40 m, there shall be access to the deck.
- The construction of the gangway shall be of suitable strength, shall be fire resistant and the surface shall be of non-slip material.

Ships with hatches may be fitted with two walkways as specified above on the port and starboard side of the hatch, located as close as practicable to the ship's centre line.

Alternatively a well-lit and sufficiently ventilated passageway of at least 800 mm width and 2.000 mm height can be constructed below the weather deck, as close as possible to the freeboard deck.

Note

The respective regulations of the competent national authorities are to be observed.

7.2 Type “A” ships with bulwarks are to have open rails fitted for at least half the length of the exposed parts of the weather deck or other effective freeing arrangements. A freeing port area, in the lower part of the bulwarks, of 33 % of the total area of the bulwarks, is an acceptable equivalent freeing arrangement. The upper edge of the sheer strake is to be kept as low as practicable.

Where superstructures are connected by trunks, open rails are to be fitted for the whole length of the exposed parts of the freeboard deck.

8. Ventilators

8.1 Ventilators for spaces under the freeboard deck are to be of strong construction, or to be efficiently protected by superstructures or other equivalent means.

8.2 Pump rooms, cofferdams and other rooms adjacent to cargo tanks are to be fitted with ventilation arrangements,
Section 24 - Oil Tankers

8.3 The dangerous zones as per Rules for Electrical Installations, Volume IV, Section 1, T. are to be observed.

9. Anchor equipment

9.1 The anchor windlass and the chain locker are considered a source of ignition. Unless located at least 2.4 m above the cargo deck the windlass and the openings of chain pipes leading into the chain locker are to be fitted at a distance of not less than 3 m from the cargo tank boundaries, if liquids having a flashpoint (closed cup test) not exceeding 60°C are intended to be carried.

9.2 For distances from cargo tank vent outlets etc. the relevant requirements of Rules for Machinery Installations, Volume III, Section 15 are to be observed.

10. Cathodic protection

10.1 Impressed current systems and magnesium or magnesium alloy anodes are not permitted in oil cargo tanks. There is no restriction on the positioning of zinc anodes.

10.2 When anodes are fitted in tanks they are to be securely attached to the structure. Drawings showing their location and the attachment are to be submitted.

10.3 Aluminium anodes are only permitted in cargo tanks of tankers in locations where the potential energy does not exceed 275 Nm. The height of the anode is to be measured from the bottom of the tank to the centre of the anode, and its weight is to be taken as the weight of the anode as fitted, including the fitting devices and inserts. However, where aluminium anodes are located on horizontal surfaces such as bulkhead girders and stringers not less than 1 metre wide and fitted with an upstanding flange or face flat projecting not less than 75 mm above the horizontal surface, the height of the anode may be measured from this surface. Aluminium anodes are not to be located under tank hatches or Butterworth openings (in order to avoid any metal parts falling on the fitted anodes) unless protected by the adjacent structure.

10.4 The anodes should have cores of hull structural steel or other weldable steel and these should be sufficiently rigid to avoid resonance in the anode support and be designed so that they retain the anode even when it is wasted.

The steel inserts are to be attached to the structure by means of a continuous weld of adequate section. Alternatively, they may be attached to separate supports by bolting, provided a minimum of two bolts with lock-nuts are used. When anode inserts or supports are welded to the structure, they should be arranged so that the welds are clear of stress risers.

The supports at each end of an anode should not be attached to separate items which are likely to move independently. However, approved mechanical means of clamping will be accepted.

11. Aluminium paints

The use of aluminium coatings containing greater than 10 percent aluminium by weight in the dry film is prohibited in cargo tanks, cargo tank deck area, pump rooms, cofferdams or any other area where cargo vapour may accumulate.

12. Access to spaces in the cargo area

12.1 Access to cofferdams, ballast tanks, cargo tanks and other spaces in the cargo area is to be direct from the open deck and such as to ensure their complete inspection. Access to double bottom spaces may be through a cargo pump room, pump room, deep cofferdam, pipe tunnel or similar compartments, subject to consideration of ventilation aspects.

Note
Access to double bottom tanks located under cargo tanks through manholes in the inner bottom may be permitted in special cases where non-dangerous liquid substances only are carried in the cargo tanks and subject to approval by the Administration, however, not to oil fuel double bottom tanks.

12.2 For access through horizontal openings, hatches or manholes, the dimensions are to be sufficient to allow a person wearing a self-contained, air breathing apparatus and protective equipment to ascend or descend any ladder without obstruction and also to provide a clear opening to facilitate the hoisting of an injured person from the bottom of the space. The minimum clear opening is to be not less than 600 mm by 600 mm.

12.3 For access through vertical openings, or manholes providing passage through the length and breadth of the space,
A Section 24 - Oil Tankers

the minimum clear opening is to be not less than 600 mm by 800 mm at a height of not more than 600 mm from the bottom shell plating unless gratings or other footholds are provided.

Note

For the purpose of subparagraph 12.2 and 12.3 the following applies:

1. The term "minimum clear opening of not less than 600 mm x 600 mm" means that such openings may have corner radii up to 100 mm maximum.

2. The term "minimum clear opening of not less than 600 mm x 800 mm" includes also an opening of the following size:

![Diagram](image)

12.4 For oil tankers of less than 5000 tdw smaller dimensions may be approved by the Administration in special circumstances, if the ability to transverse such openings or to remove an injured person can be proved to the satisfaction of the Administration.

12.5 With regard to accessibility for survey purposes of cargo and ballast tanks see also Section 21, N. and Rules for Classification and Surveys, Volume I, Section 4, A.

12.6 Any tank openings, e.g. tank cleaning openings, ullage plugs and sighting ports are not to be arranged in enclosed spaces.

12.7 Ullage plugs and sighting ports are to be fitted as high as possible, for instance in the hatchway covers. The openings are to be of the self closing type capable of being closed oiltight upon completion of the sounding operation. Covers may be of steel, bronze or brass, however, aluminium is not an acceptable material. Where the covers are made of glass fibre reinforced plastic or other synthetic materials, E. is to be observed.

12.8 Where deck openings for scaffolding wire connections are provided, the following requirements are to be observed:

- The number and position of holes in the deck are to be approved.
- The closing of holes may be by screwed plugs of steel, bronze, brass or synthetic material, however, not of aluminium. The material used shall be suitable for all liquids intended to be carried.
- Metal plugs are to have fine screw threads. Smooth transitions of the threads are to be maintained at the upper and lower surface of the deck plating.
- Where synthetic material is used, the plugs are to be certified to be capable of maintaining an effective gastight seal up to the end of the first 20 minutes of the standard fire test as defined in Regulation II - 2/3.2, SOLAS 74, the test being applied to the upper side which would in practice be exposed to the flames.
- The number of spare plugs to be kept on board is to cover at least 10 % of the total number of holes.

13. Minimum thickness

13.1 In cargo and ballast tanks within the cargo area the thickness of longitudinal strength members, primary girders, bulkheads and associated stiffeners is not to be less than the following minimum value:

\[t_{\text{min}} = 6.5 + 0.02 \, L \] [mm]

where \(L \) need not be taken greater than 250 m. For secondary structures such as local stiffeners \(t_{\text{min}} \) need not be taken greater than 9,0 mm.

The minimum thickness is not permitted to be reduced for restricted service.

13.2 For pump rooms, cofferdams and void spaces within the cargo area as well as for fore peak tanks the requirements...
for ballast tanks according to Section 12, A.7. apply, however, with an upper limit of $t_{\text{min}} = 11.0 \text{ mm}$.

For aft peak tanks the requirements of Section 12, A.7.3 apply.

13.3 In way of cargo tanks the thickness of side shell is not to be taken less than:

$$t_{\text{min}} = \sqrt{L \cdot k} \quad \text{[mm]}$$

$k =$ material factor

13.4 If the berthing zone is stiffened longitudinally and the transverse web frame spacing exceeds circa 3,3 m the side shell plating in way of the berthing zone is to be increased by $10 \cdot a \%$. The berthing zone extends from 0,3 m below the ballast waterline to 0,3 m above the load waterline. In ship's longitudinal direction it is the area of the side shell which breadth is larger than $0,95 \cdot B$.

14. Corrosion protection

The requirements of Section 38 apply, as far as applicable.

15. Testing of cargo and ballast tanks

15.1 Testing of cargo and segregated ballast tanks as well as cofferdams including cofferdam/engine room bulkhead is to be carried out as a combination of a leak test by means of air pressure and a pressure/operational test by means of water or cargo.

The air pressure is not to exceed 0,2 bar gauge. The increased risk of accident while the tanks are subjected to the air pressure is to be observed.

15.2 Where one tank boundary is formed by the ship's shell the leak test is to be carried out before launching. For all other tanks leak testing may be carried out afloat. Erection welds as well as welds on assembly openings are to be coated t^1 after leak testing is carried out. This applies also to manual weld connections of bulkheads with tank boundaries and of collaring arrangements at intersections of tank boundaries and e.g. frames, beams, girders, pipes etc. When it is ensured that similar liquids will be carried in adjacent tanks, e.g. in adjacent ballast tanks or in adjacent cargo tanks of crude oil tankers the latter weld connections may be coated before leak testing is carried out.

All other welds on tank boundaries may be coated before leak testing is carried out provided that it is ensured by suitable measures (e.g. by visual examination of the welds) that all welding is completed and the surfaces of the welds do not exhibit any cracks or pores.

15.3 Where leak testing in accordance with 15.2 is not carried out and the tanks are pressure tested with water, the bulkheads are, in general, to be tested from one side. The testing should be carried out on the building berth/in drydock. Subject to agreement by BKI the pressure testing may be carried out afloat. Water testing may be carried out after application of a coating, provided that during the examination mentioned in 15.2 deficiencies are not noted. Where in lieu of a cofferdam a pump room is situated between cargo tank and machinery space the engine room/pump room bulkhead need not be water tested.

15.4 The operational tests may be carried out afloat or during the sea trials. In the course of these tests at least two cargo tanks and two segregated ballast tanks are to be pressure tested to the test head given in 15.5 to 15.7. When selecting the tanks to be tested it is to be observed that the cofferdam/cargo tank bulkhead is required to be pressure tested. For all tanks the proper functioning of filling and suction lines and of the valves as well as functioning and tightness of the vent, sounding and overflow pipes is to be tested.

15.5 For cargo tanks a test head corresponding to a head of water of 2,5 m or as required in accordance with 15.6 above the highest point of the tank is to be applied. For cofferdams a test head corresponding to a head of water to the top of access hatchways is sufficient.

15.6 Cargo tanks fitted with pressure relief valves and/or intended for the carriage of cargoes with a density of more than $\rho = 1,025 \text{ t/m}^3$ are to be tested with a head of water of at least:

$$h_p = 2,5 \cdot \rho \quad \text{[m]} \quad \text{or} \quad 10 \cdot pv \quad \text{[m]}$$

whichever is greater.

1) Shopprimers are no coatings in the context of these Rules
\[\rho = \text{density of liquid} \quad [\text{t/m}^3] \]
\[\rho_c = \text{see Section 4, D.1.} \]

15.7 For segregated ballast tanks a test head corresponding to a head of water up to the top of the overflow pipe is to be applied.

B. Strength of Girders and Transverses in the Cargo Tank Area

1. General

1.1 Girders and transverses may be predesigned according to Section 12, B.3. Subsequently a stress analysis according to 2. is to be carried out. All structural elements exposed to compressive stresses are to be subjected to a buckling analysis according to Section 3, F.

1.2 Brackets fitted in the corners of transverses and tripping brackets fitted on longitudinals are to have smooth transitions at their toes.

1.3 Well rounded drain holes for oil and air holes are to be provided, they are not to be larger than required for facilitating efficient drainage and for venting of vapours. No such holes and no welding scallops shall be placed near the constraint points of stiffeners and girders and near the toes of brackets.

1.4 Transverses are to be effectively supported to resist loads acting vertically on their webs.

2. Stress analysis

A three-dimensional stress analysis is to be carried out for the primary structural numbers in way of the cargo tank area by applying the FE calculation method. The analysis is to be based on the loading conditions according to Figs. 24.4. and 24.5 for double hull oil tankers with one or two longitudinal oil-tight bulkheads. Tankers with deviating cargo tank arrangements and loading conditions will be separately considered. Consideration of additional load cases may be required if deemed necessary by BKI.

2.1 Structural modeling

The longitudinal extent of the FE model is determined by the geometry of the structure as well as the local load distribution according to inner and outer pressures and the global load distribution according to the section forces obtained from the longitudinal strength calculation.

Regarding assessment of fatigue strength, BKI reserve the right to require examination of structural details by means of local FE models.

2.2 Loads

Local static and dynamic loads are to be determined according to Section 4; global static and dynamic loads according to Section 5. Also the heeling condition determined by the angle \(\phi \) is to be considered.

The internal pressure in the cargo tanks is to be determined in accordance with the formula for \(\rho_c \) as per Section 4, D.1.
Fig 24.4 Loading conditions for tankers with one centreline longitudinal bulkhead
In general, the design angle of heel ϕ need not to be taken greater than:

$$\phi = \arctan \left(0.5 \cdot \frac{H}{B} \right)$$

2.3 Permissible stresses

2.3.1 Transverse members

Under load assumption according to 2. the following stress values are not to be exceeded in the transverses and in the bulkhead girders:

- bending and axial stresses:
 $$\sigma_x = \frac{150}{k} \quad [\text{N/mm}^2]$$

- shear stress:
 $$\tau = \frac{100}{k} \quad [\text{N/mm}^2]$$

- equivalent stress:
 $$\sigma_v = \sqrt{\sigma_x^2 + 3 \cdot \tau^2} = \frac{180}{k} \quad [\text{N/mm}^2]$$

- σ_x = stress in longitudinal direction of the girder.
- k = material factor according Section 2, B.2.

The stress values as per Section 12, B.3.2 are not to be exceeded when the load p_2 as per Section 4, D.1. is applied.

2.3.2 Longitudinal members

In the longitudinal girders at deck and bottom, the combined stress resulting from local bending of the girder and longitudinal hull girder bending of the ship's hull under sea load is not to exceed 230/k [N/mm2].

Fig. 24.5 Loading conditions for tankers with two longitudinal bulkheads
2.4 Fatigue strength

A fatigue strength analysis according to Section 20 is to be carried out. Analogously it shall be based on Table 20.1 of Section 20 whereas loading due to different draught, i.e. ship in ballast and ship fully laden respectively may be considered according to service life, see Section 20, B.2.

2.5 Cross ties

The cross sectional area of the cross ties due to compressive loads is not to be less than:

\[A_k = \frac{P}{9.5 - 4.5 \cdot 10^{-4} \cdot \lambda^2} \quad [\text{cm}^2] \quad \text{for } \lambda \leq 100 \]
\[= \frac{P \cdot \lambda^2}{5 \cdot 10^4} \quad [\text{cm}^2] \quad \text{for } \lambda > 100 \]

\[\lambda = \frac{l}{i} \quad \text{degree of slenderness} \]
\[l = \text{unsupported span} \quad [\text{cm}] \]
\[i = \text{radius of gyration} = \sqrt{\frac{I}{A_k}} \quad [\text{cm}] \]
\[I = \text{smallest moment of inertia} \quad [\text{cm}^4] \]

For the first approximation,
\[P = A \cdot p \quad [\text{kN}] \]
\[A = \text{area supported by one cross tie} \quad [\text{m}^2] \]
\[p = \text{load } p_1 \text{ or } p_2 \quad [\text{kN/m}^2] \text{ as per Section 4.D.} \]

Finally the sectional area \(A_k \) is to be checked for the load \(P \) resulting from the transverse strength calculation.

C. Oiltight Longitudinal and Transverse Bulkheads

1. Scantlings

1.1 The scantlings of bulkheads are to be determined according to Section 12. The thicknesses are not to be less than the minimum thickness as per A.13. For stress and buckling analysis the requirements of B.1.1 apply.

1.2 The top and bottom strakes of the longitudinal bulkheads are to have a width of not less than 0,1 H, and their thickness is not to be less than:
 - top strake of plating:
 \[t_{\text{min}} = 0,75 \times \text{deck thickness} \]
 - bottom strake of plating:
 \[t_{\text{min}} = 0,75 \times \text{bottom thickness} \]

1.3 The section modulus of horizontal stiffeners of longitudinal bulkheads is to be determined as for longitudinals according to Section 9, B., however, it is not to be less than \(W_2 \) according to Section 12, B.3.

1.4 The stiffeners are to be continuous in way of the girders. They are to be attached to the webs of the girders in such a way that the support force can be transmitted observing \(\tau_{\text{perm}} = 100/\text{kN/mm}^2 \).

2. Cofferdam bulkheads

Cofferdam bulkheads forming boundaries of cargo tanks are to have the same strength as cargo tank bulkheads. Where they form boundaries of ballast tanks or tanks for consumables the requirements of Section 12 are to be complied with. For cofferdam bulkheads not serving as tank bulkheads, e.g. pump-room bulkheads, the scantlings for watertight bulkheads as required by Section 11 are sufficient.
D. Wash Bulkheads

1. General

1.1 The total area of perforation in wash bulkheads is to be approximately 5 to 10 % of the bulkhead area.

1.2 The scantlings of the top and bottom strakes of plating of a perforated centre line bulkhead are to be as required by C.1.2. Large openings are to be avoided in way of these strakes.

The centre line bulkhead is to be constructed in such a way as to serve as shear connection between bottom and deck.

2. Scantlings

2.1 The plate thickness of the transverse wash bulkheads is to be determined in such a way as to support the forces induced by the side shell, the longitudinal bulkheads and the longitudinal girders. The shear stress is not to exceed 100/k [N/mm²]. Beyond that, the buckling strength of plate panels is to be examined. The plate thickness is not to be less than the minimum thickness according to A.13.

2.2 The stiffeners and girders are to be determined as required for an oiltight bulkhead. The pressure pd according to Section 4, D.2. is to be substituted for p.

E. Hatches

1. Tank hatches

1.1 Oiltight tank hatches are to be kept to the minimum number and size necessary for access and venting.

1.2 Openings in decks are to be elliptical and with their major axis in the longitudinal direction, wherever this is practicable. Deck longitudinals in way of hatches should be continuous within 0,4 L amidships. Where this is not practicable, compensation is to be provided for lost cross sectional area.

1.3 Coaming plates are to have a minimum thickness of 10 mm.

1.4 Hatch covers are to be of steel with a thickness of not less than 12,5 mm. Where their area exceeds 1,2 m², the covers are to be stiffened. The covers are to close oiltight.

1.5 Other types of oiltight covers may be approved if found to be equivalent.

2. Other access arrangements

Hatchways to spaces other than cargo tanks situated on the strength deck, on a trunk or on the forecastle deck, also inside open superstructures, are to be fitted with weathertight steel covers, the strength of which is to be in accordance with Section 17, C.

F. Structural Details at the Ship's End

1. General

1.1 The following requirements are based on the assumption that the bottom forward of the forward cofferdam and abaft the aft cofferdam bulkhead is framed transversely. Approval may be given for other systems of construction if these are considered equivalent.

1.2 For the fore- and afterpeak, the requirements of Section 9, A.5. apply.

2. Fore body

2.1 Floor plates are to be fitted at every frame. The scantlings are to be determined according to Section 8, A.12.3.
2.2 Every alternate bottom longitudinal is to be continued forward as far as practicable by an intercostal side girder of same thickness and at least half the depth of the plate floors. The width of their flange is not to be less than 75 mm.

2.3 The sides may be framed transversely or longitudinally in accordance with Section 9.

3. Aft body

3.1 Between the aft cofferdam bulkhead and the afterpeak bulkhead the bottom structure is to comply with Section 8.

3.2 The sides may be framed transversely or longitudinally in accordance with Section 9.

4. Emergency towing arrangements

4.1 Purpose

Under regulation II-1/3-4 of the 1974 SOLAS Convention, as amended in 2000 by Resolution MSC.99(73), new and existing tankers of 20,000 tdw and above shall be fitted with an emergency towing arrangement in the bow and stern areas of the upper deck.

4.2 Requirements for the arrangements and components

4.2.1 General

The emergency towing arrangements shall be so designed as to facilitate salvage and emergency towing operations on tankers primarily to reduce the risk of pollution. The arrangements shall at all times be capable of rapid deployment in the absence of main power on the ship to be towed and of easy connection to the towing vessel. Fig. 24.6 shows typical arrangements which may be used as reference.

![Fig. 24.6 Typical emergency towing arrangements](image)

4.2.2 Documents to be submitted

The following documents have to be submitted for approval:

- general layout of the bow and stern emergency towing arrangements
- drawings of the bow and stern strong points and fairleads including material specifications and strength calculations
- drawings of the local ship structures supporting the loads from the forces applied to the emergency towing equipment
- operation manual for the bow and stern emergency towing equipment

4.2.3 Strength of the towing components

Towing components shall have a Safe Working Load (SWL) of at least 1.000 kN for tankers of 20,000 tdw and over but less than 50,000 tdw, and at least 2.000 kN for tankers of 50,000 tdw and over. The SWL is defined as one half of the minimum
breaking load of the towing pennant. The strength shall be sufficient for all relevant angles of towline, i.e. up to 90° from the ship's centerline to port and starboard and 30° vertical downwards.

4.2.4 Length of towing pennant
The towing pennant shall have a length of at least twice the lightest seagoing ballast freeboard at the fairlead plus 50 m.

4.2.5 Location of strongpoint and fairlead
The strong points and fairleads shall each be located in the bow and stern areas at the centerline.

4.2.6 Strongpoint
The inboard end fastening shall be a chain cable stopper or towing bracket or other fitting of equivalent strength. The strongpoint can be designed integral with the fairlead. The scantlings of the strong points and the supporting structures are to be determined on the basis of the ultimate strength of the towing pennant.

4.2.7 Fairleads
The bending ratio (towing pennant bearing surface diameter to towing pennant diameter) of the fairlead shall not be less than 7 to 1. Otherwise a chafing gear (stud link chain) is required.

4.2.8 Chafing gear

4.2.8.1 The chafing gear shall be long enough to ensure that the towing pennant remains outside the fairlead during the towing operation. A chain extending from the strongpoint to a point at least 3 m beyond the fairlead shall meet this criterion.

4.2.8.2 One end of the chafing chain shall be suitable for connection to the strongpoint. The other end shall be fitted with a standard pear-shaped open link allowing connection to a standard bow shackle.

4.2.9 Towing connection
The towing pennant shall have a hard eye-formed termination allowing connection to a standard bow shackle.

4.2.10 Testing
The breaking load of the towing pennant shall be demonstrated. All components such as chafing gear, shackles and standard pear-shaped open links shall be tested in the presence of a BKI surveyor under a proof load of 1.420 kN or 2.640 kN respectively, corresponding to a SWL of 1.000 kN or 2.000 kN (see 4.2.3).

The strong points of the emergency towing arrangements shall be prototype tested before the installation on board under a proof load of 2 x SWL.

On board, the rapid deployment in accordance with 4.3 shall be demonstrated.

4.3 Ready availability of towing arrangements
Emergency towing arrangements shall comply with the following criteria:

4.3.1 The aft emergency towing arrangement shall be pre-rigged and be capable of being deployed in a controlled manner in harbour conditions in not more than 15 minutes.

4.3.2 The pick-up gear for the aft towing pennant shall be designed at least for manual operation by one person taking into account the absence of power and the potential for adverse environmental conditions that may prevail during such emergency towing operations. The pick-up gear shall be protected against the weather and other adverse conditions that may prevail.

4.3.3 The forward emergency towing arrangement shall be capable of being deployed in harbour conditions in not more than one hour.

4.3.4 All emergency towing arrangements shall be clearly marked to facilitate safe and effective use even in darkness and poor visibility.
G. Ships for the Carriage of Dry Cargo or Oil in Bulk

1. General

1.1 For ships covered by this Sub-Section intended to carry dry cargo or oil in bulk, the regulations of this Section apply as well as the relevant regulations for the carriage of the respective dry cargo. For ships intended to also carry dry cargo in bulk the regulations of Section 23 apply also. For the character of classification see A.2.2.

1.2 Dry cargo and liquid cargo with a flashpoint (closed cup test) of 60°C and below are not to be carried simultaneously, excepting cargo oil-contaminated water (slop) carried in slop tanks complying with 3.

1.3 Prior to employing the ship for the carriage of dry cargo the entire cargo area is to be cleaned and gas-freed. Cleaning and repeated gas concentration measurements are to be carried out to ensure that dangerous gas concentrations do not occur within the cargo area during the dry cargo voyage.

1.4 In way of cargo holds for oil, hollow spaces in which explosive gases may accumulate are to be avoided as far as possible.

1.5 Openings which may be used for cargo operations when bulk dry cargo is carried are not permitted in bulkheads and decks separating oil cargo spaces from other spaces not designed and equipped for the carriage of oil cargoes unless equivalent approved means are provided to ensure segregation and integrity.

2. Reinforcements

2.1 In cargo holds for dry cargo in bulk or oil the following reinforcements are to be carried out.

2.2 Framing

2.2.1 The scantlings of frames in the cargo holds for oil are to be determined according to Section 9, A.2.2. Tripping brackets according to Section 9, A.5.5 are to be fitted at suitable intervals.

2.2.2 In cargo holds which may be partly filled frames may be required to be strengthened, depending on the filling ratio.

2.3 Cargo hold bulkheads

2.3.1 The scantlings of cargo hold bulkheads are to be determined according to Section 23, B.8. as well as according to the requirements for oil tankers and according to the requirements of Sub-Section C.

2.3.2 In cargo holds which may be partly filled the bulkheads may be required to be strengthened, depending on the filling ratio.

2.4 Hatchways

2.4.1 The scantlings of the hatchway covers are to be determined according to Section 17.

2.4.2 Where cargo holds are intended to be partly filled the hatchway covers may be required to be strengthened depending on the filling ratio and the location in the ship.

2.4.3 The scantlings of the hatchway coamings are to be checked for the load according to Section 17. B.1.1.4

2.4.4 The form and size of hatchway covers and the sealing system shall be adapted to each other in order to avoid leakages caused by possible elastic deformations of the hatchways.

3. Slop tanks

3.1 The slop tanks are to be surrounded by cofferdams except where the boundaries of the slop tanks where slop may be carried on dry cargo voyages are the hull, main cargo deck, cargo pump room bulkhead or oil fuel tank. These cofferdams are not to be open to a double bottom, pipe tunnel, pump room or other enclosed space. Means are to be provided for filling the cofferdams with water and for draining them. Where the boundary of a slop tank is the cargo pump room bulkhead the
pump room is not to be open to the double bottom, pipe tunnel or other enclosed space, however, openings provided with gastight bolted covers may be permitted.

3.2 Hatches and tank cleaning openings to slop tanks are only permitted on the open deck and are to be fitted with closing arrangements. Except where they consist of bolted plates with bolts at watertight spacing, these closing arrangements are to be provided with locking arrangements which shall be under the control of the responsible Ship's Officer.

H. Small Tankers

1. General

1.1 The following requirements apply to small tankers of less than 90 m in length. Small tankers for the purpose of this Section are coastal tankers, bunkering boats and water tankers. Unless otherwise mentioned in this Section, the requirements of A. - G. are applicable.

1.2 Small tankers may be framed either longitudinally or transversely, or a combined system may be adopted with the ship's sides being framed transversely and the bottom and strength deck longitudinally. For the strength deck, the longitudinal framing system is recommended.

1.3 The strength deck may extend from side to side, or may consist of a main deck and a raised trunk deck. In the case of trunk deckers the permissible L/H values for the various service ranges (see Section 1, A.1.) are to be related to the following fictitious depth H' :

$$H' = e_B + e_D$$

e_B and e_D see Section 5, A.5. and C.4.1.

1.4 Two oiltight longitudinal bulkheads, or else one oiltight centre line bulkhead, may be fitted, extending continuously through all cargo tanks from cofferdam to cofferdam.

1.5 For tankers of more than 24 m in length proof is to be provided of sufficient bow height as per A.6.1.

1.6 A trunk of sufficient height may serve as fore and aft gangway as per A.7.

2. Girders and transverses

2.1 Girders and transverses are to be determined according to Section 12, B.3. If deemed necessary a stress and buckling analysis according to B.1.1 is to be carried out.

2.2 Deductions for restricted service range are not permitted for girders and transverses.

3. Transverse framing

3.1 Scantlings

3.1.1 The section modulus of the transverse frames in the cargo tank area is not to be less than:

$$W_1 = k \cdot 0.55 \cdot a \cdot \ell^2 \cdot p \quad [\text{cm}^3]$$

or

$$W_2 = k \cdot 0.44 \cdot a \cdot \ell^2 \cdot p_2 \quad [\text{cm}^3]$$

k, ℓ, p and p_2 see Section 12, B.1.

3.1.2 The scantlings of the frame section are to be maintained throughout the whole depth H.

3.2 End attachment and connections

3.2.1 At their ends, the transverse frames are to be provided with flanged brackets according to Section 3, D.2. The bilge bracket is to fill the entire round of the bilge and is to be connected to the adjacent bottom longitudinal.

The bracket at the upper end of the frame is to be attached to the adjacent deck longitudinal.
3.2.2 Where the unsupported span is considerable, flats or brackets are to be fitted to support the frame against tripping. The transverse frames are to be attached to the stringers by means of flats or brackets extending to the face plate of the stringer in such a way that the force of support can be transmitted.

4. Deck

4.1 The scantlings of the strength deck are to be determined according to Section 7. The plate thickness is not to be less than:

for longitudinal framing:

\[t_{krit} = \frac{a \cdot 10^3}{85 - 0.15 L} \text{ [mm]} \]

for transverse framing:

\[t_{krit} = \frac{a \cdot 10^3}{65 - 0.2 L} \text{ [mm]} \]

The thickness of deck plating is not to be less than the minimum thickness as given under A.13. or the thickness required for tank bulkhead plating.

4.2 For trunk deckers, designing of the deck is to be based upon the fictitious depth \(H' \) according to 1.3. The thickness of deck plating so obtained applies to the main deck and the trunk deck. Where the thickness obtained for the deck exceeds that for the bottom - provided the framing system and the frame spacing are equal in deck and bottom - the mean value of the two different thicknesses is to be taken for deck and bottom.

4.3 The trunk side plating is to have the same thickness as the side shell plating at the ends, taking into account the frame spacing, however, it is not to be less than the minimum thickness according to A.13. or the thickness required for tank bulkhead plating.

4.4 The stiffening of the trunk side plating is to be similar to that of a deck. The transverses are to be determined according to 2. like deck transverses, with a span equal to the depth of trunk; the section modulus is not to be less than that of the adjoining deck transverses.

5. Shell plating

The thickness of the shell plating is to be determined according to Section 6. For trunk deckers the thickness is to be based upon the fictitious depth \(H' \) according to 1.3. The thickness of the shell plating is not to be less than the minimum thickness according to A.13 or the thickness required for tank bulkhead plating.
J. Product List 1

List of Oils *

Asphalt solutions
Blending stocks
Roofers flux
Straight run residue

Oils
Clarified
Crude oil
Mixtures containing crude oil
Diesel oil
Fuel oil no. 4
Fuel oil no. 5
Fuel oil no. 6
Residual fuel oil
Road oil
Transformer oil
Aromatic oil (excluding vegetable oil)
Lubricating oils and blending stocks
Mineral oil
Motor oil
Penetrating oil
Spindle oil
Turbine oil

Gasoline blending stocks
Alkylates - fuel
Reformates
Polymer - fuel

Gasolines
Casinghead (natural)
Automotive
Aviation
Straight run
Fuel oil no. 1 (kerosene)
Fuel oil no. 1-D
Fuel oil no. 2
Fuel oil no. 2-D

Jet fuels
JP-1 (kerosene)
JP-3
JP-4
JP-5 (kerosene, heavy)
Turbo fuel
Kerosene
Mineral spirit

Naphtha
Solvent
Petroleum
Heartcut distillate oil

* This list of oils shall not necessarily be considered as comprehensive.
<table>
<thead>
<tr>
<th>Product name (column a)</th>
<th>Explanatory Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>: The product names are identical with those given in Chapter 18 of the IBC Code.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN number (column b)</th>
<th>Explanatory Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>: The number relating to each product shown in the recommendations proposed by the United Nations Committee of Experts on the Transport of Dangerous Goods. UN numbers, where available, are given for information only.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category (column c)</th>
<th>Explanatory Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z = pollution category assigned under MARPOL 73/78, Annex II</td>
<td></td>
</tr>
<tr>
<td>I = Product to which a pollution category X, Y or Z has not been assigned.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flashpoint (column e)</th>
<th>Explanatory Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>: Values in () are "open cup values", all other values are "closed cup values".</td>
<td></td>
</tr>
<tr>
<td>– = non-flammable product</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

In accordance with Annex II of MARPOL 73/78 an "International Pollution Prevention Certificate for the Carriage of Noxious Liquid Substances in Bulk" (NLS-Certificate) issued by the Flag Administration is required for the carriage in bulk of category Z products.

Columns d and e are for guidance only. The data included therein have been taken from different publications.
<table>
<thead>
<tr>
<th>Product name</th>
<th>UN number</th>
<th>Category</th>
<th>Density [kg/m³]</th>
<th>Flashpoint [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>1090</td>
<td>Z</td>
<td>790</td>
<td>-18</td>
</tr>
<tr>
<td>Alcoholic beverages, n.o.s.</td>
<td>3065</td>
<td>Z</td>
<td>< 1000</td>
<td>> 20</td>
</tr>
<tr>
<td>Apple juice</td>
<td>I</td>
<td>< 1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butyl alcohol</td>
<td>1120</td>
<td>Z</td>
<td>810</td>
<td>29</td>
</tr>
<tr>
<td>sec-Butyl alcohol</td>
<td>1120</td>
<td>Z</td>
<td>810</td>
<td>24</td>
</tr>
<tr>
<td>Butyl stearate</td>
<td>I</td>
<td>860</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Clay slurry</td>
<td>I</td>
<td>≈ 2000</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Coal slurry</td>
<td>I</td>
<td>≈ 2000</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Diethylene glycol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>1170</td>
<td>I</td>
<td>790</td>
<td>13</td>
</tr>
<tr>
<td>Ethylene carbonate</td>
<td>I</td>
<td>1320</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Glucose solution</td>
<td>I</td>
<td>1560</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Glycerine</td>
<td>Z</td>
<td>1260</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Glycerol monooleate</td>
<td>Z</td>
<td>950</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Hexamethylenetetramine solutions</td>
<td>Z</td>
<td>= 1200</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Hexylene glycol</td>
<td>Z</td>
<td>920</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>1219</td>
<td>Z</td>
<td>790</td>
<td>22</td>
</tr>
<tr>
<td>Kaolin slurry</td>
<td>I</td>
<td>1800 – 2600</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Magnesium hydroxide slurry</td>
<td>Z</td>
<td>≈ 1530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Methylglucamine solution (70 % or less)</td>
<td>Z</td>
<td>1150</td>
<td>> 95</td>
<td></td>
</tr>
<tr>
<td>Molasses</td>
<td>I</td>
<td>1450</td>
<td>> 60</td>
<td></td>
</tr>
<tr>
<td>Non-noxious liquid, n.o.s. (12) (trade name ..., contains ...)</td>
<td>Z</td>
<td>1190 – 1300</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Noxious liquid, n.o.s. (11) (trade name ..., contains ...)</td>
<td>Z</td>
<td>≈ 1570</td>
<td>> 93</td>
<td></td>
</tr>
<tr>
<td>Polyaluminium chloride solution</td>
<td>Z</td>
<td>1190</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Propylene carbonate</td>
<td>Z</td>
<td>1040</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>Z</td>
<td>1450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium acetate solutions</td>
<td>Z</td>
<td>> 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium sulphate solutions</td>
<td>Z</td>
<td>> 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetraethyl silicate monomer/oligomer (20 % in ethanol)</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triethylene glycol</td>
<td>Z</td>
<td>1130</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>I</td>
<td>1000</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

L. Additional Requirements for Tankers in Shuttle Service

1. General requirements and instructions

1.1 General

1.1.1 Scope

These requirements apply to tankers employed in shuttle service between offshore ports and terminals (Single Point Moorings, SPM), Floating Storage Units (FSU), Submerged Turret Loading (STL) and regular ports and terminals. The requirements herein provide minimum safety standards for the intended service and shall be applied in addition to A. to K. National regulations for such operations are to be observed, if any. In respect of layout and arrangement of such systems, the applicable guidelines and recommendations issued by the Oil Companies International Marine Forum (OCIMF) have been considered as far as necessary.

1.1.2 Reference to other rules and guidelines

The following BKI Rules shall be applied in addition:

- Section 1 to 22
- Vol III – Rules for Machinery Installations
- Vol IV – Rules for Electrical Installations
1.2 **Exemptions**

Any kind of new or different design may be accepted by BKI provided that an equivalent level of safety is demonstrated.

1.3 **Notations affixed to the Character of Classification**

The following Notations may be assigned within the scope of these requirements to the general Character of Classification:

- SPM, SPM1, SPM2 or SPM3
- STL

SPM installations are grouped into four classes as defined in 1.4 and have to comply with the requirements set out in 2. For further Notations refer to Regulation for Dynamic Positioning Systems.

1.4 **Definitions**

SPM Single point mooring arrangement of basic design, fitted with local control for mooring to single point mooring complying with 2.1.1

SPM1 Single point mooring arrangement of basic design, fitted with local control for mooring and cargo loading manifold complying with 2.1, 2.3.1 to 2.3.4 and 2.4.1.3 to 2.4.1.4

SPM2 Single point mooring arrangement of advanced design, fitted with bow control station and provided with automatic and remote control for cargo transfer and ship manoeuvring complying with 2.1, 2.3 and 2.4.1

SPM3 Single point mooring arrangement of advanced design, fitted with bow control station automatic and remote control for cargo transfer and equipped with a Dynamic Positioning System (DPS) complying with 2.1, 2.3, 2.4 and Dynamic Positioning Systems

STL Submerged turret loading arrangement of specific design combined with a Dynamic Positioning System (DPS) complying with 2.2 and Regulation for Dynamic Positioning Systems

1.5 **Documents for approval**

In addition to the documents required for regular Class (as per 1.1.2 above) the following documentation is to be submitted for approval as applicable:

Single point mooring arrangement:

- plans showing the mooring arrangement with position of bow fairleads, bow chain stoppers, winches and capstans, possible pedestal rollers, and winch storage drum
- detailed of bow fairleads and their attachment to the bulwark
- details of attachment to deck and supporting structure of the bow chain stoppers, winch or capstans, possible pedestal rollers, and winch storage drum
- a product certificate for the bow chain stoppers and bow fairleads, confirming compliance with 2.1.1
- documentation for maximum Safe Working Load (SWL) from manufacturer (works certificate) for winches or capstans, confirming compliance with 2.1.1.8
- documentation for maximum Safe Working Load (SWL) from manufacturer (works certificate) for pedestal roller (if fitted), confirming necessary structural strength to withstand the forces to which it will be exposed when the winch or capstan are lifting with maximum capacity

Bow loading arrangement:

- plans showing the bow loading and mooring arrangements
- detailed drawings and data sheets of quick release hose coupling, if fitted
- cargo and vapour return systems, if fitted
- arrangement of fairleads, chain stopper, winches including drawings of their substructures and bow control station
- arrangement and details of fire protection equipment in the bow area
Section 24 - Oil Tankers

24-28/32

– ventilation of spaces in the bow area incl. bow control room
– electrical systems and location of equipment
– hydraulic systems
– arrangement of forward spaces incl. accesses, air inlets and openings
– plan of hazardous areas
– operation manual

Submerged turret loading:
– plans showing the STL room arrangement including hull constructional details and mating platform
– detailed drawings of loading manifold with cargo piping, couplings and hoses
– plans for hydraulically operated components with hydraulic systems
– fire protection arrangement of the STL room
– ventilation arrangement of the STL room
– location and details of all electrical equipment
– arrangement, foundation, substructure and details of hoisting winch.

2. System requirements

2.1 Requirements for Single Point Mooring (SPM)

2.1.1 Bow chain stoppers and fairleads

2.1.1.1 One or two bow chain stoppers are to be fitted, capable to accept a standard 76 mm stud-link chain (chafing chain, as defined in the OCIMF "Recommendations for Equipment Employed in the Mooring of Ships at Single Point Moorings"). Number and capacity of the chain stoppers are to be in accordance with Table 24.2.

2.1.1.2 The design of the chain stopper shall be of an approved type, in accordance with the Rules for Machinery Installation, Vol III, Section 14, D. The chafing chain shall be secured when the chain engaging pawl or bar is in closed position. When in open position, the chain and associated fittings shall be capable to pass freely.

2.1.1.3 Stoppers are to be fitted as close as possible to the deck structure and shall be located 2,7 m to 3,7 m inboard of the fairleads. Due consideration shall be given to proper alignment between the fairlead and pedestal lead or drum of the winch or capstan.

2.1.1.4 For the structural strength of the supporting structure underneath the chain stoppers the following permissible stresses are to be observed:

\[
\sigma_b = \frac{200}{k} \quad \text{[N/mm}^2]\]
\[
\tau = \frac{120}{k} \quad \text{[N/mm}^2]\]
\[
\sigma_v = \sqrt{\sigma_b^2 + 3\tau^2} = \frac{220}{k} \quad \text{[N/mm}^2]\]

The acting forces are to be calculated for 80 % of the nominal breaking load of the chafing chain as per Table 24.2.

2.1.1.5 Upon installation, bow stoppers are to be load tested to the equivalent Safe Working Load (SWL). A copy of the installation test certificate shall be available for inspection on board the ship.

Alternatively, the ship shall hold a copy of the manufacturer's type approval certificate for the bow chain stoppers, confirming that bow chain stoppers are constructed in strict compliance with the SWL and Nominal Breaking Load (NBL) given in Table 24.2. This certificate shall also indicate the yield stress of the bow chain stoppers. Loads that induce this yield stress shall not be less than 1,8 times SWL.

Applicable strength of the supporting structures underneath the chain stoppers shall be documented by adequate analyses. BKI will issue a declaration confirming that an evaluation verifying sufficient support strength has been carried out. A copy
of the declaration shall be available for inspection on board the ship. Bow chain stoppers and supporting structures underneath the chain stoppers shall be subject to Periodic Class Survey.

2.1.1.6 Bow fairleads shall have minimum dimensions of 600 x 450 mm and shall be of oval or rounded shape. The chain bearing surface shall have dimensions of at least seven times the associated chain diameter at design conditions. The design force shall be considered at angles of 45° to the sides and 15° upwards or downwards. The permissible design stresses as for stoppers apply.

2.1.1.7 Single fairleads should be arranged at the centreline, where two fairleads are fitted they should be arranged 1 to 1.5 m from the centreline on either side.

Table 24.2 Arrangement and capacity for SPM

<table>
<thead>
<tr>
<th>Vessel size (tdw)</th>
<th>Chafe chain size (mm)</th>
<th>Number of bow fairleads (recommended)</th>
<th>Number of bow stoppers</th>
<th>SWL (kN)</th>
<th>Nominal breaking load of the chain (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 150.000</td>
<td>76</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4.3</td>
</tr>
<tr>
<td>150.000 - 350.000</td>
<td>76</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4.3</td>
</tr>
<tr>
<td>over 350.000</td>
<td>76</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
<td>5.89</td>
</tr>
</tbody>
</table>

2.1.1.8 Winches or capstans are to be positioned to enable a direct pull to be achieved on the continuation of the direct lead line between bow fairleads and bow stoppers. Alternatively a pedestal roller fairlead is to be positioned between the stopper and the winch or capstan. Winches or capstans are to be capable of lifting at least 15 tonnes.

2.1.1.9 If a winch storage drum is used to stow the pick-up rope, it shall be capable to accommodate 150 m rope of 80 mm in diameter.

2.1.2 Bow loading arrangements

2.1.2.1 Bow loading cargo piping is to be permanently fitted and is to be arranged on the open deck. Outside the cargo area and in way of the bow area only welded connections, except at the bow loading connection, are permitted.

2.1.2.2 Within the cargo area the bow piping is to be separated from the main cargo system by at least two valves fitted with an intermediate drain or spool piece. Means for draining towards the cargo area as well as purging arrangements with inert gas shall be provided.

2.1.2.3 The bow loading connection shall be equipped with a shut-off valve and a blank flange. Instead of the blank flange a patent hose coupling may be fitted. Spray shields are to be provided at the connection flange and collecting trays are to be fitted underneath the bow loading connection area.

2.1.2.4 Materials and pipe scantlings shall be in compliance with Rules for Machinery Installations, Vol III, Section 11.

2.1.3 Fire fighting arrangements

2.1.3.1 The following foam fire-extinguishing equipment is to be provided for bow loading arrangement:
- one or more dedicated foam monitor(s) for protecting the bow loading area complying with the requirements in Rules for Machinery Installations, Volume III, Section 12, K.
- one portable foam branch pipe for protecting the cargo line forward of the cargo area

2.1.3.2 A fixed water spray system is to be provided covering the areas of chain stoppers and bow loading connection, having a capacity of:

\[
\frac{10 \text{ litre}}{m^2 \cdot \text{min}}
\]

The system shall be capable of being manually operated from outside the bow loading area and may be connected to the forward part of the fire water main line.

2.1.4 Electrical equipment
Electrical equipment in hazardous areas and spaces as well as within a radius of 3 m from the cargo loading connection/ manifold or any other vapour outlet shall be of certified safe type, meeting the requirements stated in Rules for Electrical Installations, Vol. IV, Section 15.

2.2 Requirements for Submerged Turret Loading (STL)

2.2.1 The STL room with mating recess shall be arranged in the fore body, but within the cargo area. The hull structural design (scantlings of mating recess, mating ring locking device, brackets etc.) shall take into account the design loads caused by the cargo transfer system with due consideration to environmental and operational loads. The designer has to provide sufficient information about the design loads.

2.2.2 Access to the STL room is only permitted from open deck.

2.2.3 A permanent mechanical extraction type ventilation system providing at least 20 changes of air per hour shall be fitted. Inlets and outlets shall be arranged at least 3 m above the cargo tank deck, and the horizontal distance to safe spaces shall not be less than 10 m. Design of fans shall conform to Volume III, Machinery Installations, Section 15.

The air inlet shall be arranged at the top of the STL room. Exhaust trunks are to be arranged having:

- one opening directly above the lower floor and one opening located 2 m above this position
- one opening above the deepest waterline

The openings are to be equipped with dampers capable of being remotely operated from outside the space.

2.2.4 A fixed fire extinguishing system in accordance with Volume III, Machinery Installations, Section 12, D.1.4 is to be provided.

2.2.5 A connection for the supply of Inert Gas (IG) shall be fitted. The connection may be arranged fixed or portable. If fixed, the connection to the IG-System inlet shall be provided with a blank flange.

2.2.6 Electrical equipment shall be of certified safe type in compliance with Rules for Electrical Installations, Vol. IV, Section 15. Where equipment needs to be installed for submerged use, the protection class shall be IP 68; otherwise, the installation is to be located well above the deepest waterline. Electric lighting of the STL room shall be interlocked with the ventilation such that lights can only be switched on when the ventilation is in operation.

Failure of ventilation shall not cause the lighting to extinguish. Emergency lighting shall not be interlocked.

2.2.7 A fixed gas detection system shall be fitted with sampling points or detector heads located at the lower portions of the room. At least one sampling point/detector shall be fitted above the deepest waterline. Visual and audible alarms shall be triggered in the cargo control station and on the navigation bridge if the concentration of flammable vapours exceeds 10 % of the Lower Explosive Limit (LEL).

2.3 Arrangement of forward spaces

2.3.1 General

Hazardous zones, areas and spaces shall be defined on basis of Rules for Electrical Installations, Vol. IV, Section 15.

2.3.2 Air vent pipes from fore peak tanks are to be located as far as practicable away from hazardous areas.

2.3.3 Access openings, air inlets and outlets or other openings to service, machinery and other gas safe spaces shall not face the bow loading area and shall be arranged not less than 10 m away from the bow loading connection. These spaces shall have no connection to gas dangerous spaces and are to be equipped with fixed ventilation systems.

2.3.4 Spaces housing the bow loading connection and piping are to be considered as gas dangerous spaces and shall preferably be arranged semi-enclosed. In case of fully enclosed spaces, a fixed extraction type ventilation providing 20 changes of air per hour shall be fitted. Design of fans shall be according to Rules for Machinery Installations, Volume III, Section 15.

2.3.5 A bow control station for SPM or STL loading operations may be arranged. Unless agreed otherwise and approved, this space shall be designed as gas safe and is to be fitted with fixed overpressure ventilation with inlets and outlets arranged in the safe area. The access opening shall be arranged outside the hazardous zones. If the access opening is located within the hazardous zone, an air lock is to be provided. Emergency escape routes shall be considered during design. Fire
protection standards according to "A–60" class shall be applied for bulkheads, decks, doors and windows in relation to adjacent spaces and areas.

2.4 Functional requirements for bow and STL loading systems

2.4.1 Control systems, communication

2.4.1.1 General

The bow control station, if fitted, may include the ship manoeuvring controls as well as the SPM/STL mooring and cargo transfer control instrumentation. In case the ship manoeuvring controls are provided on the navigation bridge only, a fixed means of communication shall be fitted in both locations. Similar arrangements apply to the bow control station and the Cargo Control Room (CCR), where main cargo loading controls are provided in the CCR only.

2.4.1.2 Essential instrumentation and controls in the bow control station

Ship manoeuvring:
- main propulsion controls
- steering gear, thruster controls
- radar, log

Bow mooring:
- mooring chain traction controls. This requirement may be waived if the tanker is fitted and operating with a dynamic positioning system.
- chain stopper controls
- data recorder for mooring and load parameters

Bow/STL loading:
- manifold connector/coupling indicator
- cargo valves position indicator/controls
- cargo tank level and high alarm indicators
- cargo pumps controls

2.4.1.3 Emergency release

The bow loading arrangements are to be provided with a system for emergency release operation based on a logical sequence to ensure safe release of the vessel. The system shall be capable of the following functions:
- stopping of main cargo pumps or tripping of shore transfer facilities if a ship to shore link is provided
- closing manifold and hose coupling valves
- opening the hose coupling
- opening the chain stopper

In addition to the automatic functions, individual release of hose coupling and chain stoppers shall be provided.

Means of communication between ship and offshore loading terminal shall be provided, certified as "Safe for use in gas dangerous atmosphere". Procedures for emergency communication shall be established.

2.4.2 Operation manual

The tanker shall have on board an operation manual containing the following information:
- arrangement drawings of the SPM/STL cargo transfer arrangement, bow/STL loading connection, mooring system, fire fighting systems and instrumentation
- safety instructions with regard to fire fighting and extinction, emergency release procedures and escape routes
- operational procedures for mooring, connecting/disconnecting loading arrangements and communication
3. Surveys and tests

3.1 Tests of components

Couplings/connectors intended for bow or STL loading operations shall be of approved design. Approvals or test reports issued by recognised institutions may be submitted for review/acceptance. Materials for steel structure, piping, electrical equipment and cables shall in general be in compliance with the current BKI Rules as applicable, see 1.1.2. Cargo transfer hoses and hoses used in hydraulic or other systems shall be type approved.

3.2 Tests after installation

All systems and equipment used for SPM, bow loading and STL shall be function tested at the shipyard prior to commissioning. During the first offshore loading operation, an inspection shall be carried out by a local Surveyor. The inspection shall include all relevant operational procedures and verification of the operation manual.

3.3 Periodical inspections

To maintain the Class Notations assigned for the SPM and STL installations, annual/intermediate and renewal surveys shall be carried out in conjunction with regular class surveys. The scope of surveys shall be based on the principles laid down in Rules for Classification and Surveys, Vol. I, Section 4, A.
Section 25

Ships Carrying Dangerous Chemicals in Bulk

The requirements for the construction of ships carrying dangerous chemicals in bulk, see Rules for Ships Carrying Dangerous Chemicals in Bulk, Volume X.
This page intentionally left blank
Section 26

Ships Carrying Liquefied Gases in Bulk

The requirements for the construction of ships carrying liquefied gases in bulk, see Rules for Ships Carrying Liquefied Gases in Bulk, Volume IX.
This page intentionally left blank
Section 27

Tugs

A. General

1. Scope, application

1.1 The following requirements apply to vessels primarily designed for towing and/or pushing operations or assisting other vessels or floating objects in manoeuvring. Combination with other purposes is possible and will be noted accordingly in the Class Certificate, see 2.2.

1.2 Unless specially mentioned in this Section, the requirements of Sections 1 – 22 apply.

1.3 Special designs not covered by the following rules will be considered from case to case.

1.4 For instructions regarding towing operations in general, see Guidelines for Ocean Towage.

2. Classification, Notations

2.1 Ships built in accordance with the requirements of this Section will have the Notation TUG affixed to their Character of Classification.

2.2 Where towing services are to be combined with other duties such as offshore supply or ice breaking, corresponding additional Class Notations may be assigned if the relevant requirements are met.

3. Approval documents, documentation

3.1 In addition to the documents listed in the rules mentioned under 1.2 above, the following design documentation shall be submitted, in triplicate\(^1\), for approval and/or information:

- general arrangement of the towing gear including winch(es), if provided,
- design drawings and material specifications of towing hook and accessory towing gear, towrope guide and/or of the towing winch including winch drives, brakes and fastening elements, for examination of towing gear with towing winch, the direction of the towrope has to be indicated on the drawings.
- slip device(s) including hydraulic/pneumatic systems and electric circuits, and/or "weak link" for towrope on winch drum,
- required bollard pull (design value),
- towrope specification,
- in special cases, intended tow configuration(s),

3.2 The reliable function of the towing gear has to be proven during the initial tests on board.

3.3 If a bollard pull test has to be carried out and will be certified by BKI, it shall correspond to the procedure given in Guidelines for Ocean Towage. The test results shall be documented and kept on board together with the Certificate of bollard pull testing and the Classification documents.

3.4 BKI material certificates will generally be required for:

- towing hook and attached load transmitting elements, including slip device,
- towing winch: frame, drum shaft(s), couplings, brakes, and gear(s),
- towrope(s), including certification of breaking force.

Material Certificates according to DIN 50049-3.1B or equivalent standard may be accepted for standard items, if the manufacturer is recognized by BKI.

\(^1\) For Indonesian flag ships in quadruplicate (one for Indonesian Government).
B. Hull Structures

1. Scantlings, general

For the determination of hull structure scantlings the draught T is not to be taken less than 0.85 H.

2. Deck structure

2.1 On tugs for ocean towage, the deck, particularly in the forward region, shall be suitably protected or strengthened against sea impact.

2.2 Depending on the towrope arrangement, the deck in the aft region may have to be strengthened (beams, plate thickness), if considerable chafing and/or impact is to be expected. See also C.1.5.

3. Fore body, bow structure

3.1 On tugs for ocean towage, strengthening in way of the fore body (stringers, tripping brackets etc.) shall generally conform to the indications given in Section 9. The stringers shall be effectively connected to the collision bulkhead. Depending on the type of service expected, additional strengthening may be required.

3.2 For (harbour) tugs frequently engaged in berthing operations, the bow shall be suitably protected by fendering and be structurally strengthened.

3.3 The bulwark shall be arranged with an inward inclination in order to reduce the probability and frequency of damages. Square edges are to be chamfered.

3.4 The bow structure of pusher tugs for sea service will be specially considered. For pusher tugs for Inland Navigation see Rules for Inland Waterway Vessels, Chapter 1 – Hull Construction.

4. Stern frame, bar keel

4.1 The cross sectional area of a solid stern frame is to be 20% greater than required according to Section 13, C.2.1. For fabricated stern frames, the thickness of the propeller post plating is to be increased by 20% compared to the requirements of Section 13, C.2.2. The section modulus W_Z of the sole piece is to be increased by 20% compared to the modulus determined according to Section 13, C.4.

4.2 Where a bar keel is provided, its scantling are to be determined by the following formulae:

\[
\text{height } h = 1.1 \times L + 110 \quad [\text{mm}]
\]
\[
\text{thickness } t = 1.1 \times L + 12 \quad [\text{mm}]
\]

Minor deviations from these values are admissible provided the required sectional area is maintained.

5. Side structure

5.1 The side structure of areas frequently subjected to impact loads shall be reinforced by increasing the section modulus of side frames by 20%. Besides, fendering may be necessary to reduce indenting damages of the shell plating.

5.2 A continuous and suitable strong fender shall be arranged along the upper deck.

5.3 For ice strengthening see 8.

6. Engine room casing, superstructures and deckhouses

6.1 The plate thickness of the casing walls and casing tops is not to be less than 5 mm. The thickness of the coamings is not to be less than 6 mm. The coamings shall extend to the lower edges of the beams.

6.2 The stiffeners of the casing are to be connected to the beams of the casing top and are to extend to the lower edge of the coamings.

6.3 Regarding height of the casing and closing arrangements as well as exits see also F.1.1.
6.4 The following requirements have to be observed for superstructures and deckhouses of tugs assigned for the restricted services ranges L and P or for unlimited range of service:

- The plate thickness of the external boundaries of superstructures and deckhouses is to be increased by 1 mm above the thickness as required in Section 16, C.3.2.
- The section modulus of stiffeners is to be increased by 50% above the values as required in Section 16, C.3.1.

7. Foundations of towing gear

7.1 The substructure of the towing hook attachment and the foundations of the towing winch, and of any guiding elements such as towing posts or fairleads, where provided, shall be thoroughly connected to the ship's structure, considering all possible directions of the towrope, see C.3.5.

7.2 The stresses in the foundations and fastening elements shall not exceed the permissible stresses shown in Table 27.2, assuming a load equal to the test load of the towing hook in case of hook arrangements, and a load of the winch holding capacity in case of towing winches, see also C.3.5 and C.5.3.

8. Ice strengthening

8.1 Ice strengthening, where necessary according to the intended service, shall be provided according to the requirements of Section 15.

8.2 Tugs with the notation ICE BREAKER to be specially considered.

C. Towing Gear/Towing Arrangement

1. General design requirements

1.1 The towing gear shall be arranged in such a way as to minimize the danger of capsizing; the towing hook/working point of the towing force is to be placed as low as practicable, see also F.

1.2 With direct-pull (hook-towrope), the towing hook and its radial gear are to be designed such as to permit adjusting to any foreseeable towrope direction, see 3.5.

1.3 The attachment point of the towrope shall be arranged closely behind the centre of buoyancy.

1.4 On tugs equipped with a towing winch, the arrangement of the equipment shall be such that the towrope is led to the winch drum in a controlled manner under all foreseeable conditions (directions of the towrope). Means shall be provided to spool the towrope effectively on the drum, depending on the winch size and towing gear configuration.

1.5 Towrope protection sleeves or other adequate means shall be provided to prevent the directly pulled towropes from being damaged by chafing/abrasion.

2. Definition of loads

2.1 The design force T corresponds to the towrope pull (or the bollard pull, if the towrope pull is not defined) stipulated by the owner. The design force may be verified by a bollard pull test, see A.3.3 and Guidelines for Ocean Towage.

2.2 The test force PL is used for dimensioning as well as for testing the towing hook and connected elements. The test force is related to the design force as shown in Table 27.1.
2.3 The minimum breaking force of the towrope is based on the design force, see 4.3.

2.4 The winch holding capacity shall be based on the minimum breaking force, see 5.3, the rated winch force is the hauling capacity of the winch drive when winding up the towrope, see 6.1.3.3.

2.5 For forces at the towing hook foundation see 3.5.4.

3. **Towing hook and slip device**

3.1 The towing hook shall be fitted with an adequate device guaranteeing slipping (i.e., quick release) of the towrope in case of an emergency. Slipping shall be possible from the bridge as well as from at least one other place in the vicinity of the hook itself, from where in both cases the hook can be easily seen.

3.2 The towing hook has to be equipped with a mechanical, hydraulic or pneumatic slip device. The slip device shall be designed such as to guarantee that unintentional slipping is avoided.

3.3 A mechanical slip device shall be designed such that the required release force under test force PL does not exceed neither 150 N at the towing hook nor 250 N when activating the device on the bridge. In case of a mechanical slip device, the releasing rope shall be guided adequately over sheaves. If necessary, slipping should be possible by downward pulling, using the whole body weight.

3.4 Where a pneumatic or hydraulic slip device is used, a mechanical slip device has to be provided additionally.

3.5 **Dimensioning of towing hook and towing gear**

3.5.1 The dimensioning of the towing gear is based on the test force PL, see 2.2.

3.5.2 The towing hook, the towing hook foundation, the corresponding substructures and the slip device are to be designed for the following directions of the towrope:
- For a test force PL up to 500 kN:
 - in the horizontal plane, directions from abeam over astern to abeam
 - in the vertical plane, from horizontal to 60° upwards
- For a test force PL of more than 500 kN:
 - in the horizontal plane, as above
 - in the vertical plane, from horizontal to 45° upwards

3.5.3 Assuming the test force PL acting in any of the directions described in 3.5.2, the permissible stresses in the towing equipment elements defined above shall not exceed the values shown in Table 27.2.

3.5.4 For the towing hook foundation it has to be additionally proven that the permissible stresses given in Table 27.2 are not exceeded assuming a load equal to the minimum breaking force F_{min} of the towrope.

4. **Towropes**

4.1 Towrope materials shall correspond to the Rules for Materials, Volume V, Section 13. All wire ropes should have as far as possible the same lay.

The suitability of fibre ropes as towropes is to be separately demonstrated to BKI.

4.2 The length of the towrope shall be chosen according to the tow formation (masses of tug and towed object), the water depth and the nautical conditions. Regulations of Flag State authorities have to be observed. For length of towrope...
for bollard pull test, see Guidelines for Ocean Towage.

Table 27.2 Permissible stresses

<table>
<thead>
<tr>
<th>Type of stress</th>
<th>Permissible stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial and bending tension and axial and bending compression with box type girders and tubes</td>
<td>$\sigma = 0.83 \cdot R_{eh}$</td>
</tr>
<tr>
<td>Axial and bending compression with girders of open cross sections or with girders consisting of several members</td>
<td>$\sigma = 0.72 \cdot R_{eh}$</td>
</tr>
<tr>
<td>Shear</td>
<td>$\tau = 0.48 \cdot R_{eh}$</td>
</tr>
<tr>
<td>Equivalent stress</td>
<td>$\sigma_{eq} = 0.85 \cdot R_{eh}$</td>
</tr>
</tbody>
</table>

R_{eh} = yield strength or 0.2 % – proof stress

4.3 The required minimum breaking force F_{min} of the towrope is to be calculated on the basis of the design force T and a utility factor K, as follows:

\[
F_{\text{min}} = K \cdot T
\]

- $K = 2.5$ for $T \leq 200$ kN and
- $K = 2.0$ for $T \geq 1000$ kN

For T between 200 and 1000 kN, K may be interpolated linearly.

4.4 For ocean towages, at least one spare towrope with attachments shall be available on board.

4.5 The required minimum breaking force F_{min} of the tricing rope is to be calculated on the basis of the holding capacity of the tricing winch and a utility factor $K = 2.5$.

5. **Towing winches**

5.1 **Arrangement and control**

5.1.1 The towing winch, including towrope guiding equipment, has to be arranged such as to guarantee safe guiding of the towrope in all directions according to 3.5.2.

5.1.2 The winch must be capable of being safely operated from all control stands. Apart from the control stand on the bridge, at least one additional control stand has to be provided on deck. From each control stand the winch drum shall be freely visible; where this is not ensured, the winch shall be provided with a self-rendering device.

5.1.3 Each control stand has to be equipped with suitable operating and control elements. The arrangement and the working direction of the operating elements have to be analogous to the direction of motion of the towrope.

5.1.4 Operating levers shall, when released, return into the stop position automatically. They shall be capable of being secured in the stop position.

5.1.5 It is recommended that, on vessels for ocean towage, the winch is fitted with equipment for measuring the pulling force in the towrope.

5.1.6 If, during normal operating conditions, the power for the towing winch is supplied by a main engine shaft generator, another generator shall be available to provide power for the towing winch in case of main engine or shaft generator failure.

5.2 **Winch drum**

5.2.1 The towrope shall be fastened on the winch drum by a breaking link.

5.2.2 The winch drum shall be capable of being declutched from the drive.

5.2.3 The diameter of the winch drum is to be not less than 14 times the towrope diameter.
5.2.4 The length of the winch drum is to be such that at least 50 m of the towrope can be wound up in the first layer.

5.2.5 To ensure security of the rope end fastening, at least 3 dead turns must remain on the drum.

5.2.6 At the ends, drums shall have disc sheaves whose outer edges shall surmount the top layer of the rope at least by 2.5 rope diameters, if no other means is provided to prevent the rope from slipping off the drum.

5.2.7 If a multi-drum winch is used, then each winch drum shall be capable of independent operation.

5.2.8 Each towing winch drum shall have sufficient capacity to stow the length of the provided towrope.

5.2.3 to 5.2.5 are not applicable to towropes of austenitic steels and fibre ropes. In case these towrope materials are utilized, dimensioning of the wind drum is subject to BKI approval.

5.3 Holding capacity/dimensioning

5.3.1 The holding capacity of the towing winch (towrope in the first layer) shall correspond to 80 % of the minimum breaking load F_{min} of the towrope.

5.3.2 When dimensioning the towing winch components, which - with the brake engaged - are exposed to the pull of the towrope (rope drum, drum shaft, brakes, foundation frame and its fastening to the deck), a design tractive force equal to the holding capacity is to be assumed. When calculating the drum shaft the dynamic stopping forces of the brakes have to be considered. The drum brake shall not give way under this load.

5.4 Brakes

5.4.1 If the drum brakes are power-operated, manual operation of the brake shall be provided additionally.

5.4.2 Drum brakes shall be capable of being quickly released from the control stand on the bridge, as well as from any other control stand. The quick release shall be possible under all working conditions, including failure of the power drive.

5.4.3 The operating levers for the brakes are to be secured against unintentional operation.

5.4.4 Following operation of the quick release device, normal operation of the brakes shall be restored immediately.

5.4.5 Following operation of the quick release device, the winch driving motor shall not start again automatically.

5.4.6 Towing winch brakes shall be capable of preventing the towrope from paying out when the vessel is towing at the design force T and shall not be released automatically in case of power failure.

5.5 Tricing winches

5.5.1 Control stands for the tricing winches have to be located at safe distance off the sweep area of the towing gear. Apart from the control stands on deck, at least one other control stand shall be available on the bridge.

5.5.2 Tricing winches have to be suitably dimensioned depending on F_{min} of the tricing rope. For operation of the tricing winch, perfect transmission of orders has to be safeguarded. For tricing ropes, see 4.5.

6. Testing

6.1 Workshop testing

6.1.1 Towing hook and slip device

6.1.1.1 Towing hooks with a mechanical slip device, the movable towing arm and other load transmitting elements have to be subjected to a test force P_L with the aid of an approved testing facility. In connection with this test, the slip device shall be tested likewise; the release force has to be measured and shall not exceed 150 N, see 3.3.

6.1.1.2 When towing hooks are provided with a pneumatic slip device, both the pneumatic and the mechanical slip device required by 3.4 have to be tested according to 6.1.1.1.

6.1.1.3 Also towing hooks with a hydraulic slip device have to be tested according to 6.1.1.1, but the slip device itself
need not be subjected to the test load. If a cylinder tested and approved by BKI is employed as a loaded gear component, during the load test the cylinder may be replaced by a load transmitting member not pertaining to the gear, the operability of the gear being restored subsequently. The operability of the slip device has to be proved with the towrope loosely resting on the hook.

6.1.2 Certification and stamping of towing hook

Following each satisfactory testing at manufacturer's, a Certificate will be issued by the attending Surveyor and shall be handed on board, together with the towing hook.

6.1.3 Towing winches

6.1.3.1 The winch power unit has to be subjected to a test bed trial at the manufacturer's. A works test Certificate has to be presented on the occasion of the final inspection of the winch, see 6.2.4.

6.1.3.2 Components exposed to pressure are to be pressure-tested to a test pressure PD of

\[PD = 1.5 \cdot p \]

where

\[p = \text{admissible working pressure [bar]} \]
\[= \text{opening pressure of the safety valves} \]

However, with working pressures exceeding 200 [bar], the test pressure need not be higher than \(p + 100 \) [bar].

Tightness tests are to be carried out at the relevant components.

6.1.3.3 Upon completion, towing winches have to be subjected to a final inspection and an operational test to the rated load. The hauling speed has to be determined during an endurance test under the rated tractive force. During these trials, in particular the braking and safety equipment shall be tested and adjusted.

The brake has to be tested to a test load equal to the rated holding capacity, but at least equal to the bollard pull.

If manufacturers do not have at their disposal the equipment required, a test confirming the design winch capacity, and including adjustment of the overload protection device, may be carried out after installation on board, see 6.2.5.

In that case only the operational trials without applying the prescribed loads will be carried out at the manufacturers.

6.1.4 Accessory towing gear components, Towropes

6.1.4.1 Accessories subjected to towing loads, where not already covered by 6.1.1.1, shall generally be tested to test force PL at the manufacturer.

6.1.4.2 For all accessories Test Certificates, Form LA 3, and for the towrope, Form LA 4, have to be submitted.

6.1.4.3 BKI reserve the right of stipulating an endurance test to be performed at towing gear components, where considered necessary for assessment of their operability.

6.2 Initial testing of towing gear on board and bollard pull test

6.2.1 The installed towing gear has to be tested on the tug using the bollard pull test to simulate the towrope pull.

6.2.2 Bollard pull test

In general a bollard pull test will be carried out before entering into service of the vessel. The test can be witnessed and certified by BKI, see Guidelines for Ocean Towage.

6.2.3 For all towing hooks (independent of the magnitude of the test force PL), the slip device has to be tested with a towrope direction of 60° towards above against the horizontal line, under the towrope pull T.

6.2.4 The surveyor certifies the initial board test by an entry into the Test Certificate for Towing Hooks.

6.2.5 Test of Towing Winches on Board

After installation on board, the safe operation of the winch(es) from all control stands has to be checked; it has to be proved that in both cases, with the drum braked and during hauling and releasing, the respective quick-release mechanism for the
drum operates well. These checks may be combined with the bollard pull test, see 6.2.2.

The towing winch has to be subjected to a trial during the bollard pull test to a test load corresponding to the holding power of the winch.

6.3 Recurrent Tests of Towing Gear

The following tests will be applied to all tugs classed by BKI unless otherwise required by the Administration.

The Surveyor certifies the satisfactory recurrent test in Part C of the Test Certificate for Towing Hooks.

6.3.1 Towing hooks

6.3.1.1 The functional safety of towing hook and slip device shall be checked by the ship's master at least once a month.

6.3.1.2 Following initial testing on board, towing hooks with mechanical and/or pneumatic slip devices have to be removed every 2.5 years, thoroughly examined and exposed to test force PL on a recognised testing facility. Upon reinstallation of the hook on the tug, the slip device has to be subjected to an operational trial by releasing the hook without load. The release forces at the hook and at the bridge have to be measured.

For avoiding dismounting of these towing hooks, the test force PL can also be produced by fastening in front of the first tug towed to the bollard, the hook of which is intended to be tested, another tug with a design force T which is sufficient to jointly reach the required test force PL according to Table 27.1. Slipping has to be effected whilst both tugs are pulling with full test force.

6.3.1.3 Following initial testing on board, towing hooks with hydraulic slip device are to be subjected to a functional test on board every 2.5 years. They are ready for operation with the towrope loosely resting on the hook. The release forces required at the hook and at the bridge have to be measured. Additionally all components are to be thoroughly examined. Every 5 years the towing hook has to be pulled against a bollard.

6.3.1.4 Particular attention has to be paid to the proper functioning of all gear components.

D. Steering Gear/Steering Arrangement

1. Steering stability

Steering stability, i.e. stable course maintaining capability of the tug, shall be ensured under all normally occurring towing conditions. Rudder size and rudder force shall be suitable in relation to the envisaged towing conditions and speed.

2. Rudder movement

Regarding the time to put the rudder from one extreme position to the other, the requirements of Rules for Machinery Installations, Volume III, Section 14, A. shall be observed for tugs exceeding 500 GT. Special rudder arrangements may be considered in the particular case, see also 4.

3. Tugs operating as pusher units

For tugs operating as pusher units, the steering gear is to be designed so as to guarantee satisfying steering characteristics in both cases, tug alone and tug with pushed object.

4. Special steering arrangements

Steering units and arrangements not explicitly covered by the Rules mentioned above, and combinations of such units with conventional rudders, will be considered from case to case.

E. Anchoring/Mooring Equipment

1. Equipment numeral

The equipment with anchors and chains as well as the recommended towropes of tugs for unrestricted service is to be determined according to Section 18, B. However, for the determination of the equipment numeral the term 2 \cdot h \cdot B may be substituted by the term

BKI - Rules for Hull - 2014
2 (a \cdot B + \Sigma h_i \cdot b_i)

where

\(h_i, b_i \) respectively, the height and the breadth of the superstructure tier "i", considering only tiers with a breadth greater than \(B/4 \).

2. General requirements

2.1 The equipment of tugs for restricted service range is to be determined as for vessels in the \(L \) (Coastal Service) range, see Section 18, A.3. For tugs in the service range \(T \) (Service in Shallow Waters), see Section 30, E.

2.2 For tugs engaged only in berthing operations, one anchor is sufficient, if a spare anchor is readily available on land.

2.3 The stream anchor specified in Section 18, Table 18.2 is not required for tugs.

3. Tugs operating as pusher units
The anchoring equipment for tugs operating as pusher units will be considered according to the particular service. Normally, the equipment is intended to be used for anchoring the tug alone, the pushed unit being provided with its own anchoring equipment.

F. Weathertight Integrity and Stability

1. Weather deck openings

1.1 Openings (skylights) above the machinery space shall be arranged with coamings not less than 900 mm high, measured from the upper deck. Where the height of the coamings is less than 1,8 m, the casing covers are to be of specially strong construction, see also G.1.

1.2 The head openings of ventilators and air pipes are to be arranged as high as possible above the deck.

1.3 For companionways to spaces below deck to be used while at sea, sills with a height not less than 600 mm shall be provided. Weathertight steel doors are to be provided which can be opened/closed from either side.

1.4 Deck openings shall be avoided in the sweep area of the towing gear, or else be suitably protected.

2. Stability

2.1 The intact stability must comply with the following requirements:

- the intact stability requirement of IMO Res. A.749(18), Chapter 3.1, as amended by MSC Res. 75(69)
- alternatively, if applicable, the intact stability requirement of IMO Res. A.749(18), Chapter 4.5, as amended by MSC Res. 75(69)

2.2 Additionally, the intact stability shall comply with one of the following requirements:

- The residual area between a righting lever curve and a heeling lever curve developed from 70% of the maximum bollard pull force acting in 90° to the ship-length direction should not be less than 0,09 m-rad. The area has to be determined between the first interception of the two curves and the second interception or the angle of downflooding whichever is less.

- Alternatively, the area under a righting lever curve should not be less than 1,4 times the area under a heeling lever curve developed from 70% of the maximum bollard pull force acting in 90° to ship-length direction. The areas to be determined between 0° and the 2nd interception or the angle of downflooding whichever is less.

2.3 The heeling lever curve should be derived by using the following formula:

\[
b_h = \frac{0,071 \cdot T \cdot z_a \cdot \cos \theta}{D} \quad [m]
\]

\(b_h \) = heeling arm [m]
T = maximum bollard pull [kN]
\(z_h \) = vertical distance [m] between the working point of the towrope and the centre of buoyancy
D = loading condition displacement [t]
\(\theta \) = heeling angle [°]

G. Escape Routes and Safety Measures

1. Engine room exit
In the engine room an emergency exit is to be provided on or near the centerline of the vessel, which can be used at any inclination of the ship. The cover shall be weather tight and is to be capable of being opened easily from outside and inside. The axis of the cover is to run in athwart ship direction.

2. Companionways
Companionways to spaces below deck see F.1.3.

3. Rudder compartment
Where, for larger ocean going tugs, an emergency exit is provided from the rudder compartment to the upper deck, the arrangement, sill height and further details shall be designed according to the requirements of F.1, particularly F.1.4.

4. Access to bridge
Safe access to the bridge is to be ensured for all anticipated operating and heeling conditions, also in heavy weather during ocean towage.

5. Safe handling of towing gear
See requirements under C.1, C.3 and C.5.

6. Fire safety

6.1 Structural fire protection measures shall be as outlined in Section 22, as applicable according to the size of the vessel. The fire fighting equipment shall conform to Rules for Machinery Installations, Volume III, Section.12, as applicable.

6.2 Additional or deviating regulations of the competent Administration may have to be observed.

H. Additional Requirements for Active Escort Tugs

1. Scope, application

1.1 The following requirements apply to vessels specially intended for active escort towing. This includes steering, braking and otherwise controlling a vessel in restricted waters during speeds of up to 10 knots by means of a permanent towline connection with the stern of the escorted vessel, see 4.3.

1.2 The requirements for the Notation TUG given in A. to G. are also valid, if applicable, for Active Escort Tugs.

2. Classification, Notations

2.1 Ships built in accordance with the following requirements will have the Notation ACTIVE ESCORT TUG affixed to their Character of Classification.

2.2 Ships which not comply with the requirements 3. will have the Notation ESCORT TUG affixed to their Character of Classification.

3. Characteristics of Active Escort Tugs

3.1 The following escort characteristics are to be determined by approved full scale trials:
Section 27 - Tugs

- Maximum steering force T_{Ey} [kN] at a test speed of advance V_t [kn], normally 8 to 10 knots
- Manoeuvring time t [s]
- Manoeuvring coefficient $K = \frac{31}{t} [-]$ or 1, whichever is less

3.2 A test certificate indicating the escort characteristics is issued on successful completion of such trials.

4. Definitions

4.1 Active Escort Tug is a tug performing the active escort towing.

4.2 Assisted vessel is the vessel being escorted by an Active Escort Tug.

4.3 Indirect towing is a typical manoeuvre of the Active Escort Tug where the maximum transverse steering force is exerted on the stern of the assisted vessel while the Active Escort Tug is at an oblique angular position. The steering force T_{Ey} [kN] is provided by the hydrodynamic forces acting on the Active Escort Tug's hull, see Fig. 27.1.

4.4 Test speed V_t [kn] is the speed of advance (through the water) of the assisted vessel during full scale trials.

4.5 The manoeuvring time t [s] is the time needed for the Active Escort Tug to shift in indirect towing from an oblique angular position at the stern of the assisted vessel to the mirror position on the other side, see Fig. 27.1. The length of the towline during such a manoeuvre should not be less than 50 m and the towline angle need not be less than 30°.

5. Documentation

The following documents shall be submitted in addition to those of A.3.1:
- BKI Material Certificates for all load transmitting elements (e.g. motor, drive) of the towing winch
- Circuit diagrams of the hydraulic and electrical systems of the towing winches in triplicate\(^2\) for approval
- One copy of a description of the towing winch including the safety devices
- Preliminary calculation of the maximum steering force T_{Ey} [kN] and maximum towrope pull T_E [kN] at the intended test speed V_t [kn] with indication of propulsion components necessary for balancing the Active Escort Tug at an oblique angular position at the stern of the assisted vessel.

6. Arrangement and design

6.1 Hull

6.1.1 The hull of the Active Escort Tug is to be designed to provide adequate hydrodynamic lift and drag forces when in indirect towing mode. Hydrodynamic forces, towline pull and propulsion forces shall be in balance during active escort towing thereby minimizing the required propulsion force itself.

6.1.2 Freeboard is to be provided in such a way, that excessive trim at higher heeling angles is avoided.

6.1.3 A bulwark is to be fitted all around the weather deck.

\(^2\) For Indonesian flagship in quadruplicate (one for Indonesian government).
6.2 Towing winch

6.2.1 The equipment for measuring the pulling force in the towrope, recommended in C.5.1.5, is to be provided in any case for towing winches of Active Escort Tugs.

6.2.2 In addition to the requirements given in C.5, towing winches of escort tugs are to be fitted with a load damping system which prevents overload caused by dynamic impacts in the towrope.

The towing winch shall pay out the towrope controlled when the towrope pull exceeds 50 % of the minimum breaking force F_{min} of the towrope. Active escort towing is always carried out via the towing winch, without using the brake on the towing winch’s rope drum.

6.2.3 The towing winch shall automatically spool a slack towrope. The requirement C.5.2.4 may be waived, if an impeccable spooling of towrope under load is guaranteed by design measures (e.g. spooling device).

6.3 Propulsion

In case of loss of propulsion during indirect towing the remaining forces are to be so balanced that the resulting turning moment will turn the Active Escort Tug to a safer position with reduced heel.

7. Stability of Active Escort Tugs

Proof of stability has to be shown by using the heeling lever curve calculated by the following formula:

$$b_h = \frac{T_E \cdot z_h \cdot \cos \theta}{9.81 \cdot D} \quad [\text{m}]$$

T_E = maximum towrope pull [kN]
8. Full Scale Trials

8.1 Procedure

8.1.1 A documented plan, describing all parts of the trial shall be submitted for approval before commencement of the trials, including:

- towage arrangement plan
- data of assisted vessel including SWL of the strong points
- intended escort test speed
- calculated maximum steering force T_{E_y} [kN]

8.1.2 Full scale trials shall be carried out in favourable weather and sea conditions which will not significantly influence the trial results.

8.1.3 The size of the assisted vessel shall be sufficiently large to withstand the transverse steering forces of the tug without using too large rudder angles.

8.2 Recordings

At least the following data are to be recorded continuously during the trial for later analysis:

Assisted vessel:
- position
- speed over ground and through the water
- heading
- rudder angle
- angle of towline
- wind (speed and direction), sea-state

Active Escort Tug:
- position and speed over ground
- heading
- length, angle β and pull of towrope T_E
- heeling angle.
This page intentionally left blank
The requirements for the construction of Fishing Vessels, see the Rules for Fishing Vessels.
This page intentionally left blank
Section 29 - Passenger Ships I - A, B, C, D, E

Section 29

Passenger Ships

I. Passenger Ships

A. General

1. The requirements given in Sections 1 - 22 apply to passenger ships unless otherwise mentioned in this Section. The various special regulations for passenger ships contained in the Rules for Machinery Installations, Volume III and Rules for Electrical Installations, Volume IV, are to be observed.

2. A passenger ship as defined in this Section is a ship carrying more than 12 passengers on board.

3. The Notation PASSENGER SHIP will be affixed to the Character of Classification of ships complying with the Construction Rules for the carriage and/or accommodation of passengers and with the applicable requirements of the Chapters II-1 and II-2 of SOLAS as amended.

4. Exemptions from the requirements may be granted only within the frame work of options given therein and are subject to approval by the competent Administration.

5. Passenger ship will be assigned the symbol ☐ for characterizing proof of damage stability according to the relevant requirements. The following data will be entered into an appendix to the Certificate:
 - Code for the specification of the proof of damage stability according to Rules for Classification and Surveys, Volume I, Section.2, C.3.1.2.

6. Passenger vessels, which due to their overall design are only suitable for trade in defined waterways (e.g. "Shallow Water Service") may in no case be assigned an extended Navigation Notation to the Character of Classification, even if the strength of the hull is sufficient for a wider range of service (e.g. "Coasting Service"). In that event, this may be expressed in the Certificate by adding the following note: "The strength of the hull structural elements complies with the service range ...".

7. The terms used in this Section are the same as those of SOLAS as amended.

B. Documents for Approval

In addition to those specified in Section 1, G. the documents according to Section 36, A. are to be submitted.

C. Watertight Subdivision

1. For location of collision bulkhead and stern tube see Section 11, A.2.

2. Openings in watertight bulkheads below the bulkhead deck, see Chapter II-1 Reg. 13 of SOLAS as amended.

D. Double Bottom

A double bottom shall be fitted extending from the collision bulkhead to the after peak bulkhead, as far as this is practicable and compatible with the design and proper working of the ship. The arrangement shall comply with Chapter II-1 of SOLAS as amended and Section 36.

E. Openings in the Shell Plating

1. The number of openings in the shell plating is to be reduced to the minimum compatible with the design and proper working of the ship.
2. The arrangement and efficiency of the means for closing any opening in the shell plating shall be consistent with its intended purpose and the position in which it is fitted and generally to the satisfaction of the Administration.

3. Arrangement, position and type of side scuttles and associated deadlights are to be in accordance with the requirements of Chapter II-1 Reg. 15 of SOLAS as amended and with Regulation 23, ICLL.

4. Doors in the shell plating below the bulkhead deck are to be provided with watertight closures. Their lowest point is not to be located below the deepest subdivision load line. The corresponding requirements of the ICLL (Reg. 21) have also to be observed. Regarding pilot doors additional requirements are given in Chapter V Reg. 23 of SOLAS as amended.

5. The inboard openings of ash- and rubbish shoots, etc., are to be fitted with efficient covers. If the inboard openings are situated below the margin line, the covers are to be watertight and, in addition, automatic non-return valves are to be fitted in the shoots above the deepest subdivision load line. Equivalent arrangements may be approved.

F. Materials for Closures of Openings

Appropriate materials are to be used only. Materials with at least 10% breaking elongation are to be used for the closures of openings in the shell plating, in watertight bulkheads, in boundary bulkheads of tanks, and in watertight decks. Lead and other heat sensitive materials are not to be used for structural parts whose destruction would impair the watertightness of the ship and/or the bulkheads.

G. Cross-Flooding Arrangements

For cross-flooding arrangements refer to Section 36, F.

H. Pipe Lines

1. Where pipes are carried through watertight bulkheads, Chapter II-1 Reg. 12 and 13 of SOLAS as amended is to be observed.

2. Where the ends of pipes are open to spaces below the bulkhead deck or to tanks, the arrangements are to be such as to prevent other spaces or tanks from being flooded in any damage condition. Arrangements will be considered to provide safety against flooding if pipes which are led through two or more watertight compartments are fitted inboard of a line parallel to the subdivision load line drawn at 0.2 B from the ship's side (B is the greatest breadth of the ship at the subdivision load line level).

3. Where the pipe lines cannot be placed inboard of the line 0.2 B from the ship's side, the bulkhead is to be kept intact by the means stated in 4. - 6.

4. Bilge lines have to be fitted with a non-return valve at the watertight bulkhead through which the pipe is led to the section or at the section itself.

5. Ballast water and fuel lines for the purpose of emptying and filling tanks have to be fitted with a shut-off valve at the watertight bulkhead through which the pipe leads to the open end in the tank. These shut-off valves shall be capable of being operated from a position above the bulkhead deck which is accessible at all times and are to be equipped with indicators.

6. Where overflow pipes from tanks which are situated in various watertight compartments are connected to a common overflow system, they shall either be led well above the bulkhead deck before they are connected to the common line, or means of closing are to be fitted in the individual overflow lines. The means of closing shall be capable of being operated from a position above the bulkhead deck which is accessible at all times. These means of closing are to be fitted at the watertight bulkhead of the compartment in which the tank is fitted and are to be sealed in the open position.

These means of closing may be omitted, if pipe lines pass through bulkheads at such a height above base line and so near the centre line that neither in any damaged condition nor in case of maximum heeling occurring in intermediate conditions, they will be below the water line.

7. The means of closing described in 4. and 5. should be avoided where possible by the use of suitably installed piping. Their fitting may only be approved by BKI in exceptional circumstances.
II. Special Purpose Ships

A. General

1. Application

1.1 Special-purpose ships are subject to the requirements of Sections 1 – 21 and Section 29.I unless otherwise mentioned in this Section.

1.2 A special-purpose ship as defined in this Section means a ship which by reason of its function carries on board more than 12 special personnel including passengers, e.g., ships engaged in research, training and drilling as well as fish factory ships.

2. Structural Fire Protection

2.1 A special-purpose ship carrying more than 200 special personnel has to comply with the requirements of Section 22, B.

2.2 A special-purpose ship carrying more than 50 special personnel has to comply with the requirements of Section 22, C.

2.3 A special purpose ship carrying not more than 50 special personnel has to comply with the requirements of Section 22, D.

3. Character of Classification

3.1 Special purpose ship will be assigned the symbol ☐ for characterizing proof of damage stability according to IMO Res. A.534. The following data will be entered into an appendix to the Certificate:

– code for the specification of the proof of damage stability according to Rules for Classification and Surveys, Volume I, Section 2. C.3.1.2.

– Description of the code.

3.2 Notation

Special purpose ships, built in accordance with the requirements of this section will have the Notation SPECIAL PURPOSE SHIP affixed to their Character of Classification.

B. Documents for Approval

The following documents are to be submitted in addition to those specified in Section 1, G.:

.1 Proof of floatability in damaged condition according to Chapter II of the Code of Safety for Special-Purpose Ships (IMO-Resolution A.534 (13) in 1-fold).

.2 Drawings showing the arrangement of openings in watertight bulkheads, the shell plating and in the bulkhead and weather decks and drawings showing the closing appliances for such openings (Drawings to be submitted in triplicate).

.3 A damage control plan containing all data essential for maintaining the survival capability (to be submitted in triplicate).

C. Watertight Subdivision

The subdivision of the ship is governed by the requirements of the flooding calculation. The smallest spacing a of the watertight transverse bulkheads (damage length) is not to be less than \(\frac{1}{3} L_e^{2/3} \) or 14.5 m whichever is less, see Fig. 29.II.1.

1) For Indonesian flagship in quadruplicate (one for Indonesian government)
Fig. 29. II.1 Spacing between two watertight transverse bulkheads
Section 30
Ships for Sheltered Shallow Water Service

A. General
1. The requirements given in Sections 1-22 apply to ships sailing in sheltered shallows unless otherwise mentioned in this Section.
2. Ships sailing in sheltered shallows complying with the requirements of this Section will have the Notation "T" "SHALLOW WATER SERVICE" affixed to the Character of Classification.
3. The deck load is to be taken as \(p = 6 \text{kN/m}^2 \) unless a greater load is required by the Owner.

B. Shell Plating
1. The thickness of bottom plating within 0,4 \(L \) amidships is not to be less than:
\[
 t = 1,3 \cdot \frac{a_0}{a_0} \cdot \sqrt{\frac{L \cdot T}{H}} \quad \text{[mm]}
\]
\[
a_0 = 0,002 \cdot L + 0,48 \quad \text{[m]}
\]
2. For ships having flat bottoms the thickness is to be increased by 0,5 mm.
3. The thickness of the side shell plating within 0,4 \(L \) may be 0,5 mm less than the bottom plating according to 1.
4. The thickness within 0,05 \(L \) from the forward and aft end of the length \(L \) may be 1,0 mm less than the value determined according to 1.
5. The thickness of the shell plating is nowhere to be less than 3,5 mm.
6. Strengthening of the bottom forward according to Section 6, E. is not required.
7. The plate thickness of sides of superstructures is to be determined according to 4. and 5. analogously.

C. Watertight Bulkheads and Tank Bulkheads
1. The scantlings of watertight bulkheads are to be determined according to Section 11. The plate thickness need not be greater than the midship thickness of the side shell plating at the corresponding frame spacing. The thickness is, however, not to be less than the following minimum values:
 for the lowest plate strake
 \[
 t_{\text{min}} = 3,5 \quad \text{[mm]}
 \]
 for the remaining plate strakes
 \[
 t_{\text{min}} = 3,0 \quad \text{[mm]}
 \]
2. The scantlings of tank bulkheads and tank walls are to be determined according to Section 12. The thickness of plating and stiffener webs is not to be less than 5,0 mm.
D. Deck Openings

1. Hatchways

1.1 The height above deck of hatchway coamings is not to be less than\(^1\):
 - on decks in Pos. 1 = 600 mm
 - on decks in Pos. 2 = 380 mm

See also Section 1, H.6.7.

1.2 The thickness of coamings is to be determined according to the following formulae:
 - longitudinal coaming:
 \[t_R = 4.5 + \frac{\ell}{6} \quad [\text{mm}] \]
 - transverse coaming:
 \[t_q = 2.75 + \frac{b}{2} \quad [\text{mm}] \]
 \(\ell \) = length of hatchway [m]
 \(b \) = breadth of hatchway [m]

1.3 Hatchway beams are to be fitted at a distance of not more than 3.0 m. The section modulus of hatchway beams is not to be less than:
 \[W = p \cdot e \cdot b^2 \quad [\text{cm}^3] \]
 \(e \) = spacing of hatchway beams [m]
 \(b \) = see 2
 \(p \) = deck load according to A.3.

The web height of hatchway beams is not to be less than:
 \[h = 70 \cdot b \quad [\text{mm}] \]

At the ends of the beams, the web height may be reduced but is not to be less than 130 mm.

1.4 The thickness of wooden hatch covers is not to be less than 35 mm.

1.5 The supporting breadth of the hatch covers at the coaming is not to be less than 40 mm.

1.6 Where wooden longitudinal beams, supporting transversely arranged hatch covers are fitted, their section modulus is not to be less than:
 \[W = 50 \cdot e \cdot u^2 \quad [\text{cm}^3] \]
 \(e \) = see 1.3.
 \(u \) = unsupported length of hatch cover [m].

1.7 The height of machinery and boiler room casings is not to be less than 600 mm, their thickness is not to be less than 3.0 mm. Coamings are not to be less in height than 350 mm and they are not to be less in thickness than 4.0 mm.

2. Casings, companionways

2.1 The height of machinery and boiler room casings is not to be less than 600 mm, their thickness is not to be less than 3 mm. Coamings are not to be less in height than 350 mm and they are not to be less in thickness than 4 mm.

2.2 The height above deck of companionway coamings is not to be less than\(^2\):
 - on decks in Pos. 1 = 600 mm

1) For ship which the Flag entitled to fly, National Regulation to be observed.
2) For ship which the Flag entitled to fly, National Regulation to be observed.
on decks in Pos. 2 = 380 mm

E. Equipment

1. The equipment of anchors, chain cables and recommended ropes is to be determined according to Section 18. The anchor mass may be 60% of the value required by Table 18.2. The chain diameter may be determined according to the reduced anchor mass.

2. For anchor masses of less than 120 kg, the chain cable diameter of grade K1 steel is to be calculated according to the following formula:

\[d = 1.15 \sqrt{\frac{P}{\text{mm}}} \]

\[P = \text{anchor mass} \quad [\text{kg}] \]

Short link chain cables are to have the same breaking load as stud link chain cables.

3. If an anchor mass of less than 80 kg has been determined, only one anchor is required and the chain cable length need not exceed 50% of the length required by Table 18.2.

4. The length of the ropes is recommended to be 50% of the length given in Table 18.2.\(^{3)}\)

5. Ships sailing in sheltered shallows the equipment of which is in accordance with the requirements of this Section will have the index "T" affixed to the Register Number.

\(^{3)}\) See also Section 18.F
This page intentionally left blank
Section 31

Barges and Pontoons

A. General

1. Definitions

1.1 Barges as defined in this Section are unmanned or manned vessels, normally without self-propulsion, sailing in pushed or towed units. The ratios of the main dimensions of barges are in a range usual for seagoing ships; their construction complies with the usual construction of seagoing ships; their cargo holds are suitable for the carriage of dry or liquid cargo.

1.2 Pontoons as defined in this Section are unmanned or manned floating units, normally without self-propulsion. The ratios of the main dimensions of pontoons deviate from those usual for seagoing ships. Pontoons are designed to usually carry deck load or working equipment (e.g. lifting equipment, rams etc.) and have no holds for the carriage of cargo.

2. Validity

The requirements given in Sections 1 - 24 apply to barges and pontoons unless otherwise mentioned in this Section.

3. Character of Classification

3.1 Vessels built in accordance with the requirements of this Section will have the Notation "BARGE" or "PONTOON" affixed to the Character of Classification.

3.2 Barges built for the carriage of special cargo (e.g. liquid or ore cargo) will have the respective Notations affixed to the Characters of Classification (see also Rules for Classification and Surveys, Volume I, Section 2).

4. General indication

Where barges are intended to operate as linked push barges proper visibility from the tug forward is to be ensured.

5. Deck cargo load

The load for deck cargo, unless greater load is required by the Owner, is to be taken as \(p = 25 \text{ [kN/m}^2\text{]} \).

B. Longitudinal Strength

1. The scantlings of longitudinal members of barges and pontoons of 90 m and more in length are to be determined on the basis of longitudinal strength calculations. For barges of less than 90 m in length, the scantlings of longitudinal members are to be generally determined according to Section 7, A.4.

2. The midship section modulus may be 5% less than required according to Section 5.

3. The scantlings of the primary longitudinal members (strength deck, shell plating, deck longitudinals, bottom and side longitudinals, etc.) may be 5% less than required according to the respective preceding Sections of this Volume. The minimum thickness and critical thickness specified in those Sections are, however, to be adhered to.

4. Longitudinal strength calculations for the condition "Barge, fully loaded at crane" are required, where barges are intended to be lifted on board ship by means of cranes. The following permissible stresses are to be observed:

\[
\begin{align*}
\text{bending stress} : \quad \sigma_b &= \frac{150}{k} \text{ [N/mm}^2\text{]} \\
\text{shear stress} : \quad \tau &= \frac{100}{k} \text{ [N/mm}^2\text{]}
\end{align*}
\]

\(k \) = material factor according to Section 2, B.2.

Special attention is to be paid to the transmission of lifting forces into the barge structure.
5. For pontoons carrying lifting equipment, rams etc. or concentrated heavy deck loads, calculation of the stresses in the longitudinal structures under such loads may be required. In such cases the stresses given under 4. are not to be exceeded.

C. Watertight Bulkheads and Tank Bulkheads

1. For barges and pontoons, the position of the collision bulkhead is to be determined according to Section 11, A.2.

Where in barges and pontoons, the form and construction of their ends is identical so that there is no determined "fore or aft ship", a collision bulkhead is to be fitted at each end.

2. On barges intended to operate as linked push barges, depending on the aft ship design, a collision bulkhead may be required to be fitted in the aft ship.

3. A watertight bulkhead is to be fitted at the aft end of the hold area. In the remaining part of the hull, watertight bulkheads are to be fitted as required for the purpose of watertight subdivision and for transverse strength.

4. The scantlings of watertight bulkheads and of tank bulkheads are to be determined according to Sections 11 and 12 respectively.

Where tanks are intended to be emptied by compressed air, the maximum blowing-out pressure p_v according to Section 4, D.1. is to be inserted in the formulae for determining the pressures P_1 and P_2.

D. Structural Details at the Ends

1. Where barges have typical ship-shape fore and aft ends, the scantlings of structural elements are to be determined according to Section 8, A.1.2 and Section 9, A.5. respectively.

The scantlings of fore and aft ends deviating from the normal ship shape are to be determined by applying the formulae analogously such as to obtain equal strength.

2. Where barges are always operating with horizontal trim, in consideration of the forebody form, relaxations from the requirements concerning strengthening of the bottom forward may be admitted.

3. Where barges have raked ends with flat bottoms, at least one centre girder and one side girder on each side are to be fitted. In the forward ends, the girders shall be spaced not more than 2.4 m apart. The girders shall be scarphed into the midship structure.

4. In pontoons which are not assigned a Notation for restricted service range or which are assigned the Notation P (Restricted Ocean Service), the construction of the fore peak is to be reinforced against wash of the sea by additional longitudinal girders, stringers and web frames. In case of raked bottoms forward, the reinforcements are, if necessary, to be arranged beyond the collision bulkhead. If necessary, both ends are to be reinforced, see also C.1.

Note

Also for pontoons sailing only temporarily, for the purpose of conveyance to another port, within the region P (Restricted Ocean Service) or beyond that region, the reinforcements given in 4. are required.

E. Rudder

The rudder stock diameter is to be determined according to Section 14, C.1. The ship's speed v_0 is not to be taken less than 7 knots.

F. Pushing and Towing Devices, Connecting Elements

Devices for pushing and towing of linked barges as well as the connecting elements required for linking the barges are to be dimensioned for the acting external forces.
The forces are to be specially determined for the respective service range. When determining the scantlings of these devices and elements as well as of the substructures of the barge hull, the following permissible stresses are not to be exceeded:

- bending and normal stresses:
 \[\sigma = \frac{100}{k} \quad \text{[N/mm}^2\text{]} \]

- shear stresses:
 \[\tau = \frac{60}{k} \quad \text{[N/mm}^2\text{]} \]

- equivalent stresses:
 \[\sigma_v = \sqrt{\sigma^2 + 3\tau^2} = \frac{120}{k} \quad \text{[N/mm}^2\text{]} \]

G. Equipment

1. Barges and pontoons are to be provided with anchor equipment, designed for quick and safe operation in all foreseeable service conditions. The anchor equipment shall consist of anchors, chain cables and a windlass or other equipment (e.g. cable lifter with a friction band brake, by means of which the anchor can be lifted using an auxiliary drum or a crank handle) for dropping and lifting the anchor and holding the ship at anchor. The requirements of Rules for Machinery Installations, Volume III, Section 14, D. are to be observed.

2. Unless otherwise specified in this Section, the required equipment of anchors and chain cables and the recommended ropes \(^{1)}\), for manned barges and pontoons are to be determined according to Section 18. A stream anchor is not required.

3. The equipment numeral \(Z\) for determining the equipment according to Table 18.2, is to be determined for pontoons carrying lifting equipment, rams etc. by the following formula:

\[Z = D^{2/3} + B \cdot f_b + f_w \]

- \(D\) = displacement of the pontoon \([t]\) at maximum anticipated draught
- \(f_b\) = distance \([m]\) between pontoon deck and waterline
- \(f_w\) = wind area of the erections on the pontoon deck \([m^2]\) which are exposed to the wind from forward, including houses and cranes in upright position.

4. For unmanned barges and pontoons the number of anchors may be reduced to one and the length of the chain cable to 50% of the length required by Table 18.2.

5. If necessary for a special purpose, upon Owner's request, for barges and pontoons mentioned under 4, the anchor mass may be further reduced by up to 20%. In such cases the equipment Notation in the Character of Classification (see Rules for Classification and Surveys, Volume I, Section 2.,C.2.3.) is to be \(\square\).

Upon Owner’s request the anchoring equipment may be dispensed with. In such cases the anchoring equipment will not be assigned in the Character of Classification.

6. If a wire rope shall be provided instead of a chain cable, the following is to be observed:

6.1 The length of the wire rope is to be 1.5 times the required chain cable length. The wire rope is to have the same breaking load as the required chain cable of grade K1.

6.2 Between anchor and wire rope, a chain cable is to be fitted the length of which is 12.5 m or equal to the distance between the anchor in stowed position and the windlass. The smaller value is to be taken.

6.3 A winch has to be provided which is to be designed in accordance with the requirements for windlasses (see also Rules for Machinery and Installations, Volume III, Section 14, D.).

7. Push barges not operating at the forward or aft end of pushed or towed units need not have any equipment.

\(^{1)}\) see also Section 18, F.
8. Anchor equipment fitted in addition to that required herein (e.g. for positioning purposes) is not part of Classification.

H. Cargo Retaining Arrangements of Deck Cargo Barge

Cargo retaining arrangements (side boards, coamings, etc.) fitted on deck of deck cargo barge to have adequate strength and to be provided with sufficient freeing arrangements.
Section 32

Dredgers

A. General

1. For the purposes of this Section, "dredgers" means hopper dredgers, barges, hopper barges and similar vessels which may be self-propelled and non-self-propelled and which are designed for all common dredging methods (e.g. bucket dredgers, suction dredgers, grab dredgers etc.)

Dredgers intended for unusual dredging methods and ships of unusual form will be specially considered.

2. The requirements given in Sections 1 - 22 apply to dredgers covered by this Section unless otherwise mentioned hereinafter.

3. Dredgers built in accordance with the requirements of this Section, will have the Notation "DREDGER" or "HOPPER BARGE", affixed to the Character of Classification.

4. Dredgers engaged in international service are to comply with the requirements of the ICLL.

5. Dredgers with a restricted service area operating exclusively in national waters shall comply, as far as possible, with the requirements of the ICLL. The height of companion way coamings above deck is not to be less than 300 mm.

Note

For dredgers with a restricted service range as per Section 1, B.1. operating exclusively in national waters, a special "Dredger Freeboard" is assigned by some Administrations.

6. Dredgers intended to work in conjunction with other vessels are to be fitted with strong fenders.

7. The thickness of main structural members which are particularly exposed to abrasion by a mixture of spoil and water, e.g. where special loading and discharge methods are employed, are to be adequately strengthened. Upon approval by BKI such members may alternatively be constructed of special abrasion resistant materials.

8. On dredgers with closed hopper spaces suitable structural measures are to be taken in order to prevent accumulation of inflammable gas-air mixture in the hopper vapour space. The requirements of Rules for Electrical Installations, Volume IV, are to be observed.

B. Documents for Approval

To ensure conformity with the Rules, the following drawings and documents are to be submitted in triplicate\(^1\) in addition to those stipulated in Section 1, G.

1. General arrangement plan, showing also the arrangement of the dredging equipment.

2. Longitudinal and transverse hopper bulkheads, with information regarding density of the spoil and height of overflow.

3. Arrangement and scantlings of substructures attached to or integrated into main structural members, such as gantries, gallow etc. or their seats, seats of dredging machinery and pumps, hopper doors and their gear with seats, positioning equipment and other dredging equipment and devices and their seats.

4. Longitudinal strength calculations of the most unfavourable loading conditions for ships of 100 m in length and more. Calculations with respect to torsion may be required.

For ships of less than 100 m in length of unusual design and with unusual load distribution, longitudinal strength calculations may be required.

\(^1\) For Indonesian flagship in quadruplicate (one for Indonesian government).
C. Principal Dimensions

1. Local structures and deviations from the principal design dimensions associated with the attachment of the dredging gear, are to be ignored when determining the principal dimensions in accordance with Section 1, H.

2. Where a "Dredger Freeboard" is assigned in accordance with A.5., the length \(L \), draught \(T \) and block coefficient \(C_B \) as per Section 1, H.4. are to be determined for this freeboard.

D. Longitudinal Strength

1. For dredgers, the longitudinal strength requirements as per Section 5 apply in general. For dredgers classed for particular service areas, dispensations may be approved.

2. For hopper dredgers and hopper barges of less than 100 m in length, longitudinal strength calculations may be required in special instances.

3. When calculating the midship section moduli in accordance with Section 5, C.4., the net cross sectional area of all continuous longitudinal strength members of a longitudinal through box keel fitted between the port and starboard side hopper doors may be taken into account.

4. At the ends of the hopper, the longitudinal strength members are to be carefully scarphed into the adjacent compartments (see also H.1.3).

E. Shell Plating

1. The thickness of the bottom shell plating of dredgers intended or expected to operate while aground, is to be increased by 20% above the value required in Section 6.

2. Where hopper doors are fitted on the vessel's centreline or where there is a centreline well for dredging gear (bucket ladder, suction tube etc.), a plate strake is to be fitted on each side of the well or door opening the width of which is not less than 50% of the rule width of the flat keel and the thickness not less than that of the rule flat keel.

The same applies where the centreline box keel is located above the base line at such a distance that it cannot serve as a docking keel. In this case, the bottom plating of the box keel need not be thicker than the rule bottom shell plating.

3. On non-self-propelled dredgers and on self propelled dredgers with the restricted service range Notation "L" or "T" affixed to their Character of Classification, strengthening of the bottom forward in accordance with Section 6, E. is not required.

4. The flat bottom plating of raked ends which deviate from common ship forms, is to have a thickness not less than that of the rule bottom shell plating within \(0.4 \, L \) amidships, up to 500 mm above the maximum load waterline. The shell plating above that is to have a thickness not less than the rule side shell plating.

The reinforcements required in 1. are also to be observed.

5. The corners of hopper door openings and of dredging gear wells generally are, to comply with Section 7, A.3. The design of structural details and welded connections in this area is to be carried out with particular care.

F. Deck

1. The deck thickness is to be determined in accordance with Section 7.

On vessels of less than 100 m in length, the rule deck plating is to be fitted at least in the following areas: Above engine and boiler rooms, in way of engine and boiler casings, adjacent to all deck openings exceeding \(0.4 \, B \) in breadth and in way of the supporting structure for dredging gear, dredging machinery and bucket ladders, etc.
Where wood sheathing is fitted, the deck plating thickness required in Section 7, A.7. is sufficient unless greater thicknesses are required on account of strength calculations.

2. At the ends of the hopper space continuity of strength is to be maintained by fitting strengthened corner plates. The corners are to be carried out in accordance with the requirements of Section 7, A.3.

G. Bottom Structure

1. Single bottom transversely framed

1.1 Abreast of hoppers and centreline dredging wells, the floors are to be dimensioned in accordance with Section 8, A.1.2.1 where \(t_{\text{min}} \) is not to be taken less than \(0,4 \cdot B \). The depth of floor is not to be less than

\[
h = 45 \cdot B - 45 \quad [\text{mm}]
\]

\[
h_{\text{min}} = 180 \quad [\text{mm}]
\]

1.2 Floors, longitudinal girders etc. below dredging machinery and pump seats are to be adequately designed for the additional loads.

1.3 Where floors are additionally stressed by the reactions of the pressure required for closing the hopper doors, their section modulus and their depth are to be increased accordingly.

1.4 Where the unsupported span of floors exceeds 3 m, one side girder in accordance with Section 8, A.2.2.2 is to be fitted.

1.5 Floors in line with the hopper lower cross members fitted between hopper doors are to be connected with the hopper side wall by brackets of approx. equal legs. The brackets are to be flanged or fitted with face bars and are to extend to the upper edge of the cross members.

1.6 Floors of dredgers intended or expected to operate while aground are to be stiffened by vertical buckling stiffeners the spacing of which is such as to guarantee that the reference degree of slenderness \(\lambda \) for the plate field is less than 1,0. For \(\lambda \) see Section 3, F.1.

2. Single bottom longitudinally framed

2.1 The spacing of bottom transverses generally is not to exceed 3,6 m. Section modulus and web cross sectional area are not to be less than:

\[
W = k \cdot c \cdot e \cdot l^2 \cdot p \quad [\text{cm}^3]
\]

\[
A_w = k \cdot 0,061 \cdot c \cdot e \cdot l \cdot p \quad [\text{cm}^2]
\]

\(k \) = material factor according to Section 2, B.2.

\(c = 0,9 - 0,002 \quad L \) for \(L \leq 100 \quad \text{m} \)

\(= 0,7 \) for \(L > 100 \quad \text{m} \)

\(e \) = spacing of bottom transverses between each other or from bulkheads [m]

\(l \) = unsupported span [m], any longitudinal girders not considered

\(p \) = load \(p_B \) or \(p_l \) as per Section 4, B.3. or D.1.; the greater value to be taken.

The web depth is not to be less than the depth of floors according to 1.1.

2.2 The bottom longitudinals are to be determined in accordance with Section 9, B.

2.3 Where the centreline box keel cannot serve as a docking keel, brackets are to be fitted on either side of the centre girder or at the longitudinal bulkheads of dredging wells and of hopper spaces. The brackets are to extend to the adjacent longitudinals and longitudinal stiffeners. Where the spacing of bottom transverses is less than 2,5 m, one bracket is to be fitted, for greater spacings, two brackets are to be fitted.

The thickness of the brackets is at least to be equal to the web thickness of the adjacent bottom transverses. They are to be
flanged or fitted with face bars.

2.4 Where longitudinal bulkheads and the side shell are framed transversely, the brackets as per 2.3 are to be fitted at every frame and are to extend to the bilge.

2.5 The bottom transverses are to be stiffened by means of flat bar stiffeners at every longitudinal. The depth shall approximately be equal to the depth of the bottom longitudinals, however, it need not exceed 150 mm.

2.6 The bottom structure of dredgers intended or expected to operate with aground is to be dimensioned as follows:

2.6.1 The spacing of the bottom transverses as per 2.1 is not to exceed 1.8 m. The webs are to be stiffened as per 1.6.

2.6.2 The Section modulus of the bottom longitudinals as per 2.2 is to be increased by 50%.

2.7 The requirements of 1.2, 1.3, 1.4 and 1.5 are to be applied analogously.

3. Double bottom

3.1 Double bottoms need not be fitted adjacent to the hopper spaces.

3.2 In addition to the requirements of Section 8, B.6., plate floors are to be fitted in way of hopper spaces intended to be unloaded by means of grabs.

3.3 Where brackets are fitted in accordance with Section 8, B.7.4, the requirements as per 2.3 and 2.4 are to be observed where applicable.

3.4 The bottom structure of dredgers intended or expected to operate while aground is to be strengthened in accordance with Section 8, B.1.7. Where applicable, 2.6 is to be applied analogously.

H. Hopper and Well Construction

1. The scantlings of the boundaries of hopper spaces and wells are to be determined as follows:

1.1 Plating

\[t = 1.21 \cdot a \cdot \frac{p \cdot k}{h} + t_k \] [mm]

- \(t_{\text{min}} \) = as per Section 24, A.13.
- \(k \) = see G.2.1
- \(a, a_v \) = spacing of stiffeners [m]
- \(p = 10 \cdot \rho \cdot h \left(1 + a_v \right) \) [kN/m²]
- \(h \) = distance of lower edge of plating or of the load centre of the respective member to the upper edge of overflow [m]
- \(a_v \) = see Section 4, C1.1
- \(\rho \) = density of the spoil [t/m³]
- \(\rho_{\text{min}} = 1.2 \text{ t/m}^3 \)
- \(t_k \) = corrosion addition according to Section 3, K.

1.2 Stiffeners

1.2.1 transverse stiffeners of longitudinal bulkheads and stiffeners of transverse bulkheads:

\[W_y = \frac{k \cdot 0.6 \cdot a \cdot t^2 \cdot p}{1000} \text{ cm}^3 \]

1.2.2 longitudinal stiffeners:

\[W_x = W_t \]
Section 32 - Dredgers H, J

W_y see Section 9, B.3,
but not less than W_y.

1.3 The strength is not to be less than that of the ship's sides. Particular attention is to be paid to adequate scarphing at the ends of longitudinal bulkheads of hopper spaces and wells.

The top and bottom strakes of the longitudinal bulkheads are to be extended through the end bulkheads, or else scarphing brackets are to be fitted in line with the walls in conjunction with strengthenings at deck and bottom.

Where the length of wells does not exceed 0.1 L and where the wells and/or ends of hopper spaces are located beyond 0.6 L amidships, special scarphing is, in general, not required.

2. In hoppers fitted with hopper doors, transverse girders are to be fitted between the doors the spacing of which shall normally not exceed 3.6 m.

3. The depth of the transverse girders spaced in accordance with 2. shall not be less than 2.5 times the depth of floors as per Section 8, A.1.2.1. The web plate thickness is not to be less than the thickness of the side shell plating. The top and bottom edges of the transverse girders are to be fitted with face plates. The thickness of the face plates is to be at least 50% greater than the rules web thickness.

Where the transverse girders are constructed as watertight box girders, the scantlings are not to be less than required in accordance with 1. At the upper edge, a plate strengthened by at least 50% is to be fitted.

4. Vertical stiffeners spaced not more than 900 mm apart are to be fitted at the transverse girders.

5. The transverse bulkheads at the ends of the hoppers are to extend from board to board.

6. Regardless of whether the longitudinal or the transverse framing system is adopted, web frames in accordance with Section 12, B.3. are to be fitted in line with the transverse girders as per 2.

The density of the spoil is to be considered when determining the scantlings.

7. Strong beams are to be fitted transversely at deck level in line with the web frames as per 6. The scantlings are to be determined, for the actual loads complying with an equivalent stress \(\sigma_v = 150 \text{k N/mm}^2 \). The maximum reactions of hydraulically operated rams for hopper door operation are, for instance, to be taken as actual load.

The strong beams are to be supported by means of pillars as per Section 10, C. at the box keel, if fitted.

8. On bucket dredgers, the ladder wells are to be isolated by transverse and longitudinal cofferdams at the bottom, of such size as to prevent the adjacent compartments from being flooded in case of any damage to the shell by dredging equipment and dredged objects. The cofferdams are to be accessible.

J. Box Keel

1. The scantlings are to be determined as follows:

1.1 Plates

1.1.1. Bottom plating

- where the box keel can serve as a docking keel, the requirements for flat plate keels as per Section 6, B.5. apply,
- where the box keel cannot serve as a docking keel (see also E.2.), the requirements for bottom plating as per Section 6, B.1. – 3. apply.

1.1.2. Remaining plating

- outside the hopper space, the requirements for bottom plating as per Section 6, B.1. – 3. apply,
- within the hopper space the requirements for hopper space plating as per H.1.1 apply. The thickness of the upper portion particularly subjected to damage is to be increased by not less than 50%.
1.2 **Floors**
The requirements as per G.1. and G.2. respectively apply.

1.3 **Stiffeners**
The requirements for hopper stiffeners as per H.1.2. apply.

2. Strong webs of plate floors are to be fitted within the box keel in line with the web frames as per H.6. to ensure continuity of strength across the vessel.

3. With regard to adequate scarphing at the ends of a box keel, H.1.3 is to be observed.

K. **Stern Frame and Rudder**

1. Where dredgers with stern wells for bucket ladders and suction tubes are fitted with two rudders, the stern frame scantlings are to be determined in accordance with Section 13, C.1.

2. Where dredgers are fitted with auxiliary propulsion and their speed does not exceed 5 kn at maximum draught, the value $v_0 = 7$ kn is to be taken for determining the rudder stock diameter.

L. **Bulwark, Overflow Arrangements**

1. Bulwarks are not to be fitted in way of hoppers where the hopper weirs discharge onto the deck instead of into enclosed overflow trunks.

 Even where overflow trunks are provided, it is recommended not to fit bulwarks.

 Where, however, bulwarks are fitted, freeing ports are to be provided throughout their length which should be of sufficient width to permit undisturbed overboard discharge of any spoil spilling out of the hopper in the event of rolling.

2. Dredgers without restricted service range notation are to be fitted with overflow trunks on either side suitably arranged and of sufficient size to permit safe overboard discharge of excess water during dredging operations.

 The construction is to be such as not to require cutouts at the upper edge of the sheer strake. Where overflow trunks are carried through the wing compartments, they are to be arranged such as to pierce the sheer strake at an adequate distance from the deck.

3. Dredgers with restricted service range Notation may have overflow arrangements which permit discharge of excess water during dredging operations onto the deck.

M. **Self-Unloading Barges**

1. Self-unloading barges covered by this Sub Section are split hopper barges the port and starboard portions of which are hinged at the hopper end bulkheads to facilitate rotation around the longitudinal axis when the bottom is to be opened.

2. Longitudinal strength calculations are to be carried out for self-unloading barges, irrespective of their length, for the unloading condition. The bending moments and the stresses related to the inertia axis $y’-y’$ and $z’-z’$ are to be determined according to the following formula:

 $\sigma = \frac{M_{y’} \cdot e_{z’}}{I_{z’}} + \frac{M_{z’} \cdot e_{y’}}{I_{y’}}$

 $M_{y’}, M_{z’} =$ bending moment related to the inertia axis $y’-y’$ and $z’-z’$ respectively.

 $I_{y’}, I_{z’} =$ moments of inertia of the cross section shown in Fig. 32.1 related to the respective inertia axis.

 $e_{y’}, e_{z’} =$ the greater distance from the neutral axis $y’-y’$ and $z’-z’$ respectively.

 The still water bending moments are to be determined for the most unfavourable distribution of cargo and consumables. The
vertical still water and wave bending moments are to be determined in accordance with Section 5, A. and Section 5, B.

The horizontal still water bending moment within the hold length is to be calculated on the basis of the horizontal pressure difference between external hydrostatic pressure and cargo pressure in still water.

The following portion of the dynamic moment is to be added to the horizontal still water moment:

$$M_z = \frac{\ell^2}{24} \left[10 \frac{\mathbf{T}^2}{\mathbf{T}} - \frac{(10 \frac{\mathbf{T} - \mathbf{p}_0}{\mathbf{T} + \mathbf{p}_0})^2}{T} \right] [\text{kN.m}]$$

\[\mathbf{p}_0 = \text{see Section 4, A.2., with } f = 1 \]

\[\ell = \text{spacing between hinges [m]} \]

The stresses are not to exceed the following values:

- in still water:
 \[\sigma_{\text{SW}} = 15 \sqrt{\frac{L}{k}} \text{, max} \frac{150}{k} [\text{N/mm}^2] \]

- in the seaway:
 \[\sigma_p = \frac{175}{k} [\text{N/mm}^2] \]

BK1 may approve reduced vertical wave bending moments if the vessel is intended for dumping within specified service ranges or in sheltered waters only.

3. The bearing seating and all other members of the hinge are to be so designed as not to exceed the following permissible stress values when loading as per Fig. 32.1.:

\[\sigma_b = \frac{90}{k} [\text{N/mm}^2] \]

\[\tau = \frac{55}{k} [\text{N/mm}^2] \]

![Fig. 32.1 Static loads on a self-unloading barge, loaded](image)

\[P_S' \text{ and } P_B' = \text{water pressure [kN/m}^2\text{] at the draught } T \]

\[P_L' = \text{cargo pressure [kN/m}^2\text{] as per the following formula:} \]

\[P_L' = 10 \cdot \rho \cdot h \]

\[\rho \text{ and } h = \text{see H.1.1.} \]

N. Equipment

1. The equipment of anchors, chain cables, wires and recommended ropes for dredgers for unrestricted service range having normal ship shape of the underwater part of the hull is to be determined in accordance with Section 18. When calculating the Equipment Number according to Section 18, B. bucket ladders and gallows need not to be included. For dredgers of unusual design of the underwater part of the hull, the determination of the equipment requires special consideration.

The equipment for dredgers for restricted range of service is to be determined as for vessels with the Notations L (Coastal Service).
2. For dredgers with Notation T, see Section 30, E.

3. The equipment of non-self-propelled dredgers is to be determined as for barges, in accordance with Section 31, G.

4. Considering rapid wear and tear, it is recommended to strengthen the anchor chain cables which are also employed for positioning of the vessel during dredging operations.
Section 33

Special Rules of Floating Docks

The requirements for the construction of Floating Docks, see the Rules for Floating Docks.
This page intentionally left blank
Section 34

Supply Vessels

A. General

1. Application, character of classification

1.1 Supply vessels built in accordance with the requirements of this Section will have the Notation "SUPPLY VESSEL" affixed to their Character of Classification.

1.2 The requirements of Sections 1-22 apply to supply vessels unless otherwise mentioned in this Section.

Note

For supply vessels which shall transport limited amounts of hazardous and/or noxious liquid substances in bulk, the IMO-Resolution A.673 (16), shall be observed. (See also Rules for Ships Carrying Dangerous Chemicals in Bulk, Volume X, Section 20.)

2. Stability, floatability in damaged condition

2.1 Instead of basing the assessment of adequate stability on IMO - Resolution A.749 (18) as set forth in Section 1, E. BKI will take IMO-Resolution A.469 as a basis.

2.2 Supply vessels will be assigned the symbol for characterizing proof of damage stability according to IMO Res. A.469 or A.673. The following data will be entered into an appendix to the Certificate:

.1 Code for the specification of the proof of damage stability according to Rules for Classification and Surveys, Volume 1, Section 2, C.3.1.2.

.2 Description of the code.

Documents for approval

The following documents are to be submitted in addition to those specified in Section 1, G.:

.1 drawings showing the external openings and the closing devices thereof (3-fold)\(^1\).

.2 drawings showing the watertight subdivision as well as internal openings and the closing devices thereof (3-fold)\(^1\).

.3 damage stability calculation in accordance with IMO-Res. A.469 or A.673 (1-fold)\(^1\).

.4 damage control plan containing all data essential for maintaining the survival capability (at least 3 fold)\(^1\).

.5 stability information (at least 3-fold)\(^1\).

B. Shell Plating, Frames

1. Shell plating

1.1 The thickness of the side shell plating including bilge strake is not to be less than:

\[
t = 7 \times 0,04 \times L \quad [\text{mm}]
\]

1.2 Flat parts of the ship's bottom in the stern area are to be efficiently stiffened.

1.3 Where the stern area is subjected to loads due to heavy cargo, sufficient strengthenings are to be provided.

\(^1\) For Indonesian flagship, additionally, 1(one) fold each to be submitted
2. **Frames**

The section modulus of main and 'tweendeck frames is to be increased by 25% above the values required by Section 9.

C. **Weather Deck**

1. The scantlings of the weather deck are to be based on the following design load:

\[p = p_L + c \cdot p_D \]

\[p_L = \text{cargo load as defined in Section 4, C.1.} \]

\[p_L^{\text{min}} = 15 \text{ kN/m}^2 \]

\[p_D = \text{deck load according to Section 4, B.1.} \]

\[c = \begin{cases} 1.28 - 0.032 \cdot p_L & \text{for } p_L < 40 \text{ kN/m}^2 \\ 0 & \text{for } p_L \geq 40 \text{ kN/m}^2 \end{cases} \]

2. The thickness of deck plating is not to be taken less than 8.0 mm. In areas for the stowage of heavy cargoes the thickness of deck plating is to be suitably increased.

3. On deck stowracks for deck cargo are to be fitted which are effectively attached to the deck. The stowracks are to be designed for a load at an angle of heel of 30°. Under such loads the following stress values are not to be exceeded:

- **Bending stress:**
 \[\sigma_b \leq \frac{120}{k} \text{ [N/mm}^2\text{]} \]

- **Shear stress:**
 \[\tau \leq \frac{80}{k} \text{ [N/mm}^2\text{]} \]

\[k = \text{material factor according to Section 2. B.2.} \]

4. The thickness of the bulwark plating is not to be less than 7.5 mm.

5. Air pipes and ventilation are to be fitted in protected positions in order to avoid damage by cargo and to minimize the possibility of flooding other spaces.

6. Due regard is to be given to the arrangement of freeing ports to ensure the most effective drainage of water trapped in pipe deck cargoes. In vessels operating in areas where icing is likely to occur, no shutters are to be fitted in the freeing ports.

D. **Superstructures and Deckhouses**

1. The plate thickness of the external boundaries of superstructures and deckhouses is to be increased by 1 mm above the thickness as required in Section 16, C.3.2.

2. The section modulus of stiffeners is to be increased by 50% above the values as required in Section 16, C.3.1.

E. **Access to Spaces**

1. **Access to the machinery space**

1.1 Access to the machinery spaces should if possible, be arranged within the forecastle. Any access to the machinery space from the exposed cargo deck is to be provided with two weathertight closures.

1.2 Due regard is to be given to the position of the machinery space ventilators. Preferably they should be fitted in
position above the superstructure deck or above an equivalent level.

2. **Access to spaces below the exposed cargo deck**

 Access to spaces below the exposed cargo deck shall preferably be from a position within or above the superstructure deck.

F. Equipment

Depending on service area and service conditions it may be necessary to choose the anchor chain cable thicker and longer as required in Section 18, D.
Section 35

Strengthening Against Collisions

A. General

1. Ships, the side structures of which are specially strengthened in order to resist collision impacts, may be assigned the Notations "COLL", with index numbers 1-6, e.g. "COLL 2", affixed to the Character of Classification.

The index numbers 1 to 6 result from the ratio of the critical deformation energies calculated for both the strengthened side structure and the single hull ship without any strengthening and without any ice strengthening. The critical deformation energy is defined as that amount of energy when exceeded in case of a collision, a critical situation is expected to occur.

The index numbers will be assigned according to Table 35.1 on the basis of the characteristic ratio \(C^* \) of the critical deformation energies as defined in B.8. In special cases "COLL"-Notations higher than "COLL 6" may be assigned if justified by the design and construction of the ship.

<table>
<thead>
<tr>
<th>(C^*)</th>
<th>"COLL"-Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>COLL 1</td>
</tr>
<tr>
<td>3</td>
<td>COLL 2</td>
</tr>
<tr>
<td>4</td>
<td>COLL 3</td>
</tr>
<tr>
<td>6</td>
<td>COLL 4</td>
</tr>
<tr>
<td>10</td>
<td>COLL 5</td>
</tr>
<tr>
<td>20</td>
<td>COLL 6</td>
</tr>
</tbody>
</table>

2. Critical situations are, for instance:
 - tearing up of cargo tanks with subsequent leakage of, e.g., oil, chemicals, etc.
 - water ingress into dry cargo holds during carriage of particularly valuable or dangerous cargo,
 - tearing up of fuel oil tanks with subsequent leakage of fuel oil.

The critical speed \(v_{cr} \) is defined as being the speed of the striking ship; if this speed is exceeded, a critical situation may be expected.

3. The definition of the critical situation is entered into the Certificate.

For general cargo ships and tankers, the Notation "COLL" with a corresponding restrictive note in the Certificate may also be granted for individual compartments only.

4. If wing tanks are arranged in the area to be investigated which are to be assumed as being flooded whereas the longitudinal bulkheads remain intact, sufficient floatability and stability in such damaged conditions is to be proved. Longitudinal bulkheads fitted outside the envelope curve of the penetration depths determined for the collision cases as defined in B. 5. are to be considered intact.

5. A "COLL"-Notation will be assigned under the provision that the ship has a sufficient residual longitudinal strength in the damaged condition.

B. Calculation of the Deformation Energy

1. The deformation energy has to be calculated by procedures recognized by BKI.

In case of high-energy-collisions the Minorsky method may be accepted, if the bow and side structures are found suitable.

2. For low-energy-collisions, the Minorsky method does not give sufficiently precise results. Analyses of these
collisions are to be based on assumptions which take into account the ultimate loads of the bow and side structures hitting each other in the area calculated, and their interactions. The computations of ultimate loads are to be based on the assumption of an ideal elastic plastic material behaviour. The calculated limit stress \(R_{UC} \) to be assumed is the mean value of the minimum nominal upper yield point and the tensile strength, as follows:

\[
R_{UC} = \frac{1}{2} (R_{elI} + R_m)
\]

- \(R_{elI} \) = minimum nominal upper yield point of the hull structural steel applied as per Section 2, B.2.
- \(R_m \) = tensile strength of the hull structural steel applied.

The elongation at fracture of the shell is to be taken as 5%.

3. Ships of approximately equal displacement and with design draughts approximately identical to that of the struck ship to be examined are to be assumed as striking ships.

2 bow shapes are to be investigated:
- bow shape 1: raked bow contour without bow bulb,
- bow shape 2: raked bow contour with bow bulb.

Extremely fully shaped bow configurations are not to be used for the computations.

4. The computations are to be carried out for a rectangular, central impact, making the following assumptions:
- the bow of the striking ship encounters the side of the struck ship vertically,
- the struck ship is floating freely and has no speed.

5. Various collision cases are to be investigated for bow shapes 1 and 2, for the strengthened and non-strengthened side structure, covering the design and ballast draughts of the ships involved in the collision.

The essential factor for determining the deformation energy are the draught differentials \(\Delta T \) of the ships involved in the collision, see Fig. 35.1.

The following draught differentials are to be considered:

Collision case 1:

\[
\Delta T_1 = T_{2max} - \frac{3}{4} T_{1min} + T_{1max}
\]

Collision case 2:

\[
\Delta T_2 = T_{2max} - \frac{T_{1min} + 3}{4} T_{1max}
\]

Collision case 3:

\[
\Delta T_3 = \frac{T_{2min} + 3}{4} T_{2max} - T_{1max}
\]

Collision case 4:

\[
\Delta T_4 = \frac{3}{4} T_{2min} + T_{2max} - T_{1max}
\]

\(T_{1max} \) = design draught of the striking ship
\(T_{1min} \) = ballast draught of the striking ship
\(T_{2max} \), \(T_{2min} \) = analogous draughts of the struck ship
6. Based on the deformation energies calculated for the strengthened and non-strengthened side structure for the different collision cases defined in 5. above, the mean values of the critical deformation energies are to be evaluated by means of weighting factors.

7. The mean critical deformation energies are to be calculated for the collision cases 1 to 4 and for both bow shapes, in accordance with the following formulae:

For bow shape 1:
\[
\begin{align*}
E_{01} &= \frac{1}{8} \left[E_{01,1} + 3 \ E_{01,2} + 3 \ E_{01,3} + E_{01,4} \right] \\
E_{11} &= \frac{1}{8} \left[E_{11,1} + 3 \ E_{11,2} + 3 \ E_{11,3} + E_{11,4} \right]
\end{align*}
\]

For bow shape 2:
\[
\begin{align*}
E_{02} &= \frac{1}{8} \left[E_{02,1} + 3 \ E_{02,2} + 3 \ E_{02,3} + E_{02,4} \right] \\
E_{22} &= \frac{1}{8} \left[E_{22,1} + 3 \ E_{22,2} + 3 \ E_{22,3} + E_{22,4} \right]
\end{align*}
\]

where:

\(E_{01,i} \) = deformation energy for the un-strengthened ship, bow shape 1, collision case i, i = 1 ÷ 4
\(E_{11,i} \) = deformation energy for the strengthened ship, bow shape 1, collision case i, i = 1 ÷ 4
\(E_{02,i} \) and \(E_{22,i} \) are the respective values for bow shape 2.

8. The ratios of the mean critical deformation energies are to be calculated by the following formulae:

For bow shape 1:
\[
C_1 = \frac{E_{11}}{E_{01}}
\]

For bow shape 2:
\[
C_2 = \frac{E_{22}}{E_{02}}
\]

The characteristic ratio for the ship is the mean value resulting from the two weighted ratios \(C_1 \) and \(C_2 \) in accordance with the following formula:
\[
C^* = \frac{1}{2} \left(C_1 + C_2 \right)
\]

9. The index defined in A.1. will be fixed on the basis of the characteristic ratio \(C^* \) and the corresponding minimum value for the critical speed \(v_{cr \ min}^* \) according to C.3.
C. Computation of the Critical Speed

1. The critical collision speed is to be determined by the following formula:

\[v_{cr} = 2.75 \sqrt{\frac{E_{cr}}{m_2} \left(1 + \frac{m_2}{m_1}\right)} \] [kn]

- \(E_{cr} \) = deformation energy, once the critical speed has been reached [kJ]
- \(m_1 \) = mass of the striking ship, incl. 10% hydrodynamical added mass [t]
- \(m_2 \) = mass of the struck ship, incl. 40% hydrodynamical added mass [t].

2. When calculating the critical speeds for the collision cases in accordance with B.5., the following draughts are to be assumed:

- **Collision case 1:**
 \[T_1 = \frac{3}{4} T_{1\text{min}} + \frac{1}{4} T_{1\text{max}} \]
 \[T_2 = T_{2\text{max}} \]

- **Collision case 2:**
 \[T_1 = \frac{3}{4} T_{1\text{min}} + \frac{1}{4} T_{1\text{max}} \]
 \[T_2 = T_{2\text{max}} \]

- **Collision case 3:**
 \[T_1 = T_{1\text{max}} \]
 \[T_2 = \frac{3}{4} T_{2\text{max}} + \frac{1}{4} T_{2\text{min}} \]

- **Collision case 4:**
 \[T_1 = T_{1\text{max}} \]
 \[T_2 = \frac{3}{4} T_{2\text{max}} + \frac{1}{4} T_{2\text{min}} \]

3. For the assignment of a "COLL" Notation, in addition to the characteristic ratio \(C^* \) according to A.1 (Table 35.1), the minimum values for the mean critical speed \(v_{cr}^* \) as given in Table 35.2 have to be met.

<table>
<thead>
<tr>
<th>“COLL” - Notation</th>
<th>(v_{cr}^* \text{ min}) [kn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLL 1</td>
<td>1,0</td>
</tr>
<tr>
<td>COLL 2</td>
<td>1,5</td>
</tr>
<tr>
<td>COLL 3</td>
<td>2,5</td>
</tr>
<tr>
<td>COLL 4</td>
<td>4,0</td>
</tr>
<tr>
<td>COLL 5</td>
<td>5,5</td>
</tr>
<tr>
<td>COLL 6</td>
<td>7,0</td>
</tr>
</tbody>
</table>

\(v_{cr}^* \) see also 4

4. The mean critical speed \(\overline{v}_{cr} \) results from the weighted critical speeds of collision conditions 1 ÷ 4 for both bow shapes, in accordance with the following formulae:
for bow shape 1:

\[
\bar{v}_{cri1} = \frac{1}{8} \left[v_{1er1} + 3v_{1er2} + v_{1er3} + v_{1er4} \right]
\]

\(v_{1cri} = \) critical speed for bow shape 1, collision case i, \(i = 1 \div 4\)

for bow shape 2:

\[
\bar{v}_{cri2} = \frac{1}{8} \left[v_{2er1} + 3v_{2er2} + 3v_{2er3} + v_{2er4} \right]
\]

\(v_{2cri} = \) critical speed for bow shape 2, collision case i, \(i = 1 \div 4\)

The critical speed characteristic for the ship results as mean value from the two weighted speeds \(\bar{v}_{cri1}\) and \(\bar{v}_{cri2}\) in accordance with the following formula:

\[
v_{cr} = \frac{1}{2} \left(\bar{v}_{cri1} + \bar{v}_{cri2} \right) \text{ [kn]}
\]
Section 36

Subdivision and Stability of Cargo Ships and Passenger Ships

A. General

1. Application

The requirements of this Section apply to cargo ships with \(L_c \geq 80 \text{ m} \) and to all passenger ships regardless of length, but shall exclude those ships covered by other damage stability regulations in conventions or codes.

Note

This Section refers to Chapter 11-1 of SOLAS as amended and the related Explanatory Notes. Alternative arrangements will be accepted for a particular ship or group of ships, if they have been acknowledged by the competent Administration as providing at least the same degree of safety.

2. Character of Classification

Ships which meet the requirements of this Section will be assigned the symbol for characterizing proof of damage stability. The following data will be entered into an appendix to the Certificate:

- code for the specification of the proof of damage stability according to Rules for Classification and Surveys, Volume I, Section 2, C.3.1.2.

3. Documents for approval

The following documents are to be submitted in addition to those specified in Section 1 G:

- drawings showing the external openings and the closing devices thereof (3-fold)\(^1\).
- drawings showing the watertight subdivision as well as internal openings and the closing devices thereof (3-fold)\(^1\).
- damage stability calculation in accordance with SOLAS as amended and the related Explanatory Notes (2-fold)\(^1\).
- damage control plan and damage control booklet containing all data essential for maintaining the survival capability (at least 3-fold)\(^1\).
- stability information in accordance with B. (at least 3-fold)\(^1\).

B. Onboard Stability Information

1. The Master shall be supplied with such information satisfactory to the Administration as is necessary to enable him by rapid and simple processes to obtain accurate guidance as to the stability of the ship under varying conditions of service. A copy of the stability information shall be furnished to the Administration.

The information should include:

1.1 Curves or tables of minimum operational metacentric height \(GM' \) versus draught which assure compliance with the relevant intact and damage stability requirements, alternatively corresponding curves or tables of the maximum allowable vertical centre of gravity \(KG' \) versus draught, or with the equivalents of either of these curves.

1.2 Instructions concerning the operation of cross-flooding arrangements.

1.3 All other data and aids which might be necessary to maintain the required intact stability and stability after damage.

1.4 There shall be permanently exhibited, for the guidance of the officer in charge of the ship, plans showing clearly for each deck and hold the boundaries of the watertight compartments, the openings therein with the means of closure and position of any controls thereof, and the arrangements for the correction of any list due to flooding. In addition, booklets

\(^1\) For Indonesian flagship, additionally, 1(one) fold each to be submitted
containing the aforementioned information shall be made available to the ships command.

2. The stability information shall show the influence of various trims in cases where the operational trim range exceeds +/-0.5\% of \(L_S\).

3. For ships which have to fulfil the stability requirements of part B-1 of SOLAS as amended, information referred to in paragraph 1 are determined from considerations related to the subdivision index, in the following manner: Minimum required \(GM'\) values (or maximum permissible vertical positions of centre of gravity \(KG'\)) for the three draughts \(d_s\), \(d_p\) and \(d_l\) are equal to the \(GM'\) (or \(KG'\) values) of corresponding loading cases used for the calculation of survival factor \(s_c\).

For intermediate draughts, values to be used shall be obtained by linear interpolation applied to the \(GM'\) value only between the deepest subdivision draught and the partial subdivision draught and between the partial load line and the light service draught respectively.

Intact stability criteria will also be taken into account by retaining for each draught the maximum among minimum required \(GM'\) values or the minimum of maximum permissible \(KG'\) values for both criteria. If the subdivision index is calculated for different trims, several required \(GM'\) curves will be established in the same way.

4. When curves or tables of minimum operational metacentric height \(GM'\) versus draught are not appropriate, the master should ensure that the operating condition does not deviate from a studied loading condition, or verify by calculation that the stability criteria are satisfied for this loading condition.

5. The terms used in this Section are the same as those of SOLAS as amended.

C. Double Bottom

1. The arrangement shall comply with Chapter II-1 of SOLAS as amended.

Abstract of this Regulation:

2. A double bottom shall be fitted extending from the collision bulkhead to the after peak bulkhead, as far as this is practicable and compatible with the design and proper working of the ship.

3. Where a double bottom is required to be fitted the inner bottom shall be continued out to the ship's sides in such a manner as to protect the bottom to the turn of the bilge. Such protection will be deemed satisfactory if the inner bottom is not lower at any part than a plane parallel with the keel line and which is located not less than a vertical distance \(h\) measured from the keel line, as calculated by the formula:

\[
h = \frac{B}{20}
\]

However, in no case is the value of \(h\) to be less than 760 mm, and need not be taken as more than 2000 mm.

4. Small wells constructed in the double bottom in connection with drainage arrangements of holds, etc., shall not extend downward more than necessary. In no case shall the vertical distance from the bottom of such a well to a plane coinciding with the keel line be less than 500 mm.

5. In the case of unusual bottom arrangements in a passenger ship or a cargo ship, it shall be demonstrated that the ship is capable of withstanding bottom damages as specified in Chapter II-1 of SOLAS as amended.

D. Watertight Bulkheads and Decks

1. For watertight bulkheads Section 11 and for decks Section 7 are to be observed.

2. The scantlings of watertight bulkheads and decks, forming the boundaries of watertight compartments assumed flooded in the damage stability analysis, shall be based on pressure heights corresponding to 1 m above the deepest final waterline of the damage cases contributing to the attained subdivision index \(A\).

3. The number of openings in watertight subdivisions is to be kept to a minimum compatible with the design and proper working of the ship. Where penetrations of watertight bulkheads and internal decks are necessary for access, piping, ventilation, electrical cables, etc, arrangements are to be made to maintain the watertight integrity. The Administration may
permit relaxations in the watertightness of openings above the freeboard deck, provided that it is demonstrated that any progressive flooding can be easily controlled and that the safety of the ship is not impaired.

4. Doors provided to ensure the watertight integrity of internal openings which are used while at sea are to be sliding watertight doors (see Rules for Machinery Installations, Volume III, Section 14) capable of being remotely closed from the bridge and are also to be operable locally from each side of the bulkhead. Indicators are to be provided at the control position showing whether the doors are open or closed, and an audible alarm is to be provided at the door closure. The power, control and indicators are to be operable in the event of main power failure. Particular attention is to be paid to minimize the effect of control system failure. Each power operated sliding watertight door shall be provided with an individual hand-operated mechanism. It shall be possible to open and close the door by hand at the door itself from both sides.

5. Access doors and access hatch covers normally closed at sea, intended to ensure the watertight integrity of internal openings, shall be provided with the means of indication locally and on the bridge showing whether these doors or hatch covers are open or closed. A notice is to be affixed to each such door or hatch cover to the effect that it is not to be left open.

6. Watertight doors or ramps of satisfactory construction may be fitted to internally subdivide large cargo spaces, provided that the Administration is satisfied that such doors or ramps are essential. These doors or ramps may be hinged, rolling or sliding doors or ramps, but shall not be remotely controlled, see interpretation of regulations of Part B-1 of SOLAS Chapter II-1 (MSC/Circ. 651). Should any of the doors or ramps be accessible during the voyage, they shall be fitted with a device which prevents unauthorized opening.

7. Other closing appliances which are kept permanently closed at sea to ensure the watertight integrity of internal openings shall be provided with a notice which is to be affixed to each such closing appliance to the effect that it is to be kept closed. Manholes fitted with closely bolted covers need not be marked.

8. For openings in watertight bulkheads below the bulkhead deck in passenger ships refer to Chapter II-1 of SOLAS as amended.

E. External Openings

1. All external openings leading to compartments assumed intact in the damage analysis, which are below the final damage waterline, are required to be watertight. Such openings shall, except for cargo hatch covers, shall be fitted with indicators on the bridge.

2. Openings in the shell plating below the deck limiting the vertical extent of damage shall be fitted with a device that prevents unauthorized opening, if they are accessible during the voyage.

3. Other closing appliances which are kept permanently closed at sea to ensure the watertight integrity of external openings shall be provided with a notice affixed to each appliance to the effect that it is to be kept closed. Manholes fitted with closely bolted covers need not be so marked.

4. For openings in watertight bulkheads below the bulkhead deck in passenger ships refer to Chapter II-1 of SOLAS as amended.

F. Cross-Flooding Arrangements

1. Where the damage stability calculation requires the installation of cross-flooding arrangements in order to avoid high asymmetrical flooding, these arrangements shall work automatically as far as possible. Non-automatic controls for cross-flooding fittings are to be capable of being operated from the bridge or another central location. The position of each closing device has to be indicated on the bridge and at the central operating location (see also Rules for Machinery Installations, Volume III, Section 11, P., and Rules for Electrical Installations, Vol. IV, Section 7, H.). The sectional areas of the cross-flooding fittings are to be determined\(^2\) in such a way that the time for equalization does not exceed 10 minutes. Particular attention is to be paid to the effects of the crossflooding arrangements upon the stability in intermediate stages of flooding.

\(^2\) Following the Res. MSC.245(83)
2. Suitable information concerning the use of the closing devices installed in cross-flooding arrangements shall be supplied to the master of the ship.

3. When determining the bulkhead scantlings of tanks, connected by cross-flooding arrangements, the increase in pressure head at the immersed side that may occur at maximum heeling in the damaged condition shall be taken into account.
Section 37

Special Requirements for In-Water Surveys

A. General

Ships intended to be assigned the Class Notation IW (In-Water Survey) shall comply with the requirements of this Section enabling them to undergo in-water surveys.

B. Special Arrangements for In-Water Surveys

1. The ship’s underwater body is to be protected against corrosion by an appropriate corrosion protection system which consists of a coating system in combination with cathodic protection. The coating system without anti fouling shall have a minimum film thickness of 250 µm, shall be compatible with the cathodic protection and shall be appropriate for mechanical underwater cleaning. The cathodic protection system has to be designed for at least one docking period.

2. The ship’s bottom is to be provided with fixed markings and unmistakable inscriptions such as to enable the diver to determine his respective position. The location of the centerline and the transverse bulkheads is to be permanently marked at the bottom and at the ship’s sides below the deep water-line in a distance of about 3 - 4 m.

3. Sea chests shall be capable of being cleaned underwater, where necessary. To this effect the closures of the strainers are to be designed such that they may be opened and closed in an operationally safe manner by the diver. In general the clearance of access openings should not less than 900 × 600 mm.

4. All inlet and outlet openings below the deep water-line shall be capable of being sealed for carrying out repairs and maintenance work.

5. Clearances of the rudder and shaft bearings shall be capable of being measured with the ship afloat in every trim condition. If within the scope of scheduled periodical surveys drydockings are to be performed at intervals of 2,5 years or less, the installation of special underwater measuring equipment may be dispensed with. Inspection ports are to have a clearance of at least 200 mm under consideration of accessibility of measuring points.

6. It shall be possible to present proof of tightness of the stern tube, in case of oil lubrication, by static pressure loading.

7. Liners of rudder stocks and pintles as well as bushes in rudders are to be marked such that the diver will notice any shifting or turning.

8. For other equipment, such as bow thrusters the requirements will be specially considered taking into account their design.

9. In case of existing ships below 100 m in length the requirements specified in paragraphs 3., 5. and 7. may be dispensed with.

C. Documents for Approval, Trials

1. In addition to the approval documents listed in Section 1, G. drawings and, where necessary instruction manuals, documenting the arrangements specified in B. are to be submitted.

2. Prior to commissioning of the vessel the equipment is to be surveyed and subjected to trials in accordance with the Surveyor’s discretion.

3. For facilitating the performance of surveys, detailed instructions are to be kept aboard as guidance for the diver. These instructions should include details, such as:
 - complete colour photograph documentation of all essential details of the underwater body, starting from the newbuilding condition,
- plan of the underwater body showing the location and kind of inscriptions applied,
- instructions regarding measures to be taken by the crew for ensuring risk-free diving operations,
- description of measuring method for determination of rudder and shaft clearances,
- instructions for handling of closures of sea chest strainers, bow thrusters and other outlet/inlet openings,
- additional instructions, where required, depending on structural characteristics,
- coating specification, cathodic protection, see Section 38, H.2.
Section 38

Corrosion Protection

A. General Instructions

1. Field of Application

1.1 This section deals with the corrosion protection measures specified by BKI with respect to seagoing steel ships. Details of the documentation necessary for setting up the corrosion protection system are laid down herein (planning, execution, supervision).

1.2 Corrosion protection for other types of ship as well as other kinds of material, e.g. aluminium, is to be agreed separately in consultation with BKI.

1.3 Requirements with respect to the contractors executing the work and the quality control are subject to the conditions laid down in Section 1, N.1.1 and 1.2.

1.4 Any restrictions which may be in force concerning the applicability of certain corrosion protection systems for special types of vessels (e.g. tankers and bulk carriers) have to be observed. BKI is to be consulted when clarifying such issues.

1.5 Supplementary to this Section, Regulations for Corrosion Protection and Coating Systems contain further comments and recommendations for the selection of suitable corrosion protection systems, as well as their professional planning and execution.

B. Shop Primers

1. General

1.1 Shop primers are used to provide protection for the steel parts during storage, transport and work processes in the manufacturing company until such time as further surface preparation is carried out and the subsequent coatings for corrosion protection are applied.

1.2 Customarily, coatings with a thickness of 15μm to 20μm are applied. Under normal yard conditions, this should provide corrosion protection for a period of approx. 6 months.

1.3 The coating shall be of good resistance to withstand the mechanical stresses incurred during the subsequent working of the steel material in the shipbuilding process.

1.4 Flame-cutting and welding speed are not to be unduly impaired. It must be ensured that welding with all welding processes customary in the building of ships can be conducted without impermissibly impairing the quality of the weld seam, see the Rules for Welding, Volume VI, Section 6.

1.5 Due to the possible strain to the system presented by cathodic protection, seawater and chemicals, only shop primers are to be used which are alkali-fast and not hydrolyzable.

1.6 The suitability and compatibility of shop primer for use in the corrosion protection system is to be guaranteed by the manufacturer of the coating materials.

2. Approvals

Only those overweldable shop primers may be used for which the Society has issued a confirmation of acceptability based on a porosity test in accordance with the Rules for Welding, Volume VI, Section 6.
C. Hollow Spaces

1. General

Hollow spaces, such as those in closed box girders, tube supports and the like, which can either be shown to be air tight or are accepted as such from normal shipbuilding experience, need not have their internal surfaces protected. During assembling, however, such hollow spaces have to be kept clean and dry.

D. Combination of Materials

1. General

1.1 Preventive measures are to be taken to avoid contact corrosion associated with the combination of dissimilar metals with different potentials in an electrolyte solution, such as seawater.

1.2 In addition to selecting appropriate materials, steps such as suitable insulation, an effective coating and the application of cathodic protection can be taken in order to prevent contact corrosion.

E. Fitting-Out and Berthing Periods

1. General

1.1 For protection against corrosion arising from stray currents, such as those occurring due to inappropriate direct current electrical supply to the ship for welding or mains lighting, as well as those arising from direct-current supplies to other facilities (e.g. shore cranes) and neighbouring ships, the provision of (even additional) cathodic protection by means of sacrificial anodes is not suitable.

1.2 Steps are to be taken to prevent the formation of stray currents, and suitable electric drainage is to be provided.

1.3 Particularly in the event of lengthy fitting-out periods, welding rectifiers are to be so arranged that stray currents can be eliminated.

F. Corrosion Protection of Ballast Water Tanks

Note

On 8 December 2006 the International Maritime Organization (IMO) has adopted a Performance Standard for Protective Coatings (PSPC). This new coating standard applies to ballast water tanks on newbuildings in all types of ships and is settled in the Resolution MSC.215(82). With the new standard technical regulations for the coating of ballast water tanks come into force as well as inspection and verification items. These are statutory requirements for ship newbuildings which have to be observed and fulfilled.

1. General

1.1 All seawater ballast tanks shall be provided with a corrosion protection system.

1.2 The following corrosion protection systems are to be used:

- coating,
- coating and cathodic protection,

2. Coatings

2.1 General

2.1.1 The coatings shall be, in accordance with the manufacturer’s specifications, resistant against sea-water, coastal water,
harbour water and the substances they may contain.

2.1.2 The characteristics, composition and field of application of a coating system shall be documented, i.e. prescribed by the manufacturer of the coating material. Details of the coating material, how it is to be processed and its suitability for the coating system shall be contained in the product data sheet.

2.2 Approvals

2.2.1 For new buildings, the applied coatings and coating systems shall be approved by BKI. The approvals shall be obtained by the manufacturers of the coating materials from BKI Head Office.

2.2.2 A list with approved coatings and coating systems is obtainable from Head Office.

2.2.3 Approval does not constitute confirmation of the suitability and compatibility of the coatings in the corrosion protection system. These points are to be ensured by either the yard or the manufacturer of the coating materials.

2.3 Surface preparation

2.3.1 The surface shall be prepared according to the instructions of the manufacturer of the coating material.

2.3.2 Surface preparation is subject to specifications in the product data sheet and shall correspond to a valid surface quality grade, e.g. SIS 055900, ISO 12944-4 or ISO 8501.

2.3.3 Slag and loose weld spatters have to be removed before the coating is applied.

2.3.4 Welded or otherwise attached accessory material (tack plates, lugs etc.) shall be completely integrated into the corrosion protection, or otherwise removed.

2.4 Application

2.4.1 The process of application is to be carried out according to the coating manufacturer’s instructions.

2.4.2 During application the ambient conditions and procedural instructions are to be complied with, in accordance with the details specified in the manufacturer’s instructions and in the approvals.

2.4.3 Surface areas which are obstructed and are thus inadequately exposed to the spraying, exposed edges and corners, as well as weld seams, shall be stripe coated in advance to achieve a sufficient coating thickness.

2.5 Dry film thickness

2.5.1 The dry film thickness of the coating systems shall be in accordance with approvals and correspond to a minimum of 250 μm.

2.5.2 The prescribed coating thickness is the minimum coating thickness which shall not be undercut at any spot of the coated surface.

2.6 Documentation

2.6.1 The work processes involved in setting up a coating system as well as the coating materials to be used shall be laid down in a coating plan.

2.6.2 The coating plan for ballast water tanks is to be submitted to BKI for approval.

2.6.3 The coating protocol is to be compiled in such a way that all work steps executed, including surface preparation and coating materials used, are documented.

2.6.4 This documentation is to be compiled by the coating manufacturer and/or the contractor executing the work and/or the yard. An inspection plan shall be agreed to between the parties involved. The papers pertaining to the documentation shall be signed by these parties. On completion of the coating system, the signed papers constituting the documentation are to be handed to the Surveyor for acceptance. The documentation is to contain the following data:
- location and date,
- ship and the tanks treated,
- manufacturer’s specifications for the coating system (number of coatings, total coating thickness, processing conditions),
- product data sheet for the coating and BKI approval number,
- contractors and persons carrying out the work,
- surface preparation (procedure, working materials, ambient conditions),
- condition of surface prior to coating (cleanness, roughness, existing primer, surface quality grade achieved),
- application (procedure, number of coatings),
- application conditions (time, surface/ambient temperature, humidity, dew point, ventilation),
- the date the tanks were first ballasted is to be recorded,
- report of coating thickness measurement and visual inspections,
- signatures of involved parties (yard, coating manufacturer, work contractor).

2.6.5 Coating protocols already in existence and used by coating manufacturers, work contractors, yards and ship owners will be accepted by BKI, provided they contain the above data and are signed by all parties involved. Any missing data is to be furnished.

3. Coatings combined with cathodic protection

3.1 Coating

3.1.1 In the case of coatings used in combination with cathodic protection, the provisions under 2 shall apply.

3.1.2 In addition, the coatings have to be resistant against the cathodic protection, i.e. the coatings shall not exhibit any impairment of their purpose up to a potential of –1200 mV against the copper/copper-sulphate electrode. Proof of resistance against cathodic corrosion protection can be provided in accordance with recognized standards, e.g. DIN 50928, or equivalent.

3.2 Cathodic protection

3.2.1 General

For the cathodic protection of ballast water tanks in combination with coatings, sacrificial anodes made of zinc or aluminium are used. Tables 38.1 and 38.2 contain recommended alloy compositions for conventional aluminium and zinc anodes.

Zinc and aluminium anodes of differing chemical composition may also be used, provided proof of the cathodic protection ability is provided.

Zinc anodes may not be used in the event that operating temperatures in excess of 60 °C can be expected. Impressed current systems are not permitted in ballast water tanks.

Connections between the anodes and the surface to be protected shall provide good conducting properties.

The anodes are therefore to be welded on, wherever possible. In exceptional circumstances, where bolting on the anodes offers the only practicable alternative, an adequate and durable metallic conducting connection shall be provided, e.g. cable connection.

Sacrificial anodes are not to be coated over and shall be free from dirt and other impurities.
Table 38.1 Sacrificial anodes of zinc alloys for applications in seawater

<table>
<thead>
<tr>
<th>Element</th>
<th>KI-Zn1</th>
<th>KI-Zn2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0,10 - 0,50</td>
<td>≤ 0,10</td>
</tr>
<tr>
<td>Cd</td>
<td>0,025 - 0,07</td>
<td>≤ 0,004</td>
</tr>
<tr>
<td>Cu</td>
<td>≤ 0,005</td>
<td>≤ 0,005</td>
</tr>
<tr>
<td>Fe</td>
<td>≤ 0,005</td>
<td>≤ 0,0014</td>
</tr>
<tr>
<td>Pb</td>
<td>≤ 0,006</td>
<td>≤ 0,006</td>
</tr>
<tr>
<td>Zn</td>
<td>≥ 99,22</td>
<td>≥ 99,88</td>
</tr>
<tr>
<td>Potential (T = 20 °C)</td>
<td>– 1,03 V Ag/AgCl/Seawater</td>
<td>– 1,03 V Ag/AgCl/Seawater</td>
</tr>
<tr>
<td>Q_g (T = 20 °C)</td>
<td>780 Ah/kg</td>
<td>780 Ah/kg</td>
</tr>
<tr>
<td>Efficiency (T = 20 °C)</td>
<td>95%</td>
<td></td>
</tr>
</tbody>
</table>

Table 38.2 Sacrificial anodes of aluminium alloys for applications in seawater

<table>
<thead>
<tr>
<th>Element</th>
<th>KI-Al1</th>
<th>KI-Al2</th>
<th>KI-Al3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>≤ 0,10</td>
<td>≤ 0,10</td>
<td>Si + Fe</td>
</tr>
<tr>
<td>Fe</td>
<td>≤ 0,10</td>
<td>≤ 0,13</td>
<td>≤ 0,10</td>
</tr>
<tr>
<td>Cu</td>
<td>≤ 0,005</td>
<td>≤ 0,005</td>
<td>≤ 0,02</td>
</tr>
<tr>
<td>Mn</td>
<td>N/A</td>
<td>N/A</td>
<td>0,15 - 0,50</td>
</tr>
<tr>
<td>Zn</td>
<td>2,0 - 6,0</td>
<td>4,0 - 6,0</td>
<td>2,0 - 5,0</td>
</tr>
<tr>
<td>Ti</td>
<td>–</td>
<td>–</td>
<td>0,01 - 0,05</td>
</tr>
<tr>
<td>In</td>
<td>0,01 - 0,03</td>
<td>–</td>
<td>0,01 - 0,05</td>
</tr>
<tr>
<td>Sn</td>
<td>–</td>
<td>0,05 - 0,15</td>
<td>–</td>
</tr>
<tr>
<td>Other El.</td>
<td>≤ 0,10</td>
<td>≤ 0,10</td>
<td>≤ 0,15</td>
</tr>
<tr>
<td>Al</td>
<td>Remainder</td>
<td>Remainder</td>
<td>Remainder</td>
</tr>
<tr>
<td>Potential (T = 20°C)</td>
<td>– 1,05 V Ag/AgCl/Sea-water</td>
<td>– 1,05 V Ag/AgCl/Sea-water</td>
<td>– 1,05 V Ag/AgCl/Sea-water</td>
</tr>
<tr>
<td>Q_g (T = 20°C)</td>
<td>2000 Ah/kg</td>
<td>2000 Ah/kg</td>
<td>2700 Ah/kg</td>
</tr>
<tr>
<td>Efficiency (T = 20°C)</td>
<td>95%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.2 Protection current requirement

For coated surfaces a protection current density of 0,02 A/m² shall be applied.

In the event that ballast water tanks may be subjected to higher temperatures, for instance due to adjacent heating-oil tanks, the protection current density is to be increased as follows:

For each °C over 25 °C by 1 mA/m²

The protection period shall be designed to last for a minimum of 5 years.

Deviations from the values stated for protection current density and protection period could be accepted if a written confirmation of the owner exists.

3.2.3 Anode weight

The required total anode weight is calculated according to:
\[m_G = \frac{A_G \cdot J_S \cdot t_s}{Q_g} \] [kg]

where:

- \(A_G \) = the total area to be protected [m\(^2\)]
- \(J_S \) = protection current requirement [A/m\(^2\)] according to 3.2.2.
- \(t_s \) = protection period [h]
- \(Q_g \) = electrochemical efficiency of the anode material [Ah/kg]

The electrochemical efficiency of the anode material is to be taken out of the manufacturer’s specification.

3.2.4 Arrangement of anodes

The arrangement of the anodes in the tank is to be such that the required protection current density can be achieved in all areas.

The number and size of the anodes depends on the structural design and the calculated current output of the anodes. When compiling the anode plan, the current output is to be taken into account for the calculation.

An increase in the number of anodes required may be necessary in the following circumstances:
- when frequently low filling levels lead to a limitation in the area effectively protected by the anodes,
- when internal structures attenuate the effective current for certain areas of the tank,
- when increased current densities are necessary for the protection of more noble materials, e.g. internals made of stainless steel.

3.2.5 Documentation

The documentation of the coating shall be in accordance with 2.6. In addition, the papers concerning the design and computation of the cathodic protection shall be submitted for perusal. An anode plan need not be submitted.

G. Corrosion Protection of Cargo Holds

1. General

1.1 On bulk carriers, all internal and external surfaces of hatch coamings and hatch covers, and all internal surfaces of the cargo holds, excluding the flat tank top areas and the hopper tanks sloping plating approximately 300 mm below the side shell frame and brackets, are to have an effective protective coating (epoxy coating, or equivalent), applied in accordance with the manufacturer’s recommendation. In the selection of coating due consideration shall be given in consultation with the owner to the intended cargo and conditions expected in service.

1.2 The coating used shall be approved by the manufacturer for application in cargo holds.

1.3 The coating manufacturer’s instructions with regard to surface preparation as well as application conditions and processing shall be adhered to.

1.4 The minimum thickness of the coating shall be 250 µm in the complete area defined under 1.1.

2. Documentation

2.1 The coating plan is to be submitted for examination. A description of the work necessary for setting up a coating system and the coating materials to be used shall be contained in the coating plan.

2.2 A coating report is to be compiled in such a way that details of all the work processes executed, including the surface preparation as well as the coating materials used, are recorded.

2.3 This documentation is to be compiled by the coating manufacturer and/or the contractor executing the work and/or the yard. An inspection plan shall be agreed to between the parties involved. The papers pertaining to the documentation shall be signed by these parties. On completion of the coating system, the signed papers constituting the documentation are to be handed to the surveyor for approval (see also F.2.6.4).
H. Corrosion Protection of the Underwater Hull

1. General

1.1 Vessels intended to be assigned the Class Notation IW (In-Water Survey) shall provide a suitable corrosion protection system for the underwater hull, consisting of coating and cathodic protection.

1.2 Coatings based on epoxy, polyurethane and polyvinyl chloride are considered suitable.

1.3 The coating manufacturer’s instructions with regard to surface preparation as well as application conditions and processing shall be observed.

1.4 The coating system, without antifouling, shall have a minimum dry film thickness of 250 μm on the complete surface, shall be compatible to cathodic protection in accordance with recognized standards, and shall be suitable for being cleaned underwater by mechanical means.

1.5 The cathodic protection can be provided by means of sacrificial anodes, or by impressed current systems. Under normal conditions for steel, a protection current density of at least 10 mA/m² is to be ensured.

1.6 In the case of impressed current systems, over protection due to inadequately low potential is to be avoided. A screen (dielectric shield) is to be provided in the immediate vicinity of the impressed-current anodes.

1.7 Cathodic protection by means of sacrificial anodes is to be designed for one dry-docking period.

1.8 In the case of other materials, such as aluminium for instance, special conditions are to be agreed with BKI.

2. Documentation

2.1 The coating plan and the design data for the cathodic protection are to be submitted for examination.

2.2 In the case of impressed current systems, the following details shall also be submitted:
 - arrangement of the ICCP system
 - location and constructional integration (e.g. by a cofferdam) of the anodes in the vessel’s skin,
 - descriptions of how all appendages, e.g. rudder, propeller and shafts, are incorporated into the cathodic protection,
 - electrical supply and electrical distribution system.
 - design of the dielectric shield

2.3 The work processes involved in setting up the coating system as well as the coating materials to be used shall be laid down in the coating plan.

2.4 A coating protocol is to be compiled in such a way that details of all the work processes executed, including the surface preparation as well as the coating materials used, are recorded.

2.5 This documentation is to be compiled by the coating manufacturer and/or the contractor executing the work and/or the yard. An inspection plan shall be agreed to between the parties involved. The papers pertaining to the documentation have to be signed by these parties. On completion of the coating system, the signed papers constituting the documentation are to be handed to the Surveyor for approval.

2.6 In the case of impressed current systems, the function ability of the cathodic corrosion protection is to be tested during sea trials. The values obtained for the protection current and voltage shall be recorded.
Annex A

I. Biro Klasifikasi Indonesia Freeboard Markings

On application, Biro Klasifikasi Indonesia (BKI) calculate freeboards in accordance with the ICLL and with any existing relevant special national regulations, and subsequently issue the necessary Load Line Certificates wherever authorized to do so by the competent Authorities of the individual States.

Applications for issuance of Load Line Certificates or for surveys of freeboard admeasurements are to be made to either BKI Head Office, Jakarta, or the Branch Office.

Freeboards are then calculated and based on survey Reports and admeasurements Certificates are to be issued.

The load lines assigned by BKI are marked amidships in accordance with the Freeboard Marking as per sketches on page A-2 which is drawn for the starboard side. Where no other marking is stipulated by National Regulations of the respective foreign Authorities, there will be added the letters KI. The ring, lines and letters are to be painted white or yellow on a dark ground, or else, black on a light ground.

They shall be permanently attached on both sides of the ship.

With ships having a restricted service range, depending on the respective range, the seasonal markings, such as for Winter North Atlantic trade, are omitted.

Ships of over 100 m length do not get a WNA marking. For these ships WNA is equal to W and the LWNA marking is affixed at the same level as the W-mark.

For ships the keels of which were laid prior to 21st July, 1968, the conditions for assignment of the freeboard subject to the Load Line Convention 1930 continue to be valid as a part of the ICLL. Where the advantages of the ICLL are intended to be utilized, the respective ships are to comply with all requirements of that Convention as for a new ship.
Freeboard Marking for Seagoing Ships *)

Freeboard Marking for Seagoing Ship Carrying Timber Deck Cargoes *)

*) Drawn for the starboard side
II. Ice Class Draught Marking

According to Section 15, A.2.2, ship's sides are to be provided with a warning triangle and with an ice class draught mark at the maximum permissible ice class draught amidships if the summer load line is located at a higher level than the UIWL (for ships built before 1 July 2007) or if the summer load line in fresh water is located at a higher level than the UIWL (for ships built on or after 1 July 2007). The purpose of the warning triangle is to provide information on the draught limitation of the vessel when it is sailing in ice for masters of icebreakers and for inspection personnel in ports.

![Diagram of ice class draught marking]

Note

1. The ice class draught mark is to be centred 540 mm abaft the centre of the load line ring or 540 mm abaft the vertical line of the timber load line mark, if applicable (the sketch is shown for the starboard side). The ice class draught mark is to be 230 mm in length and 25 mm in width.

2. The upper edge of the warning triangle is to be centred above the ice class draught mark, 1000 mm higher than the Summer Load Line in fresh water but in no case higher than the deck line. The sides of the warning triangle are to be 300 mm in length and 25 mm in width.

3. The dimensions of all lettering are to be the same as those used in the load line mark (see Annex A).

4. The warning triangle, ice class draught mark and lettering are to be cut out of 5 - 8 mm plate and then welded to the ship's side. They are to be painted in a red or yellow reflecting colour in order to be plainly visible even in ice conditions.